-
2
-
-
85026477170
-
-
deepchem.io
-
Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016
-
(2016)
-
-
Ramsundar, B.1
-
3
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
4
-
-
85026486347
-
-
deepchem.io.
-
Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016.
-
(2016)
-
-
Ramsundar, B.1
-
5
-
-
84934439985
-
An analysis of the attrition of drug candidates from four major pharmaceutical companies
-
Waring, M. J.; Arrowsmith, J.; Leach, A. R.; Leeson, P. D.; Mandrell, S.; Owen, R. M.; Pairaudeau, G.; Pennie, W. D.; Pickett, S. D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug candidates from four major pharmaceutical companies Nat. Rev. Drug Discovery 2015, 14, 475-486 10.1038/nrd4609
-
(2015)
Nat. Rev. Drug Discovery
, vol.14
, pp. 475-486
-
-
Waring, M.J.1
Arrowsmith, J.2
Leach, A.R.3
Leeson, P.D.4
Mandrell, S.5
Owen, R.M.6
Pairaudeau, G.7
Pennie, W.D.8
Pickett, S.D.9
Wang, J.10
Wallace, O.11
Weir, A.12
-
6
-
-
84947041871
-
ImageNet Large Scale Visual Recognition Challenge
-
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge Int. J. Comp. Vis (IJCV) 2015, 115, 211-252 10.1007/s11263-015-0816-y
-
(2015)
Int. J. Comp. Vis (IJCV)
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
7
-
-
84890526837
-
New types of deep neural network learning for speech recognition and related applications: An overview
-
Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning for speech recognition and related applications: An overview Int. Conf. Acous. Speech Signal Proc. 2013, 8599-8603 10.1109/ICASSP.2013.6639344
-
(2013)
Int. Conf. Acous. Speech Signal Proc.
, pp. 8599-8603
-
-
Deng, L.1
Hinton, G.2
Kingsbury, B.3
-
9
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search Nature 2016, 529, 484-489 10.1038/nature16961
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
-
10
-
-
85026483842
-
-
Deep Learning How I Did It: Merck 1st place interview. November 1.
-
Dahl, G. Deep Learning How I Did It: Merck 1st place interview. http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/, November 1, 2012.
-
(2012)
-
-
Dahl, G.1
-
11
-
-
84927735077
-
Massively multitask networks for drug discovery
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072, 2015.
-
(2015)
ArXiv Preprint arXiv:1502.02072
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
12
-
-
84981496808
-
Deep Learning as an Opportunity in Virtual Screening
-
Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J. K.; Ceulemans, H.; Hochreiter, S. Deep Learning as an Opportunity in Virtual Screening. Neural Inf. Proc. Sys. DL Workshop (NIPS DL Workshop) 2014, 27.
-
(2014)
Neural Inf. Proc. Sys. DL Workshop (NIPS DL Workshop)
, vol.27
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Steijaert, M.4
Wegner, J.K.5
Ceulemans, H.6
Hochreiter, S.7
-
13
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
14
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional networks on graphs for learning molecular fingerprints Neural Inf. Proc. Sys. (NIPS) 2015, 2224-2232
-
(2015)
Neural Inf. Proc. Sys. (NIPS)
, pp. 2224-2232
-
-
Duvenaud, D.K.1
MacLaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
15
-
-
84983438115
-
Molecular Graph Convolutions: Moving beyond Fingerprints
-
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular Graph Convolutions: Moving Beyond Fingerprints J. Comput.-Aided Mol. Des. 2016, 30, 595-608 10.1007/s10822-016-9938-8
-
(2016)
J. Comput.-Aided Mol. Des.
, vol.30
, pp. 595-608
-
-
Kearnes, S.1
McCloskey, K.2
Berndl, M.3
Pande, V.4
Riley, P.5
-
16
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
17
-
-
84992694543
-
Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches
-
Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches J. Chem. Inf. Model. 2016, 56, 1936-1949 10.1021/acs.jcim.6b00290
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1936-1949
-
-
Subramanian, G.1
Ramsundar, B.2
Pande, V.3
Denny, R.A.4
-
18
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Human-level concept learning through probabilistic program induction Science 2015, 350, 1332-1338 10.1126/science.aab3050
-
(2015)
Science
, vol.350
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
19
-
-
85040308896
-
One-shot Learning with Memory-Augmented Neural Networks
-
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. One-shot Learning with Memory-Augmented Neural Networks. arXiv preprint arXiv:1605.06065, 2016.
-
(2016)
ArXiv Preprint arXiv:1605.06065
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
20
-
-
85018863845
-
-
Advances in Neural Information Processing Systems
-
Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching Net- works for One Shot Learning. Advances in Neural Information Processing Systems, 2016, pp 3630-3638.
-
(2016)
Matching Net- Works for One Shot Learning
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Kavukcuoglu, K.4
Wierstra, D.5
-
21
-
-
84990050094
-
-
European Conference on Computer Vision
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. European Conference on Computer Vision, 2016, pp 630-645.
-
(2016)
Identity Mappings in Deep Residual Networks
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
22
-
-
85075670920
-
TensorFlow: A system for large-scale machine learning
-
Savannah, Georgia, USA
-
Abadi, M. et al., TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia, USA, 2016, pp 265-283.
-
(2016)
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI)
, pp. 265-283
-
-
Abadi, M.1
-
24
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S.; Schmidhuber, J. Long short-term memory Neural Comp 1997, 9, 1735-1780 10.1162/neco.1997.9.8.1735
-
(1997)
Neural Comp
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
27
-
-
85026466662
-
-
Convolutional Neural Networks. Accessed: 2016-11-06.
-
Convolutional Neural Networks. http://cs231n.github.io/convolutional-networks/, Accessed: 2016-11-06.
-
-
-
-
28
-
-
85032289310
-
Automatic Chemical Design using a Data-Driven Continuous Representation of Molecules
-
Gómez-Bombarelli, R.; Duvenaud, D.; Hernández-Lobato, J. M.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic Chemical Design using a Data-Driven Continuous Representation of Molecules. rXiv preprint arXiv:1610.02415, 2016.
-
(2016)
RXiv Preprint arXiv:1610.02415
-
-
Gómez-Bombarelli, R.1
Duvenaud, D.2
Hernández-Lobato, J.M.3
Aguilera-Iparraguirre, J.4
Hirzel, T.D.5
Adams, R.P.6
Aspuru-Guzik, A.7
-
30
-
-
85026472662
-
-
Tox21 Challenge. Accessed: 2016-11- 06.
-
Tox21 Challenge. https://tripod.nih.gov/tox21/challenge/, Accessed: 2016-11- 06.
-
-
-
-
32
-
-
84979503522
-
The SIDER database of drugs and side effects
-
Kuhn, M.; Letunic, I.; Jensen, L. J.; Bork, P. The SIDER database of drugs and side effects Nucleic Acids Res. 2016, 44 (D1) 1075-1079 10.1093/nar/gkv1075
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.D1
, pp. 1075-1079
-
-
Kuhn, M.1
Letunic, I.2
Jensen, L.J.3
Bork, P.4
-
33
-
-
85026449045
-
-
Medical Dictionary for Regulatory Activities. Accessed: -09-20.
-
Medical Dictionary for Regulatory Activities. http://www.meddra.org/, Accessed: 2016, -09-20.
-
(2016)
-
-
-
34
-
-
65349136650
-
Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data
-
Rohrer, S. G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data J. Chem. Inf. Model. 2009, 49, 169-184 10.1021/ci8002649
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 169-184
-
-
Rohrer, S.G.1
Baumann, K.2
-
35
-
-
85026471222
-
-
RDKit.
-
RDKit, https://github.com/rdkit/rdkit, 2016.
-
(2016)
-
-
|