메뉴 건너뛰기




Volumn 3, Issue 4, 2017, Pages 283-293

Low Data Drug Discovery with One-Shot Learning

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; ITERATIVE METHODS; MOLECULES; NEURAL NETWORKS;

EID: 85026486382     PISSN: 23747943     EISSN: 23747951     Source Type: Journal    
DOI: 10.1021/acscentsci.6b00367     Document Type: Article
Times cited : (702)

References (35)
  • 2
    • 85026477170 scopus 로고    scopus 로고
    • deepchem.io
    • Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016
    • (2016)
    • Ramsundar, B.1
  • 3
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 4
    • 85026486347 scopus 로고    scopus 로고
    • deepchem.io.
    • Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016.
    • (2016)
    • Ramsundar, B.1
  • 7
    • 84890526837 scopus 로고    scopus 로고
    • New types of deep neural network learning for speech recognition and related applications: An overview
    • Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning for speech recognition and related applications: An overview Int. Conf. Acous. Speech Signal Proc. 2013, 8599-8603 10.1109/ICASSP.2013.6639344
    • (2013) Int. Conf. Acous. Speech Signal Proc. , pp. 8599-8603
    • Deng, L.1    Hinton, G.2    Kingsbury, B.3
  • 9
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver, D. et al. Mastering the game of Go with deep neural networks and tree search Nature 2016, 529, 484-489 10.1038/nature16961
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 10
    • 85026483842 scopus 로고    scopus 로고
    • Deep Learning How I Did It: Merck 1st place interview. November 1.
    • Dahl, G. Deep Learning How I Did It: Merck 1st place interview. http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/, November 1, 2012.
    • (2012)
    • Dahl, G.1
  • 13
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 16
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 17
    • 84992694543 scopus 로고    scopus 로고
    • Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches
    • Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches J. Chem. Inf. Model. 2016, 56, 1936-1949 10.1021/acs.jcim.6b00290
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 1936-1949
    • Subramanian, G.1    Ramsundar, B.2    Pande, V.3    Denny, R.A.4
  • 18
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Human-level concept learning through probabilistic program induction Science 2015, 350, 1332-1338 10.1126/science.aab3050
    • (2015) Science , vol.350 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 24
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S.; Schmidhuber, J. Long short-term memory Neural Comp 1997, 9, 1735-1780 10.1162/neco.1997.9.8.1735
    • (1997) Neural Comp , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 25
    • 84893701254 scopus 로고    scopus 로고
    • Hybrid speech recognition with deep bidirec- tional LSTM
    • Graves, A.; Jaitly, N.; Mohamed, A.-r. Hybrid speech recognition with deep bidirec- tional LSTM Aut. Speech Rec. Und. (ASRU) 2013, 273-278 10.1109/ASRU.2013.6707742
    • (2013) Aut. Speech Rec. Und. (ASRU) , pp. 273-278
    • Graves, A.1    Jaitly, N.2    Mohamed, A.-R.3
  • 27
    • 85026466662 scopus 로고    scopus 로고
    • Convolutional Neural Networks. Accessed: 2016-11-06.
    • Convolutional Neural Networks. http://cs231n.github.io/convolutional-networks/, Accessed: 2016-11-06.
  • 30
    • 85026472662 scopus 로고    scopus 로고
    • Tox21 Challenge. Accessed: 2016-11- 06.
    • Tox21 Challenge. https://tripod.nih.gov/tox21/challenge/, Accessed: 2016-11- 06.
  • 32
    • 84979503522 scopus 로고    scopus 로고
    • The SIDER database of drugs and side effects
    • Kuhn, M.; Letunic, I.; Jensen, L. J.; Bork, P. The SIDER database of drugs and side effects Nucleic Acids Res. 2016, 44 (D1) 1075-1079 10.1093/nar/gkv1075
    • (2016) Nucleic Acids Res. , vol.44 , Issue.D1 , pp. 1075-1079
    • Kuhn, M.1    Letunic, I.2    Jensen, L.J.3    Bork, P.4
  • 33
    • 85026449045 scopus 로고    scopus 로고
    • Medical Dictionary for Regulatory Activities. Accessed: -09-20.
    • Medical Dictionary for Regulatory Activities. http://www.meddra.org/, Accessed: 2016, -09-20.
    • (2016)
  • 34
    • 65349136650 scopus 로고    scopus 로고
    • Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data
    • Rohrer, S. G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data J. Chem. Inf. Model. 2009, 49, 169-184 10.1021/ci8002649
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 169-184
    • Rohrer, S.G.1    Baumann, K.2
  • 35
    • 85026471222 scopus 로고    scopus 로고
    • RDKit.
    • RDKit, https://github.com/rdkit/rdkit, 2016.
    • (2016)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.