-
2
-
-
68949137209
-
-
Technical Report Department of Computer Sciences, University of Wisconsin at Madison, Wisconsin, WI
-
Settles B. Active learning literature survey. Technical Report Department of Computer Sciences, University of Wisconsin at Madison, Wisconsin, WI, 2010 [ http://pages. cs.wisc.edu/~bsettles/pub/settles.activelearning.pdf].
-
(2010)
Active learning literature survey
-
-
Settles, B.1
-
4
-
-
33745456231
-
-
Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
-
Zhu X. Semi-supervised learning literature survey. Technical Report 1530. Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2008 [ http://www.cs. wisc.edu/~jerryzhu/pub/ssl?survey.pdf].
-
(2008)
Semi-supervised learning literature survey. Technical Report 1530
-
-
Zhu, X.1
-
5
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Zhou Z-H and Li M. Semi-supervised learning by disagreement. Knowl Inform Syst 2010; 24: 415-39.
-
(2010)
Knowl Inform Syst
, vol.24
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
-
6
-
-
84922580023
-
Active learning by querying informative and representative examples
-
Huang SJ, Jin R and Zhou ZH. Active learning by querying informative and representative examples. IEEE Trans Pattern Anal Mach Intell 2014; 36: 1936-49.
-
(2014)
IEEE Trans Pattern Anal Mach Intell
, vol.36
, pp. 1936-1949
-
-
Huang, S.J.1
Jin, R.2
Zhou, Z.H.3
-
14
-
-
84898947320
-
Analysis of a greedy active learning strategy
-
Cambridge, MA: MIT Press
-
Dasgupta S. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems 17, Cambridge, MA: MIT Press, 2005; 337-44.
-
(2005)
In Advances in Neural Information Processing Systems
, vol.17
, pp. 337-344
-
-
Dasgupta, S.1
-
17
-
-
84898062667
-
Adaptive rates of convergence in active learning
-
Montreal, Canada
-
Hanneke S. Adaptive rates of convergence in active learning. In 22nd Conference on Learning Theory,Montreal, Canada, 2009.
-
(2009)
In 22nd Conference on Learning Theory
-
-
Hanneke, S.1
-
18
-
-
85161974295
-
Multi-view active learning in the non-realizable case
-
Cambridge, MA: MIT Press
-
Wang W and Zhou ZH. Multi-view active learning in the non-realizable case. In Advances in Neural Information Processing Systems 23, Cambridge, MA: MIT Press, 2010; 2388-96.
-
(2010)
In Advances in Neural Information Processing Systems
, vol.23
, pp. 2388-2396
-
-
Wang, W.1
Zhou, Z.H.2
-
19
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled and unlabelled data
-
Cambridge MA: MIT Press
-
Miller DJ and Uyar HS. A mixture of experts classifier with learning based on both labelled and unlabelled data. In Advances in Neural Information Processing Systems 9, Cambridge, MA: MIT Press, 1997; 571-7.
-
(1997)
In Advances in Neural Information Processing Systems
, vol.9
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
20
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam K, McCallum AK and Thrun S et al. Text classification from labeled and unlabeled documents using EM. Mach Learn 2000; 39: 103-34.
-
(2000)
Mach Learn
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
-
23
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
Blum A and Chawla S. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001; 19-26.
-
(2001)
In ICML
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
29
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia
-
Joachims T. Transductive inference for text classification using support vector machines. In 16th International Conference on Machine Learning, Bled, Slovenia, 1999; 200-9.
-
(1999)
In 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
31
-
-
84883241774
-
Convex and scalable weakly labeled SVMs
-
Li YF, Tsang IW and Kwok JT et al. Convex and scalable weakly labeled SVMs. J Mach Learn Res 2013; 14: 2151-88.
-
(2013)
J Mach Learn Res
, vol.14
, pp. 2151-2188
-
-
Li, Y.F.1
Tsang, I.W.2
Kwok, J.T.3
-
33
-
-
28244448186
-
Tri-training: exploiting unlabeled data using three classifiers
-
Zhou Z-H and Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 2005; 17: 1529-41.
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
38
-
-
0029195475
-
On the exponential value of labeled samples
-
Castelli V and Cover TM. On the exponential value of labeled samples. Pattern Recogn Lett 1995; 16: 105-11.
-
(1995)
Pattern Recogn Lett
, vol.16
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
40
-
-
0030649484
-
Solving the multiple-instance problem with axis-parallel rectangles
-
Dietterich TG, Lathrop RH and Lozano-Pérez T. Solving the multiple-instance problem with axis-parallel rectangles. Artif Intell 1997; 89: 31-71.
-
(1997)
Artif Intell
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Pérez, T.3
-
41
-
-
77952349835
-
A review of multi-instance learning assumptions
-
Foulds J and Frank E. A review of multi-instance learning assumptions. Knowl Eng Rev 2010; 25: 1-25.
-
(2010)
Knowl Eng Rev
, vol.25
, pp. 1-25
-
-
Foulds, J.1
Frank, E.2
-
42
-
-
33750088958
-
Multi-instance learning from supervised view
-
Zhou Z-H.Multi-instance learning from supervised view. J Comput Sci Technol 2006; 21: 800-9.
-
(2006)
J Comput Sci Technol
, vol.21
, pp. 800-809
-
-
Zhou, Z.-H.1
-
43
-
-
33947396751
-
Solving multi-instance problems with classifier ensemble based on constructive clustering
-
Zhou Z-H and Zhang M-L. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowl Inform Syst 2007; 11: 155-70.
-
(2007)
Knowl Inform Syst
, vol.11
, pp. 155-170
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
-
45
-
-
84879815802
-
Multiple instance classification: review, taxonomy and comparative study
-
Amores J. Multiple instance classification: review, taxonomy and comparative study. Artif Intell 2013; 201: 81-105.
-
(2013)
Artif Intell
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
46
-
-
34547984757
-
On the relation between multi-instance learning and semi-supervised learning
-
Corvallis, OR
-
Zhou Z-H and Xu J-M. On the relation between multi-instance learning and semi-supervised learning. In 24th International Conference onMachine Learning, Corvallis, OR, 2007; 1167-74.
-
(2007)
In 24th International Conference onMachine Learning
, pp. 1167-1174
-
-
Zhou, Z.-H.1
Xu, J.-M.2
-
48
-
-
84863161940
-
Image categorization by learning and reasoning with regions
-
Chen Y and Wang JZ. Image categorization by learning and reasoning with regions. J Mach Learn Res 2004; 5: 913-39.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 913-939
-
-
Chen, Y.1
Wang, J.Z.2
-
50
-
-
75649121772
-
Image annotation by graph-based inference with integrated multiple/single instance representations
-
Tang JH, Li HJ and Qi GJ et al. Image annotation by graph-based inference with integrated multiple/single instance representations. IEEE Trans Multimed 2010; 12: 131-41.
-
(2010)
IEEE Trans Multimed
, vol.12
, pp. 131-141
-
-
Tang, J.H.1
Li, H.J.2
Qi, G.J.3
-
53
-
-
67349187779
-
A multiple instance learning strategy for combating good word attacks on spam filters
-
Jorgensen Z, Zhou Y and Inge M. A multiple instance learning strategy for combating good word attacks on spam filters. JMach Learn Res 2008; 8: 993-1019.
-
(2008)
JMach Learn Res
, vol.8
, pp. 993-1019
-
-
Jorgensen, Z.1
Zhou, Y.2
Inge, M.3
-
57
-
-
84924750243
-
Unsupervised object class discovery via saliencyguided multiple class learning
-
Zhu J-Y,Wu J and Xu Y et al. Unsupervised object class discovery via saliencyguided multiple class learning. IEEE Trans Pattern Anal Mach Intell 2015; 37: 862-75.
-
(2015)
IEEE Trans Pattern Anal Mach Intell
, vol.37
, pp. 862-875
-
-
Zhu, J.-Y.1
Wu, J.2
Xu, Y.3
-
59
-
-
84961839061
-
An empirical study on image bag generators for multiinstance learning
-
Wei X-S and Zhou Z-H. An empirical study on image bag generators for multiinstance learning. Mach Learn 2016; 105: 155-98.
-
(2016)
Mach Learn
, vol.105
, pp. 155-198
-
-
Wei, X.-S.1
Zhou, Z.-H.2
-
62
-
-
33947180489
-
MILES: multiple-instance learning via embedded instance selection
-
Chen Y, Bi J and Wang JZ. MILES: multiple-instance learning via embedded instance selection. IEEE Trans Pattern Anal Mach Intell 2006; 28: 1931-47.
-
(2006)
IEEE Trans Pattern Anal Mach Intell
, vol.28
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
64
-
-
0031701616
-
PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples
-
Long PM and Tan L. PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples. Mach Learn 1998; 30: 7-21.
-
(1998)
Mach Learn
, vol.30
, pp. 7-21
-
-
Long, P.M.1
Tan, L.2
-
65
-
-
0032302519
-
Approximating hyper-rectangles: learning and pseudo-random sets
-
Auer P, Long PM and Srinivasan A. Approximating hyper-rectangles: learning and pseudo-random sets. J Comput Syst Sci 1998; 57: 376-88.
-
(1998)
J Comput Syst Sci
, vol.57
, pp. 376-388
-
-
Auer, P.1
Long, P.M.2
Srinivasan, A.3
-
66
-
-
0031704194
-
A note on learning from multiple-instance examples
-
Blum A and Kalai A. A note on learning from multiple-instance examples. Mach Learn 1998; 30: 23-9.
-
(1998)
Mach Learn
, vol.30
, pp. 23-29
-
-
Blum, A.1
Kalai, A.2
-
67
-
-
84898078790
-
Homogenous multi-instance learning with arbitrary dependence
-
Montreal, Canada
-
Sabato S and Tishby N. Homogenous multi-instance learning with arbitrary dependence. In 22nd Conference on Learning Theory,Montreal, Canada, 2009.
-
(2009)
In 22nd Conference on Learning Theory
-
-
Sabato, S.1
Tishby, N.2
-
69
-
-
0000492326
-
Learning from noisy examples
-
Angluin D and Laird P. Learning from noisy examples. Mach Learn 1988; 2: 343-70.
-
(1988)
Mach Learn
, vol.2
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
70
-
-
24144453496
-
Noise-tolerant learning, the parity problem, and the statistical query model
-
Blum A, Kalai A and Wasserman H. Noise-tolerant learning, the parity problem, and the statistical query model. J ACM2003; 50: 506-19.
-
(2003)
J ACM
, vol.50
, pp. 506-519
-
-
Blum, A.1
Kalai, A.2
Wasserman, H.3
-
72
-
-
0000046054
-
Identifying mislabeled training data
-
Brodley CE and Friedl MA. Identifying mislabeled training data. J Artif Intell Res 1999; 11: 131-67.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 131-167
-
-
Brodley, C.E.1
Friedl, M.A.2
-
74
-
-
45949105508
-
Crowdsourcing as a model for problem solving: an introduction and cases
-
Brabham DC. Crowdsourcing as a model for problem solving: an introduction and cases. Convergence 2008; 14: 75-90.
-
(2008)
Convergence
, vol.14
, pp. 75-90
-
-
Brabham, D.C.1
-
75
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
Las Vegas, NV
-
Sheng VS, Provost FJ and Ipeirotis PG. Get another label? Improving data quality and data mining using multiple, noisy labelers. In 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, 2008; 614-22.
-
(2008)
In 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.J.2
Ipeirotis, P.G.3
-
78
-
-
77951951247
-
Whose vote should count more: optimal integration of labels from labelers of unknown expertise
-
Cambridge MA:MIT Press
-
Whitehill J, Ruvolo P and Wu T et al. Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In Advances in Neural Information Processing Systems 22, Cambridge, MA:MIT Press, 2009; 2035-43.
-
(2009)
In Advances in Neural Information Processing Systems
, vol.22
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
-
79
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
Raykar VC and Yu S. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J Mach Learn Res 2012; 13: 491-518.
-
(2012)
J Mach Learn Res
, vol.13
, pp. 491-518
-
-
Raykar, V.C.1
Yu, S.2
-
80
-
-
84945286640
-
Crowdsourcing label quality: a theoretical analysis
-
Wang W and Zhou ZH. Crowdsourcing label quality: a theoretical analysis. Sci China Inform Sci 2015; 58: 1-12.
-
(2015)
Sci China Inform Sci
, vol.58
, pp. 1-12
-
-
Wang, W.1
Zhou, Z.H.2
-
84
-
-
85162483531
-
Iterative learning for reliable crowdsourcing systems
-
Cambridge, MA: MIT Press
-
Karger DR, Sewoong O and Devavrat S. Iterative learning for reliable crowdsourcing systems. In Advances in Neural Information Processing Systems 24, Cambridge, MA: MIT Press, 2011; 1953-61.
-
(2011)
In Advances in Neural Information Processing Systems
, vol.24
, pp. 1953-1961
-
-
Karger, D.R.1
Sewoong, O.2
Devavrat, S.3
-
87
-
-
84901398917
-
Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing
-
Atlanta, GA
-
Chen X, Lin Q and Zhou D. Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. In 30th International Conference on Machine Learning, Atlanta, GA, 2013; 64-72.
-
(2013)
In 30th International Conference on Machine Learning
, pp. 64-72
-
-
Chen, X.1
Lin, Q.2
Zhou, D.3
-
88
-
-
0003102944
-
Maximum likelihood estimation of observer errorrates using the EM algorithm
-
Dawid AP and Skene AM. Maximum likelihood estimation of observer errorrates using the EM algorithm. J Roy Stat Soc C Appl Stat 1979; 28: 20-8.
-
(1979)
J Roy Stat Soc C Appl Stat
, vol.28
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
91
-
-
84965134289
-
Double or nothing: multiplicative incentive mechanisms for crowdsourcing
-
Cambridge MA: MIT Press
-
Shah NB and Zhou D. Double or nothing: multiplicative incentive mechanisms for crowdsourcing. In Advances in Neural Information Processing Systems 28, Cambridge, MA: MIT Press, 2015; 1-9.
-
(2015)
In Advances in Neural Information Processing Systems
, vol.28
, pp. 1-9
-
-
Shah, N.B.1
Zhou, D.2
-
95
-
-
84892895489
-
Partially supervised learning for pattern recognition
-
Schwenker F and Trentin E. Partially supervised learning for pattern recognition. Pattern Recogn Lett 2014; 37: 1-3.
-
(2014)
Pattern Recogn Lett
, vol.37
, pp. 1-3
-
-
Schwenker, F.1
Trentin, E.2
-
97
-
-
84946782393
-
Weak supervision and other nonstandard classification problems: a taxonomy
-
Hernández-González J, Inza I and Lozano JA.Weak supervision and other nonstandard classification problems: a taxonomy. Pattern Recogn Lett 2016; 69: 49-55.
-
(2016)
Pattern Recogn Lett
, vol.69
, pp. 49-55
-
-
Hernández-González, J.1
Inza, I.2
Lozano, J.A.3
-
99
-
-
84897109377
-
A review on multi-label learning algorithms
-
Zhang M-L and Zhou Z-H. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 2014; 26: 1819-37.
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, pp. 1819-1837
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
|