메뉴 건너뛰기




Volumn 5, Issue 1, 2018, Pages 44-53

A brief introduction to weakly supervised learning

Author keywords

Machine learning; Supervised learning; Weakly supervised learning

Indexed keywords


EID: 85042566177     PISSN: 20955138     EISSN: 2053714X     Source Type: Journal    
DOI: 10.1093/nsr/nwx106     Document Type: Review
Times cited : (1695)

References (103)
  • 2
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report Department of Computer Sciences, University of Wisconsin at Madison, Wisconsin, WI
    • Settles B. Active learning literature survey. Technical Report Department of Computer Sciences, University of Wisconsin at Madison, Wisconsin, WI, 2010 [ http://pages. cs.wisc.edu/~bsettles/pub/settles.activelearning.pdf].
    • (2010) Active learning literature survey
    • Settles, B.1
  • 4
    • 33745456231 scopus 로고    scopus 로고
    • Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
    • Zhu X. Semi-supervised learning literature survey. Technical Report 1530. Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2008 [ http://www.cs. wisc.edu/~jerryzhu/pub/ssl?survey.pdf].
    • (2008) Semi-supervised learning literature survey. Technical Report 1530
    • Zhu, X.1
  • 5
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Zhou Z-H and Li M. Semi-supervised learning by disagreement. Knowl Inform Syst 2010; 24: 415-39.
    • (2010) Knowl Inform Syst , vol.24 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 6
    • 84922580023 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • Huang SJ, Jin R and Zhou ZH. Active learning by querying informative and representative examples. IEEE Trans Pattern Anal Mach Intell 2014; 36: 1936-49.
    • (2014) IEEE Trans Pattern Anal Mach Intell , vol.36 , pp. 1936-1949
    • Huang, S.J.1    Jin, R.2    Zhou, Z.H.3
  • 14
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • Cambridge, MA: MIT Press
    • Dasgupta S. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems 17, Cambridge, MA: MIT Press, 2005; 337-44.
    • (2005) In Advances in Neural Information Processing Systems , vol.17 , pp. 337-344
    • Dasgupta, S.1
  • 17
    • 84898062667 scopus 로고    scopus 로고
    • Adaptive rates of convergence in active learning
    • Montreal, Canada
    • Hanneke S. Adaptive rates of convergence in active learning. In 22nd Conference on Learning Theory,Montreal, Canada, 2009.
    • (2009) In 22nd Conference on Learning Theory
    • Hanneke, S.1
  • 18
    • 85161974295 scopus 로고    scopus 로고
    • Multi-view active learning in the non-realizable case
    • Cambridge, MA: MIT Press
    • Wang W and Zhou ZH. Multi-view active learning in the non-realizable case. In Advances in Neural Information Processing Systems 23, Cambridge, MA: MIT Press, 2010; 2388-96.
    • (2010) In Advances in Neural Information Processing Systems , vol.23 , pp. 2388-2396
    • Wang, W.1    Zhou, Z.H.2
  • 19
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • Cambridge MA: MIT Press
    • Miller DJ and Uyar HS. A mixture of experts classifier with learning based on both labelled and unlabelled data. In Advances in Neural Information Processing Systems 9, Cambridge, MA: MIT Press, 1997; 571-7.
    • (1997) In Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 20
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K, McCallum AK and Thrun S et al. Text classification from labeled and unlabeled documents using EM. Mach Learn 2000; 39: 103-34.
    • (2000) Mach Learn , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3
  • 22
    • 29344468051 scopus 로고    scopus 로고
    • A hybrid generative/ discriminative approach to semi-supervised classifier design
    • Pittsburgh, PA
    • Fujino A, Ueda N and Saito K. A hybrid generative/ discriminative approach to semi-supervised classifier design. In 20th National Conference on Artificial Intelligence, Pittsburgh, PA, 2005; 764-9.
    • (2005) In 20th National Conference on Artificial Intelligence , pp. 764-769
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 23
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Blum A and Chawla S. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001; 19-26.
    • (2001) In ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 29
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • Joachims T. Transductive inference for text classification using support vector machines. In 16th International Conference on Machine Learning, Bled, Slovenia, 1999; 200-9.
    • (1999) In 16th International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 31
    • 84883241774 scopus 로고    scopus 로고
    • Convex and scalable weakly labeled SVMs
    • Li YF, Tsang IW and Kwok JT et al. Convex and scalable weakly labeled SVMs. J Mach Learn Res 2013; 14: 2151-88.
    • (2013) J Mach Learn Res , vol.14 , pp. 2151-2188
    • Li, Y.F.1    Tsang, I.W.2    Kwok, J.T.3
  • 33
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: exploiting unlabeled data using three classifiers
    • Zhou Z-H and Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 2005; 17: 1529-41.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 38
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • Castelli V and Cover TM. On the exponential value of labeled samples. Pattern Recogn Lett 1995; 16: 105-11.
    • (1995) Pattern Recogn Lett , vol.16 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 40
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • Dietterich TG, Lathrop RH and Lozano-Pérez T. Solving the multiple-instance problem with axis-parallel rectangles. Artif Intell 1997; 89: 31-71.
    • (1997) Artif Intell , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 41
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • Foulds J and Frank E. A review of multi-instance learning assumptions. Knowl Eng Rev 2010; 25: 1-25.
    • (2010) Knowl Eng Rev , vol.25 , pp. 1-25
    • Foulds, J.1    Frank, E.2
  • 42
    • 33750088958 scopus 로고    scopus 로고
    • Multi-instance learning from supervised view
    • Zhou Z-H.Multi-instance learning from supervised view. J Comput Sci Technol 2006; 21: 800-9.
    • (2006) J Comput Sci Technol , vol.21 , pp. 800-809
    • Zhou, Z.-H.1
  • 43
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Zhou Z-H and Zhang M-L. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowl Inform Syst 2007; 11: 155-70.
    • (2007) Knowl Inform Syst , vol.11 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 45
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: review, taxonomy and comparative study
    • Amores J. Multiple instance classification: review, taxonomy and comparative study. Artif Intell 2013; 201: 81-105.
    • (2013) Artif Intell , vol.201 , pp. 81-105
    • Amores, J.1
  • 46
    • 34547984757 scopus 로고    scopus 로고
    • On the relation between multi-instance learning and semi-supervised learning
    • Corvallis, OR
    • Zhou Z-H and Xu J-M. On the relation between multi-instance learning and semi-supervised learning. In 24th International Conference onMachine Learning, Corvallis, OR, 2007; 1167-74.
    • (2007) In 24th International Conference onMachine Learning , pp. 1167-1174
    • Zhou, Z.-H.1    Xu, J.-M.2
  • 48
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Chen Y and Wang JZ. Image categorization by learning and reasoning with regions. J Mach Learn Res 2004; 5: 913-39.
    • (2004) J Mach Learn Res , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 50
    • 75649121772 scopus 로고    scopus 로고
    • Image annotation by graph-based inference with integrated multiple/single instance representations
    • Tang JH, Li HJ and Qi GJ et al. Image annotation by graph-based inference with integrated multiple/single instance representations. IEEE Trans Multimed 2010; 12: 131-41.
    • (2010) IEEE Trans Multimed , vol.12 , pp. 131-141
    • Tang, J.H.1    Li, H.J.2    Qi, G.J.3
  • 53
    • 67349187779 scopus 로고    scopus 로고
    • A multiple instance learning strategy for combating good word attacks on spam filters
    • Jorgensen Z, Zhou Y and Inge M. A multiple instance learning strategy for combating good word attacks on spam filters. JMach Learn Res 2008; 8: 993-1019.
    • (2008) JMach Learn Res , vol.8 , pp. 993-1019
    • Jorgensen, Z.1    Zhou, Y.2    Inge, M.3
  • 57
    • 84924750243 scopus 로고    scopus 로고
    • Unsupervised object class discovery via saliencyguided multiple class learning
    • Zhu J-Y,Wu J and Xu Y et al. Unsupervised object class discovery via saliencyguided multiple class learning. IEEE Trans Pattern Anal Mach Intell 2015; 37: 862-75.
    • (2015) IEEE Trans Pattern Anal Mach Intell , vol.37 , pp. 862-875
    • Zhu, J.-Y.1    Wu, J.2    Xu, Y.3
  • 59
    • 84961839061 scopus 로고    scopus 로고
    • An empirical study on image bag generators for multiinstance learning
    • Wei X-S and Zhou Z-H. An empirical study on image bag generators for multiinstance learning. Mach Learn 2016; 105: 155-98.
    • (2016) Mach Learn , vol.105 , pp. 155-198
    • Wei, X.-S.1    Zhou, Z.-H.2
  • 62
    • 33947180489 scopus 로고    scopus 로고
    • MILES: multiple-instance learning via embedded instance selection
    • Chen Y, Bi J and Wang JZ. MILES: multiple-instance learning via embedded instance selection. IEEE Trans Pattern Anal Mach Intell 2006; 28: 1931-47.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.Z.3
  • 64
    • 0031701616 scopus 로고    scopus 로고
    • PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples
    • Long PM and Tan L. PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples. Mach Learn 1998; 30: 7-21.
    • (1998) Mach Learn , vol.30 , pp. 7-21
    • Long, P.M.1    Tan, L.2
  • 65
    • 0032302519 scopus 로고    scopus 로고
    • Approximating hyper-rectangles: learning and pseudo-random sets
    • Auer P, Long PM and Srinivasan A. Approximating hyper-rectangles: learning and pseudo-random sets. J Comput Syst Sci 1998; 57: 376-88.
    • (1998) J Comput Syst Sci , vol.57 , pp. 376-388
    • Auer, P.1    Long, P.M.2    Srinivasan, A.3
  • 66
    • 0031704194 scopus 로고    scopus 로고
    • A note on learning from multiple-instance examples
    • Blum A and Kalai A. A note on learning from multiple-instance examples. Mach Learn 1998; 30: 23-9.
    • (1998) Mach Learn , vol.30 , pp. 23-29
    • Blum, A.1    Kalai, A.2
  • 67
    • 84898078790 scopus 로고    scopus 로고
    • Homogenous multi-instance learning with arbitrary dependence
    • Montreal, Canada
    • Sabato S and Tishby N. Homogenous multi-instance learning with arbitrary dependence. In 22nd Conference on Learning Theory,Montreal, Canada, 2009.
    • (2009) In 22nd Conference on Learning Theory
    • Sabato, S.1    Tishby, N.2
  • 69
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D and Laird P. Learning from noisy examples. Mach Learn 1988; 2: 343-70.
    • (1988) Mach Learn , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 70
    • 24144453496 scopus 로고    scopus 로고
    • Noise-tolerant learning, the parity problem, and the statistical query model
    • Blum A, Kalai A and Wasserman H. Noise-tolerant learning, the parity problem, and the statistical query model. J ACM2003; 50: 506-19.
    • (2003) J ACM , vol.50 , pp. 506-519
    • Blum, A.1    Kalai, A.2    Wasserman, H.3
  • 72
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • Brodley CE and Friedl MA. Identifying mislabeled training data. J Artif Intell Res 1999; 11: 131-67.
    • (1999) J Artif Intell Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 74
    • 45949105508 scopus 로고    scopus 로고
    • Crowdsourcing as a model for problem solving: an introduction and cases
    • Brabham DC. Crowdsourcing as a model for problem solving: an introduction and cases. Convergence 2008; 14: 75-90.
    • (2008) Convergence , vol.14 , pp. 75-90
    • Brabham, D.C.1
  • 78
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: optimal integration of labels from labelers of unknown expertise
    • Cambridge MA:MIT Press
    • Whitehill J, Ruvolo P and Wu T et al. Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In Advances in Neural Information Processing Systems 22, Cambridge, MA:MIT Press, 2009; 2035-43.
    • (2009) In Advances in Neural Information Processing Systems , vol.22 , pp. 2035-2043
    • Whitehill, J.1    Ruvolo, P.2    Wu, T.3
  • 79
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • Raykar VC and Yu S. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J Mach Learn Res 2012; 13: 491-518.
    • (2012) J Mach Learn Res , vol.13 , pp. 491-518
    • Raykar, V.C.1    Yu, S.2
  • 80
    • 84945286640 scopus 로고    scopus 로고
    • Crowdsourcing label quality: a theoretical analysis
    • Wang W and Zhou ZH. Crowdsourcing label quality: a theoretical analysis. Sci China Inform Sci 2015; 58: 1-12.
    • (2015) Sci China Inform Sci , vol.58 , pp. 1-12
    • Wang, W.1    Zhou, Z.H.2
  • 87
    • 84901398917 scopus 로고    scopus 로고
    • Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing
    • Atlanta, GA
    • Chen X, Lin Q and Zhou D. Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. In 30th International Conference on Machine Learning, Atlanta, GA, 2013; 64-72.
    • (2013) In 30th International Conference on Machine Learning , pp. 64-72
    • Chen, X.1    Lin, Q.2    Zhou, D.3
  • 88
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer errorrates using the EM algorithm
    • Dawid AP and Skene AM. Maximum likelihood estimation of observer errorrates using the EM algorithm. J Roy Stat Soc C Appl Stat 1979; 28: 20-8.
    • (1979) J Roy Stat Soc C Appl Stat , vol.28 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 91
    • 84965134289 scopus 로고    scopus 로고
    • Double or nothing: multiplicative incentive mechanisms for crowdsourcing
    • Cambridge MA: MIT Press
    • Shah NB and Zhou D. Double or nothing: multiplicative incentive mechanisms for crowdsourcing. In Advances in Neural Information Processing Systems 28, Cambridge, MA: MIT Press, 2015; 1-9.
    • (2015) In Advances in Neural Information Processing Systems , vol.28 , pp. 1-9
    • Shah, N.B.1    Zhou, D.2
  • 95
    • 84892895489 scopus 로고    scopus 로고
    • Partially supervised learning for pattern recognition
    • Schwenker F and Trentin E. Partially supervised learning for pattern recognition. Pattern Recogn Lett 2014; 37: 1-3.
    • (2014) Pattern Recogn Lett , vol.37 , pp. 1-3
    • Schwenker, F.1    Trentin, E.2
  • 97
    • 84946782393 scopus 로고    scopus 로고
    • Weak supervision and other nonstandard classification problems: a taxonomy
    • Hernández-González J, Inza I and Lozano JA.Weak supervision and other nonstandard classification problems: a taxonomy. Pattern Recogn Lett 2016; 69: 49-55.
    • (2016) Pattern Recogn Lett , vol.69 , pp. 49-55
    • Hernández-González, J.1    Inza, I.2    Lozano, J.A.3
  • 99
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang M-L and Zhou Z-H. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 2014; 26: 1819-37.
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , pp. 1819-1837
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.