-
10
-
-
85057321283
-
-
arXiv preprint
-
C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.
-
(2017)
One-Shot Visual Imitation Learning Via Meta-Learning
-
-
Finn, C.1
Yu, T.2
Zhang, T.3
Abbeel, P.4
Levine, S.5
-
14
-
-
85064820668
-
Concept acquisition through meta-learning
-
E. Grant, C. Finn, J. Peterson, J. Abbott, S. Levine, T. Darrell, and T. Griffiths. Concept acquisition through meta-learning. In NIPS Workshop on Cognitively Informed Artificial Intelligence, 2017.
-
(2017)
NIPS Workshop on Cognitively Informed Artificial Intelligence
-
-
Grant, E.1
Finn, C.2
Peterson, J.3
Abbott, J.4
Levine, S.5
Darrell, T.6
Griffiths, T.7
-
15
-
-
85083953531
-
Recasting gradient-based meta-learning as hierarchical bayes
-
E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning as hierarchical bayes. In International Conference on Learning Representations (ICLR), 2018.
-
(2018)
International Conference on Learning Representations (ICLR)
-
-
Grant, E.1
Finn, C.2
Levine, S.3
Darrell, T.4
Griffiths, T.5
-
17
-
-
85034241706
-
Early visual concept learning with unsupervised deep learning
-
I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and A. Lerchner. Early visual concept learning with unsupervised deep learning. International Conference on Learning Representations (ICLR), 2017.
-
(2017)
International Conference on Learning Representations (ICLR)
-
-
Higgins, I.1
Matthey, L.2
Glorot, X.3
Pal, A.4
Uria, B.5
Blundell, C.6
Mohamed, S.7
Lerchner, A.8
-
18
-
-
0027803368
-
Keeping the neural networks simple by minimizing the description length of the weights
-
G. E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In Conference on Computational learning theory, 1993.
-
(1993)
Conference on Computational Learning Theory
-
-
Hinton, G.E.1
Van Camp, D.2
-
21
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing graphical models with neural networks for structured representations and fast inference. In Neural Information Processing Systems (NIPS), 2016.
-
(2016)
Neural Information Processing Systems (NIPS)
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
23
-
-
85064816143
-
-
arXiv preprint
-
A. Lacoste, T. Boquet, N. Rostamzadeh, B. Oreshki, W. Chung, and D. Krueger. Deep prior. arXiv preprint arXiv:1712.05016, 2017.
-
(2017)
Deep Prior
-
-
Lacoste, A.1
Boquet, T.2
Rostamzadeh, N.3
Oreshki, B.4
Chung, W.5
Krueger, D.6
-
24
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 2015.
-
(2015)
Science
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
27
-
-
0001025418
-
A practical Bayesian framework for backpropagation networks
-
D. J. MacKay. A practical Bayesian framework for backpropagation networks. Neural computation, 1992.
-
(1992)
Neural Computation
-
-
MacKay, D.J.1
-
33
-
-
84998717754
-
Meta-learning with memory-augmented neural networks
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In International Conference on Machine Learning (ICML), 2016.
-
(2016)
International Conference on Machine Learning (ICML)
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
34
-
-
0030546173
-
Equivalence of regularization and truncated iteration for general ill-posed problems
-
R. J. Santos. Equivalence of regularization and truncated iteration for general ill-posed problems. Linear Algebra and its Applications, 1996.
-
(1996)
Linear Algebra and Its Applications
-
-
Santos, R.J.1
-
36
-
-
85064824112
-
-
arXiv preprint
-
R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference regularization. arXiv preprint arXiv:1805.08913, 2018.
-
(2018)
Amortized Inference Regularization
-
-
Shu, R.1
Bui, H.H.2
Zhao, S.3
Kochenderfer, M.J.4
Ermon, S.5
-
38
-
-
85063581516
-
Learning to compare: Relation network for few-shot learning
-
abs/1711.06025
-
F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales. Learning to compare: Relation network for few-shot learning. CoRR, abs/1711.06025, 2017. URL http://arxiv.org/abs/1711.06025.
-
(2017)
CoRR
-
-
Sung, F.1
Yang, Y.2
Zhang, L.3
Xiang, T.4
Torr, P.H.S.5
Hospedales, T.M.6
-
41
-
-
84866683998
-
Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease
-
J. Wan, Z. Zhang, J. Yan, T. Li, B. D. Rao, S. Fang, S. Kim, S. L. Risacher, A. J. Saykin, and L. Shen. Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
-
(2012)
Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Wan, J.1
Zhang, Z.2
Yan, J.3
Li, T.4
Rao, B.D.5
Fang, S.6
Kim, S.7
Risacher, S.L.8
Saykin, A.J.9
Shen, L.10
|