메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5320-5329

One-Shot video object segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; MOTION COMPENSATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; SEMANTICS;

EID: 85041926984     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.565     Document Type: Conference Paper
Times cited : (860)

References (52)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • 3, 5
    • P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898–916, 2011. 3, 5
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbeláez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 85028557378 scopus 로고    scopus 로고
    • The fast bilateral solver
    • 4
    • J. T. Barron and B. Poole. The fast bilateral solver. In ECCV, 2016. 4
    • (2016) ECCV
    • Barron, J.T.1    Poole, B.2
  • 3
    • 84973888826 scopus 로고    scopus 로고
    • High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
    • 1
    • G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In ICCV, 2015. 1
    • (2015) ICCV
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 4
    • 84986309439 scopus 로고    scopus 로고
    • Semantic segmentation with boundary neural fields
    • 1
    • G. Bertasius, J. Shi, and L. Torresani. Semantic segmentation with boundary neural fields. In CVPR, 2016. 1
    • (2016) CVPR
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 5
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010. 2, 5
    • (2010) ECCV , vol.2 , pp. 5
    • Brox, T.1    Malik, J.2
  • 6
    • 84887381501 scopus 로고    scopus 로고
    • A video representation using temporal superpixels
    • 2, 3, 5, 7
    • J. Chang, D. Wei, and J. W. Fisher III. A video representation using temporal superpixels. In CVPR, 2013. 2, 3, 5, 7
    • (2013) CVPR
    • Chang, J.1    Wei, D.2    Fisher, J.W.3
  • 7
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • 6
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015. 6
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 8
    • 85041931014 scopus 로고    scopus 로고
    • Instance-sensitive fully convolutional networks
    • J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016. 2, 3
    • (2016) ECCV , vol.2 , pp. 3
    • Dai, J.1    He, K.2    Li, Y.3    Ren, S.4    Sun, J.5
  • 9
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016. 2
    • (2016) NIPS , vol.2
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 10
    • 84919724784 scopus 로고    scopus 로고
    • Video segmentation by non-local consensus voting
    • A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014. 5
    • (2014) BMVC , vol.5
    • Faktor, A.1    Irani, M.2
  • 11
    • 84996533970 scopus 로고    scopus 로고
    • Jumpcut: Non-successive mask transfer and interpolation for video cutout
    • 2, 3, 5, 7
    • Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. ACM Trans. Graph., 34(6), 2015. 2, 3, 5, 7
    • (2015) ACM Trans. Graph. , vol.34 , Issue.6
    • Fan, Q.1    Zhong, F.2    Lischinski, D.3    Cohen-Or, D.4    Chen, B.5
  • 12
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • 2, 3
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI, 35(8):1915–1929, 2013. 2, 3
    • (2013) TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 13
    • 84866658183 scopus 로고    scopus 로고
    • Video segmentation by tracing discontinuities in a trajectory embedding
    • 5
    • K. Fragkiadaki, G. Zhang, and J. Shi. Video segmentation by tracing discontinuities in a trajectory embedding. In CVPR, 2012. 5
    • (2012) CVPR
    • Fragkiadaki, K.1    Zhang, G.2    Shi, J.3
  • 14
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 1, 3
    • R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 3
    • (2015) ICCV
    • Girshick, R.1
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 16
    • 84885375240 scopus 로고    scopus 로고
    • Hough-based tracking of non-rigid objects
    • 5
    • M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. CVIU, 117(10):1245–1256, 2013. 5
    • (2013) CVIU , vol.117 , Issue.10 , pp. 1245-1256
    • Godec, M.1    Roth, P.M.2    Bischof, H.3
  • 17
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • 2, 3, 5, 7
    • M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010. 2, 3, 5, 7
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.A.4
  • 18
    • 84951757850 scopus 로고    scopus 로고
    • Hyper-columns for object segmentation and fine-grained localization
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-columns for object segmentation and fine-grained localization. In CVPR, 2015. 2, 4
    • (2015) CVPR , vol.2 , pp. 4
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 19
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • 1, 3, 4
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 1, 3, 4
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 84959205272 scopus 로고    scopus 로고
    • Supervoxel-consistent foreground propagation in video
    • 2, 5, 8
    • S. D. Jain and K. Grauman. Supervoxel-consistent foreground propagation in video. In ECCV, 2014. 2, 5, 8
    • (2014) ECCV
    • Jain, S.D.1    Grauman, K.2
  • 23
    • 85083952789 scopus 로고    scopus 로고
    • Pushing the boundaries of boundary detection using deep learning
    • I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. In ICLR, 2016. 1, 4
    • (2016) ICLR , vol.1 , pp. 4
    • Kokkinos, I.1
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 3, 4
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 3, 4
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 5
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011. 5
    • (2011) ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 27
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • 2, 3, 4
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. 2, 3, 4
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 32
    • 84996809841 scopus 로고    scopus 로고
    • Learning multi-domain convolutional neural networks for visual tracking
    • H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In CVPR, 2016. 3, 8
    • (2016) CVPR , vol.3 , pp. 8
    • Nam, H.1    Han, B.2
  • 34
    • 85041929914 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015. 2, 3
    • (2015) ICCV , vol.2 , pp. 3
    • Noh, H.1    Hong, S.2    Han, B.3
  • 35
    • 84901822916 scopus 로고    scopus 로고
    • Segmentation of moving objects by long term video analysis
    • 5
    • P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. TPAMI, 36(6):1187–1200, 2014. 5
    • (2014) TPAMI , vol.36 , Issue.6 , pp. 1187-1200
    • Ochs, P.1    Malik, J.2    Brox, T.3
  • 36
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • 5
    • A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013. 5
    • (2013) ICCV
    • Papazoglou, A.1    Ferrari, V.2
  • 38
    • 84973890095 scopus 로고    scopus 로고
    • Fully connected object proposals for video segmentation
    • 2, 5, 7
    • F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung. Fully connected object proposals for video segmentation. In ICCV, 2015. 2, 5, 7
    • (2015) ICCV
    • Perazzi, F.1    Wang, O.2    Gross, M.3    Sorkine-Hornung, A.4
  • 40
    • 85006053812 scopus 로고    scopus 로고
    • Multiscale combinatorial grouping for image segmentation and object proposal generation
    • J. Pont-Tuset, P. Arbeláez, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI, 2017. 3, 5
    • (2017) TPAMI , vol.3 , pp. 5
    • Pont-Tuset, J.1    Arbeláez, P.2    Barron, J.T.3    Marques, F.4    Malik, J.5
  • 41
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 2, 5, 8
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012. 2, 5, 8
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 42
    • 84911386933 scopus 로고    scopus 로고
    • Seamseg: Video object segmentation using patch seams
    • 2, 3, 5, 7
    • S. A. Ramakanth and R. V. Babu. Seamseg: Video object segmentation using patch seams. In CVPR, 2014. 2, 3, 5, 7
    • (2014) CVPR
    • Ramakanth, S.A.1    Babu, R.V.2
  • 43
    • 85011287288 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • 3
    • O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015. 3
    • (2015) MICCAI
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 46
    • 84959191527 scopus 로고    scopus 로고
    • Saliency-aware geodesic video object segmentation
    • 5
    • J. Shen, W. Wenguan, and F. Porikli. Saliency-Aware geodesic video object segmentation. In CVPR, 2015. 5
    • (2015) CVPR
    • Shen, J.1    Wenguan, W.2    Porikli, F.3
  • 47
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 1, 3, 4
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 1, 3, 4
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 48
    • 84959181650 scopus 로고    scopus 로고
    • Causal video object segmentation from persistence of occlusions
    • 5
    • B. Taylor, V. Karasev, and S. Soatto. Causal video object segmentation from persistence of occlusions. In CVPR, 2015. 5
    • (2015) CVPR
    • Taylor, B.1    Karasev, V.2    Soatto, S.3
  • 49
    • 84986255650 scopus 로고    scopus 로고
    • Video segmentation via object flow
    • 2, 5, 7
    • Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmentation via object flow. In CVPR, 2016. 2, 5, 7
    • (2016) CVPR
    • Tsai, Y.-H.1    Yang, M.-H.2    Black, M.J.3
  • 50
    • 84898797894 scopus 로고    scopus 로고
    • Active frame selection for label propagation in videos
    • 5
    • S. Vijayanarasimhan and K. Grauman. Active frame selection for label propagation in videos. In ECCV, 2012. 5
    • (2012) ECCV
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 51
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • 1, 2, 3, 4
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015. 1, 2, 3, 4
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 52
    • 84986265719 scopus 로고    scopus 로고
    • Object contour detection with a fully convolutional encoder-decoder network
    • 2, 3, 4
    • J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object contour detection with a fully convolutional encoder-decoder network. In CVPR, 2016. 2, 3, 4
    • (2016) CVPR
    • Yang, J.1    Price, B.2    Cohen, S.3    Lee, H.4    Yang, M.-H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.