-
3
-
-
85088228106
-
A learned representation for artistic style
-
V. Dumoulin, J. Shlens, and M. Kudlur. A learned representation for artistic style. ICLR, 2017.
-
(2017)
ICLR
-
-
Dumoulin, V.1
Shlens, J.2
Kudlur, M.3
-
5
-
-
84898963788
-
Object classification from a single example utilizing class relevance metrics
-
M. Fink. Object classification from a single example utilizing class relevance metrics. In NIPS, pages 449-456, 2005.
-
(2005)
NIPS
, pp. 449-456
-
-
Fink, M.1
-
6
-
-
85046762258
-
Model-agnostic meta-learning for fast adaptation of deep networks
-
C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, pages 1126-1135, 2017.
-
(2017)
ICML
, pp. 1126-1135
-
-
Finn, C.1
Abbeel, P.2
Levine, S.3
-
7
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, volume 2, pages 1735-1742. IEEE, 2006.
-
(2006)
CVPR
, vol.2
, pp. 1735-1742
-
-
Hadsell, R.1
Chopra, S.2
LeCun, Y.3
-
8
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR, pages 770-778, 2016.
-
(2016)
CVPR
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
85064816143
-
-
arXiv preprint
-
A. Lacoste, T. Boquet, N. Rostamzadeh, B. Oreshkin, W. Chung, and D. Krueger. Deep prior. arXiv preprint arXiv:1712.05016, 2017.
-
(2017)
Deep Prior
-
-
Lacoste, A.1
Boquet, T.2
Rostamzadeh, N.3
Oreshkin, B.4
Chung, W.5
Krueger, D.6
-
13
-
-
84898998554
-
One-shot learning by inverting a compositional causal process
-
B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a compositional causal process. In NIPS, pages 2526-2534, 2013.
-
(2013)
NIPS
, pp. 2526-2534
-
-
Lake, B.M.1
Salakhutdinov, R.R.2
Tenenbaum, J.3
-
14
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332-1338, 2015.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
15
-
-
33144466753
-
One-shot learning of object categories
-
F.-F. Li, R. Fergus, and P. Perona. One-shot learning of object categories. PAMI, 28(4):594-611, 2006.
-
(2006)
PAMI
, vol.28
, Issue.4
, pp. 594-611
-
-
Li, F.-F.1
Fergus, R.2
Perona, P.3
-
18
-
-
85061716569
-
Learning visual reasoning without strong priors
-
abs/1707.03017
-
E. Perez, H. de Vries, F. Strub, V. Dumoulin, and A. C. Courville. Learning visual reasoning without strong priors. CoRR, abs/1707.03017, 2017.
-
(2017)
CoRR
-
-
Perez, E.1
De Vries, H.2
Strub, F.3
Dumoulin, V.4
Courville, A.C.5
-
19
-
-
85055416465
-
FilM: Visual reasoning with a general conditioning layer
-
E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a general conditioning layer. In AAAI, 2018.
-
(2018)
AAAI
-
-
Perez, E.1
Strub, F.2
De Vries, H.3
Dumoulin, V.4
Courville, A.5
-
20
-
-
85021626507
-
When is multitask learning effective? Semantic sequence prediction under varying data conditions
-
Valencia, Spain
-
B. Plank and H. M. Alonso. When is multitask learning effective? Semantic sequence prediction under varying data conditions. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, pages 44-53, 2017.
-
(2017)
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
, pp. 44-53
-
-
Plank, B.1
Alonso, H.M.2
-
22
-
-
85043385565
-
Optimization as a model for few-shot learning
-
S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2016.
-
(2016)
ICLR
-
-
Ravi, S.1
Larochelle, H.2
-
23
-
-
85083952964
-
-
arXiv preprint
-
M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S. Zemel. Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676, 2018.
-
(2018)
Meta-Learning for Semi-Supervised Few-Shot Classification
-
-
Ren, M.1
Triantafillou, E.2
Ravi, S.3
Snell, J.4
Swersky, K.5
Tenenbaum, J.B.6
Larochelle, H.7
Zemel, R.S.8
-
24
-
-
84998717754
-
Meta-learning with memory-augmented neural networks
-
M. F. Balcan and K. Q. Weinberger, editors, New York, New York, USA, 20-22 Jun PMLR
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In M. F. Balcan and K. Q. Weinberger, editors, ICML, volume 48 of Proceedings of Machine Learning Research, pages 1842-1850, New York, New York, USA, 20-22 Jun 2016. PMLR.
-
(2016)
ICML, 48 of Proceedings of Machine Learning Research
, pp. 1842-1850
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
25
-
-
0031186687
-
Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement
-
J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 28(1):105-130, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 105-130
-
-
Schmidhuber, J.1
Zhao, J.2
Wiering, M.3
-
26
-
-
84946751287
-
FaceNet: A unified embedding for face recognition and clustering
-
F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815-823, 2015.
-
(2015)
CVPR
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
27
-
-
85031894152
-
Attentive recurrent comparators
-
P. Shyam, S. Gupta, and A. Dukkipati. Attentive recurrent comparators. In ICML, pages 3173-3181, 2017.
-
(2017)
ICML
, pp. 3173-3181
-
-
Shyam, P.1
Gupta, S.2
Dukkipati, A.3
-
28
-
-
85046993347
-
Prototypical networks for few-shot learning
-
J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, pages 4080-4090, 2017.
-
(2017)
NIPS
, pp. 4080-4090
-
-
Snell, J.1
Swersky, K.2
Zemel, R.S.3
-
29
-
-
85061641334
-
Learning to compare: Relation network for few-shot learning
-
F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation network for few-shot learning. In CVPR, 2018.
-
(2018)
CVPR
-
-
Sung, F.1
Yang, Y.2
Zhang, L.3
Xiang, T.4
Torr, P.H.5
Hospedales, T.M.6
-
30
-
-
84959194885
-
Web-scale training for face identification
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale training for face identification. In CVPR, pages 2746-2754, 2015.
-
(2015)
CVPR
, pp. 2746-2754
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
31
-
-
0010687621
-
Lifelong learning algorithms
-
Springer
-
S. Thrun. Lifelong learning algorithms. In Learning to learn, pages 181-209. Springer, 1998.
-
(1998)
Learning to Learn
, pp. 181-209
-
-
Thrun, S.1
-
32
-
-
85043317328
-
Attention is all you need
-
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, pages 6000-6010, 2017.
-
(2017)
NIPS
, pp. 6000-6010
-
-
Vaswani, A.1
Shazeer, N.2
Parmar, N.3
Uszkoreit, J.4
Jones, L.5
Gomez, A.N.6
Kaiser, Ł.7
Polosukhin, I.8
-
33
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In NIPS, pages 3630-3638. 2016.
-
(2016)
NIPS
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Kavukcuoglu, K.4
Wierstra, D.5
|