-
2
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Neural Information Processing Systems (NIPS), 2016.
-
(2016)
Neural Information Processing Systems (NIPS)
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
3
-
-
63149159130
-
A survey of robot learning from demonstration
-
Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.
-
(2009)
Robotics and Autonomous Systems
, vol.57
, Issue.5
, pp. 469-483
-
-
Argall, B.D.1
Chernova, S.2
Veloso, M.3
Browning, B.4
-
5
-
-
85019174179
-
Using fast weights to attend to the recent past
-
Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast weights to attend to the recent past. In Neural Information Processing Systems (NIPS), 2016.
-
(2016)
Neural Information Processing Systems (NIPS)
-
-
Ba, J.1
Hinton, G.E.2
Mnih, V.3
Leibo, J.Z.4
Ionescu, C.5
-
7
-
-
85018882182
-
Interaction networks for learning about objects, relations and physics
-
Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning about objects, relations and physics. In Advances in Neural Information Processing Systems, pages 4502-4510, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 4502-4510
-
-
Battaglia, P.1
Pascanu, R.2
Lai, M.3
Rezende, D.J.4
-
8
-
-
85047008902
-
On the optimization of a synaptic learning rule
-
Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic learning rule. In Optimality in Artificial and Biological Neural Networks, pages 6-8, 1992.
-
(1992)
Optimality in Artificial and Biological Neural Networks
, pp. 6-8
-
-
Bengio, S.1
Bengio, Y.2
Cloutier, J.3
Gecsei, J.4
-
9
-
-
84921824478
-
-
Université de Montréal, Département d'informatique et de recherche opérationnelle
-
Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université de Montréal, Département d'informatique et de recherche opérationnelle, 1990.
-
(1990)
Learning a Synaptic Learning Rule
-
-
Bengio, Y.1
Bengio, S.2
Cloutier, J.3
-
10
-
-
0029509952
-
Neuro-dynamic programming: An overview
-
Proceedings of the 34th IEEE Conference on IEEE
-
Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, Volume 1, pages 560-564. IEEE, 1995.
-
(1995)
Decision and Control, 1995
, vol.1
, pp. 560-564
-
-
Bertsekas, D.P.1
Tsitsiklis, J.N.2
-
13
-
-
84919728106
-
-
arXiv preprint
-
Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoderdecoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
-
(2014)
Learning Phrase Representations Using Rnn Encoderdecoder for Statistical Machine Translation
-
-
Cho, K.1
Van Merriënboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
14
-
-
84906332834
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, pages 647-655, 2014.
-
(2014)
ICML
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
20
-
-
85048435317
-
Learning invariant feature spaces to transfer skills with reinforcement learning
-
Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant feature spaces to transfer skills with reinforcement learning. In Int. Conf. on Learning Representations (ICLR), 2017.
-
(2017)
Int. Conf. on Learning Representations (ICLR)
-
-
Gupta, A.1
Devin, C.2
Liu, Y.3
Abbeel, P.4
Levine, S.5
-
21
-
-
84965103751
-
Learning continuous control policies by stochastic value gradients
-
Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning continuous control policies by stochastic value gradients. In Advances in Neural Information Processing Systems, pages 2944-2952, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2944-2952
-
-
Heess, N.1
Wayne, G.2
Silver, D.3
Lillicrap, T.4
Erez, T.5
Tassa, Y.6
-
24
-
-
85083950659
-
-
arXiv preprint
-
Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient learning of domain-invariant image representations. arXiv preprint arXiv:1301.3224, 2013.
-
(2013)
Efficient Learning of Domain-invariant Image Representations
-
-
Hoffman, J.1
Rodner, E.2
Donahue, J.3
Darrell, T.4
Saenko, K.5
-
26
-
-
85020183301
-
Siamese neural networks for one-shot image recognition
-
Gregory Koch. Siamese neural networks for one-shot image recognition. ICML Deep Learning Workshop, 2015.
-
(2015)
ICML Deep Learning Workshop
-
-
Koch, G.1
-
27
-
-
85018911798
-
-
arXiv preprint
-
David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout: Regularizing rnns by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305, 2016.
-
(2016)
Zoneout: Regularizing Rnns by Randomly Preserving Hidden Activations
-
-
Krueger, D.1
Maharaj, T.2
Kramár, J.3
Pezeshki, M.4
Ballas, N.5
Ke, N.R.6
Goyal, A.7
Bengio, Y.8
Larochelle, H.9
Courville, A.10
-
28
-
-
80052895155
-
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
-
IEEE
-
Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1785-1792. IEEE, 2011.
-
(2011)
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference On
, pp. 1785-1792
-
-
Kulis, B.1
Saenko, K.2
Darrell, T.3
-
30
-
-
84979924150
-
End-to-end training of deep visuomotor policies
-
Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 17(39):1-40, 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.39
, pp. 1-40
-
-
Levine, S.1
Finn, C.2
Darrell, T.3
Abbeel, P.4
-
32
-
-
84965135289
-
-
arXiv preprint
-
Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
-
(2015)
Continuous Control with Deep Reinforcement Learning
-
-
Lillicrap, T.P.1
Hunt, J.J.2
Pritzel, A.3
Heess, N.4
Erez, T.5
Tassa, Y.6
Silver, D.7
Wierstra, D.8
-
33
-
-
84973924037
-
Learning transferable features with deep adaptation networks
-
Mingsheng Long and Jianmin Wang. Learning transferable features with deep adaptation networks. CoRR, abs/1502.02791, 1:2 2015.
-
(2015)
CoRR
, vol.1
, pp. 2
-
-
Long, M.1
Wang, J.2
-
35
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
38
-
-
0141596576
-
Policy invariance under reward transformations: Theory and application to reward shaping
-
Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In ICML, Volume 99, pages 278-287, 1999.
-
(1999)
ICML
, vol.99
, pp. 278-287
-
-
Ng, A.Y.1
Harada, D.2
Russell, S.3
-
39
-
-
3042583887
-
Autonomous helicopter flight via reinforcement learning
-
Andrew Y Ng, H Jin Kim, Michael I Jordan, Shankar Sastry, and Shiv Ballianda. Autonomous helicopter flight via reinforcement learning. In NIPS, Volume 16, 2003.
-
(2003)
NIPS
, vol.16
-
-
Ng, A.Y.1
Jin Kim, H.2
Jordan, M.I.3
Sastry, S.4
Ballianda, S.5
-
40
-
-
44949241322
-
Reinforcement learning of motor skills with policy gradients
-
Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks, 21(4):682-697, 2008.
-
(2008)
Neural Networks
, vol.21
, Issue.4
, pp. 682-697
-
-
Peters, J.1
Schaal, S.2
-
42
-
-
85041901997
-
Optimization as a model for few-shot learning
-
Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Under Review, ICLR, 2017.
-
(2017)
Under Review, ICLR
-
-
Ravi, S.1
Larochelle, H.2
-
43
-
-
84998631632
-
One-shot generalization in deep generative models
-
Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-shot generalization in deep generative models. International Conference on Machine Learning (ICML), 2016.
-
(2016)
International Conference on Machine Learning (ICML)
-
-
Rezende, D.J.1
Mohamed, S.2
Danihelka, I.3
Gregor, K.4
Wierstra, D.5
-
44
-
-
84867135104
-
A reduction of imitation learning and structured prediction to no-regret online learning
-
Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In AISTATS, Volume 1, page 6, 2011.
-
(2011)
AISTATS
, vol.1
, pp. 6
-
-
Ross, S.1
Gordon, G.J.2
Bagnell, D.3
-
45
-
-
85016426881
-
-
arXiv preprint
-
Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
-
(2016)
Progressive Neural Networks
-
-
Rusu, A.A.1
Rabinowitz, N.C.2
Desjardins, G.3
Soyer, H.4
Kirkpatrick, J.5
Kavukcuoglu, K.6
Pascanu, R.7
Hadsell, R.8
-
47
-
-
84998717754
-
Meta-learning with memory-augmented neural networks
-
Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning with memory-augmented neural networks. In International Conference on Machine Learning (ICML), 2016.
-
(2016)
International Conference on Machine Learning (ICML)
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
48
-
-
0033151712
-
Is imitation learning the route to humanoid robots?
-
Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):233-242, 1999.
-
(1999)
Trends in Cognitive Sciences
, vol.3
, Issue.6
, pp. 233-242
-
-
Schaal, S.1
-
49
-
-
25944480439
-
-
On learning how to learn: The meta-meta-⋯ hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich
-
Jurgen Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn: The meta-meta-⋯ hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
-
(1987)
Evolutionary Principles in Self-Referential Learning
-
-
Schmidhuber, J.1
-
50
-
-
0346377064
-
Learning to control fast-weight memories: An alternative to dynamic recurrent networks
-
Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 1992.
-
(1992)
Neural Computation
-
-
Schmidhuber, J.1
-
51
-
-
84969963490
-
Trust region policy optimization
-
John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust region policy optimization. In ICML, pages 1889-1897, 2015.
-
(2015)
ICML
, pp. 1889-1897
-
-
Schulman, J.1
Levine, S.2
Abbeel, P.3
Jordan, M.I.4
Moritz, P.5
-
52
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
53
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
57
-
-
0029276036
-
Temporal difference learning and td-gammon
-
Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58-68, 1995.
-
(1995)
Communications of the ACM
, vol.38
, Issue.3
, pp. 58-68
-
-
Tesauro, G.1
-
58
-
-
0003901612
-
-
Springer Science & Business Media
-
Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 1998.
-
(1998)
Learning to Learn
-
-
Thrun, S.1
Pratt, L.2
-
59
-
-
84969568676
-
-
arXiv preprint
-
Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.
-
(2014)
Deep Domain Confusion: Maximizing for Domain Invariance
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
60
-
-
84990841560
-
-
arXiv preprint
-
Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao Peng, Pieter Abbeel, Sergey Levine, Kate Saenko, and Trevor Darrell. Towards adapting deep visuomotor representations from simulated to real environments. arXiv preprint arXiv:1511.07111, 2015.
-
(2015)
Towards Adapting Deep Visuomotor Representations from Simulated to Real Environments
-
-
Tzeng, E.1
Devin, C.2
Hoffman, J.3
Finn, C.4
Peng, X.5
Abbeel, P.6
Levine, S.7
Saenko, K.8
Darrell, T.9
-
62
-
-
85028474927
-
-
arXiv preprint
-
Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.
-
(2016)
Learning to Reinforcement Learn
-
-
Wang, J.X.1
Kurth-Nelson, Z.2
Tirumala, D.3
Soyer, H.4
Leibo, J.Z.5
Munos, R.6
Blundell, C.7
Kumaran, D.8
Botvinick, M.9
-
63
-
-
84939821074
-
Show, attend and tell: Neural image caption generation with visual attention
-
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, Volume 14, pages 77-81, 2015.
-
(2015)
ICML
, vol.14
, pp. 77-81
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.C.5
Salakhutdinov, R.6
Zemel, R.S.7
Bengio, Y.8
|