메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Recasting gradient-based meta-learning as hierarchical bayes

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL EFFICIENCY; GRADIENT METHODS; INFERENCE ENGINES; LEARNING SYSTEMS;

EID: 85083953531     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (608)

References (59)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximations
    • Daniel Alspach and Harold Sorenson. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4):439–448, 1972.
    • (1972) IEEE Transactions on Automatic Control , vol.17 , Issue.4 , pp. 439-448
    • Alspach, D.1    Sorenson, H.2
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 8
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Rich Caruana. Multitask learning. In Learning to learn, 95–133. Springer, 1998
    • Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation, 4(6):888–900, 1992. Rich Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer, 1998.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 19
    • 2342632212 scopus 로고    scopus 로고
    • Solving a huge number of similar tasks: A combination of multi-task learning and a hierarchical Bayesian approach
    • Tom Heskes. Solving a huge number of similar tasks: A combination of multi-task learning and a hierarchical Bayesian approach. In Proceedings of the 15th International Conference on Machine Learning (ICML), pp. 233–241, 1998.
    • (1998) Proceedings of the 15th International Conference on Machine Learning (ICML) , pp. 233-241
    • Heskes, T.1
  • 25
    • 84972512635 scopus 로고
    • Memoir on the probability of the causes of events
    • Pierre Simon Laplace. Memoir on the probability of the causes of events. Statistical Science, 1(3):364–378, 1986.
    • (1986) Statistical Science , vol.1 , Issue.3 , pp. 364-378
    • Laplace, P.S.1
  • 29
    • 0001025418 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • David MacKay. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3): 448–472, 1992a.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.1
  • 30
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • David JC MacKay. The evidence framework applied to classification networks. Neural computation, 4(5): 720–736, 1992b.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 45
    • 0030546173 scopus 로고    scopus 로고
    • Equivalence of regularization and truncated iteration for general ill-posed problems
    • Reginaldo J. Santos. Equivalence of regularization and truncated iteration for general ill-posed problems. Linear Algebra and its Applications, 236(15):25–33, 1996.
    • (1996) Linear Algebra and Its Applications , vol.236 , Issue.15 , pp. 25-33
    • Santos, R.J.1
  • 47
    • 0346377064 scopus 로고
    • Learning to control fast-weight memories: An alternative to dynamic recurrent networks
    • Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 131-139
    • Schmidhuber, J.1
  • 48
    • 0029489722 scopus 로고
    • Overtraining, regularization and searching for a minimum, with application to neural networks
    • Jonas Sjöberg and Lennart Ljung. Overtraining, regularization and searching for a minimum, with application to neural networks. International Journal of Control, 62(6):1391–1407, 1995.
    • (1995) International Journal of Control , vol.62 , Issue.6 , pp. 1391-1407
    • Sjöberg, J.1    Ljung, L.2
  • 50
    • 0000007140 scopus 로고
    • Recursive Bayesian estimation using Gaussian sums
    • Harold W Sorenson and Daniel L Alspach. Recursive Bayesian estimation using Gaussian sums. Automatica, 7 (4):465–479, 1971.
    • (1971) Automatica , vol.7 , Issue.4 , pp. 465-479
    • Sorenson, H.W.1    Alspach, D.L.2
  • 51
    • 85063581516 scopus 로고    scopus 로고
    • Learning to compare: Relation network for few-shot learning
    • abs/1711.06025
    • Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales. Learning to compare: Relation network for few-shot learning. CoRR, abs/1711.06025, 2017.
    • (2017) CoRR
    • Sung, F.1    Yang, Y.2    Zhang, L.3    Xiang, T.4    Torr, P.H.S.5    Hospedales, T.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.