-
1
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
May
-
B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research, 4(May):83-99, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
4
-
-
84969752808
-
Weight uncertainty in neural network
-
C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network. In International Conference on Machine Learning, pages 1613-1622, 2015.
-
(2015)
International Conference on Machine Learning
, pp. 1613-1622
-
-
Blundell, C.1
Cornebise, J.2
Kavukcuoglu, K.3
Wierstra, D.4
-
6
-
-
85006694626
-
-
Technical Report cs.GR, Stanford University - Princeton University - Toyota Technological Institute at Chicago
-
A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University - Princeton University - Toyota Technological Institute at Chicago, 2015.
-
(2015)
ShapeNet: An Information-Rich 3D Model Repository
-
-
Chang, A.X.1
Funkhouser, T.2
Guibas, L.3
Hanrahan, P.4
Huang, Q.5
Li, Z.6
Savarese, S.7
Savva, M.8
Song, S.9
Su, H.10
Xiao, J.11
Yi, L.12
Yu, F.13
-
10
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594-611, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
14
-
-
85068937305
-
-
arXiv preprint
-
M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J. Rezende, and S. Eslami. Conditional neural processes. arXiv preprint arXiv:1807.01613, 2018a.
-
(2018)
Conditional Neural Processes
-
-
Garnelo, M.1
Rosenbaum, D.2
Maddison, C.J.3
Ramalho, T.4
Saxton, D.5
Shanahan, M.6
Teh, Y.W.7
Rezende, D.J.8
Eslami, S.9
-
15
-
-
85062791103
-
-
arXiv preprint
-
M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. Eslami, and Y. W. Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.
-
(2018)
Neural Processes
-
-
Garnelo, M.1
Schwarz, J.2
Rosenbaum, D.3
Viola, F.4
Rezende, D.J.5
Eslami, S.6
Teh, Y.W.7
-
17
-
-
85083953531
-
Recasting gradient-based meta-learning as hierarchical Bayes
-
E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning as hierarchical Bayes. In Proceedings of the International Conference on Learning Representations (ICLR), 2018.
-
(2018)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Grant, E.1
Finn, C.2
Levine, S.3
Darrell, T.4
Griffiths, T.5
-
20
-
-
0029652445
-
The” wake-sleep” algorithm for unsupervised neural networks
-
G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The” wake-sleep” algorithm for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
24
-
-
85071184540
-
-
arXiv preprint
-
T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836, 2018a.
-
(2018)
Bayesian Model-Agnostic Meta-Learning
-
-
Kim, T.1
Yoon, J.2
Dia, O.3
Kim, S.4
Bengio, Y.5
Ahn, S.6
-
25
-
-
85057251532
-
Semi-amortized variational autoencoders
-
Y. Kim, S. Wiseman, A. C. Miller, D. Sontag, and A. M. Rush. Semi-amortized variational autoencoders. In Proceedings of the 35th International Conference on Machine Learning, 2018b.
-
(2018)
Proceedings of the 35th International Conference on Machine Learning
-
-
Kim, Y.1
Wiseman, S.2
Miller, A.C.3
Sontag, D.4
Rush, A.M.5
-
28
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pages 3581-3589, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
31
-
-
85071196287
-
-
arXiv preprint
-
A. Lacoste, B. Oreshkin, W. Chung, T. Boquet, N. Rostamzadeh, and D. Krueger. Uncertainty in multitask transfer learning. arXiv preprint arXiv:1806.07528, 2018.
-
(2018)
Uncertainty in Multitask Transfer Learning
-
-
Lacoste, A.1
Oreshkin, B.2
Chung, W.3
Boquet, T.4
Rostamzadeh, N.5
Krueger, D.6
-
33
-
-
85135606166
-
One shot learning of simple visual concepts
-
B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 33, 2011.
-
(2011)
Proceedings of the Annual Meeting of the Cognitive Science Society
, vol.33
-
-
Lake, B.1
Salakhutdinov, R.2
Gross, J.3
Tenenbaum, J.4
-
37
-
-
85080561561
-
-
S. Mohamed. Density ratio trick. http://blog.shakirm.com/2018/01/machine-learning-trick-of-the-day-7-density-ratio-trick/, 2018.
-
(2018)
Density Ratio Trick
-
-
Mohamed, S.1
-
38
-
-
84875556978
-
Meta-neural networks that learn by learning
-
D. K. Naik and R. Mammone. Meta-neural networks that learn by learning. In Neural Networks, 1992. IJCNN., International Joint Conference on, volume 1, pages 437-442. IEEE, 1992.
-
(1992)
Neural Networks, 1992. IJCNN., International Joint Conference on
, vol.1
, pp. 437-442
-
-
Naik, D.K.1
Mammone, R.2
-
39
-
-
85044934259
-
Learning disentangled representations with semi-supervised deep generative models
-
S. Narayanaswamy, T. B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, and P. Torr. Learning disentangled representations with semi-supervised deep generative models. In Advances in Neural Information Processing Systems, pages 5927-5937, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 5927-5937
-
-
Narayanaswamy, S.1
Paige, T.B.2
Van De Meent, J.-W.3
Desmaison, A.4
Goodman, N.5
Kohli, P.6
Wood, F.7
Torr, P.8
-
40
-
-
59549087165
-
On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes
-
A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Advances in Neural Information Processing Systems, pages 841-848, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
43
-
-
85043534104
-
PointNet: Deep learning on point sets for 3d classification and segmentation
-
C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.
-
(2017)
Proc. Computer Vision and Pattern Recognition (CVPR), IEEE
, vol.1
, Issue.2
, pp. 4
-
-
Qi, C.R.1
Su, H.2
Mo, K.3
Guibas, L.J.4
-
47
-
-
85068325741
-
-
arXiv preprint
-
A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960, 2018.
-
(2018)
Meta-Learning with Latent Embedding Optimization
-
-
Rusu, A.A.1
Rao, D.2
Sygnowski, J.3
Vinyals, O.4
Pascanu, R.5
Osindero, S.6
Hadsell, R.7
-
54
-
-
84866348075
-
Two problems with variational expectation maximisation for time-series models
-
R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series models. Bayesian Time series models, 1(3.1):3-1, 2011.
-
(2011)
Bayesian Time Series Models
, vol.1
, Issue.3.1
, pp. 3-11
-
-
Turner, R.E.1
Sahani, M.2
-
55
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pages 3630-3638, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Wierstra, D.4
-
56
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and TrendsR in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and TrendsR in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
57
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
59
-
-
85046887805
-
Deep sets
-
M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets. In Advances in Neural Information Processing Systems, pages 3394-3404, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 3394-3404
-
-
Zaheer, M.1
Kottur, S.2
Ravanbakhsh, S.3
Poczos, B.4
Salakhutdinov, R.R.5
Smola, A.J.6
|