-
1
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems 24 (NIPS’11), pages 2546–2554, 2011.
-
(2011)
Advances in Neural Information Processing Systems 24 (NIPS’11)
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
2
-
-
84869826137
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
abs/1012.2599
-
E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Computing Research Repository (arXiv), abs/1012.2599, 2010.
-
(2010)
Computing Research Repository (arxiv)
-
-
Brochu, E.1
Cora, V.2
De Freitas, N.3
-
3
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization (BayesOpt’13), 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization (bayesopt’13)
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
4
-
-
84965128050
-
Efficient and robust automated machine learning
-
M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and Robust Automated Machine Learning. In Advances in Neural Information Processing Systems 28 (NIPS’15), pages 2944–2952, 2015.
-
(2015)
Advances in Neural Information Processing Systems 28 (NIPS’15)
, pp. 2944-2952
-
-
Feurer, M.1
Klein, A.2
Eggensperger, K.3
Springenberg, J.4
Blum, M.5
Hutter, F.6
-
5
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl., 11(1): 10–18, Nov. 2009. ISSN 1931-0145.
-
(2009)
SIGKDD Explor. Newsl
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
8
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
10
-
-
85053528161
-
Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces
-
K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. Osborne. Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces. In NIPS Workshop on Bayesian Optimization (BayesOpt’13), 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization (bayesopt’13)
-
-
Swersky, K.1
Duvenaud, D.2
Snoek, J.3
Hutter, F.4
Osborne, M.5
|