메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 6212-6220

Multi-attention network for one shot learning

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL RESEARCH; COMPUTER VISION; NETWORK ARCHITECTURE; SEMANTICS;

EID: 85030992797     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.658     Document Type: Conference Paper
Times cited : (105)

References (27)
  • 2
    • 84887393679 scopus 로고    scopus 로고
    • Bayesian face revisited: A joint formulation
    • D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face revisited: A joint formulation. In ECCV, 2012.
    • (2012) ECCV
    • Chen, D.1    Cao, X.2    Wang, L.3    Wen, F.4    Sun, J.5
  • 3
    • 84986244054 scopus 로고    scopus 로고
    • Attention to scale: Scale-aware semantic image segmentation
    • L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. In CVPR, 2016.
    • (2016) CVPR
    • Chen, L.-C.1    Yang, Y.2    Wang, J.3    Xu, W.4    Yuille, A.L.5
  • 4
    • 84957029470 scopus 로고    scopus 로고
    • Mind's eye: A recurrent visual representation for image caption generation
    • X. Chen and C. Lawrence Zitnick. Mind's eye: A recurrent visual representation for image caption generation. In CVPR, 2015.
    • (2015) CVPR
    • Chen, X.1    Lawrence Zitnick, C.2
  • 5
    • 84986296607 scopus 로고    scopus 로고
    • Visual tracking using attention-modulated disintegration and integration
    • J. Choi, H. Jin Chang, J. Jeong, Y. Demiris, and J. Young Choi. Visual tracking using attention-modulated disintegration and integration. In CVPR, 2016.
    • (2016) CVPR
    • Choi, J.1    Jin Chang, H.2    Jeong, J.3    Demiris, Y.4    Young Choi, J.5
  • 7
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 28, 2006.
    • (2006) TPAMI , vol.28
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 9
    • 84986309164 scopus 로고    scopus 로고
    • Recurrent attention models for depth-based person identification
    • A. Haque, A. Alahi, and L. Fei-Fei. Recurrent attention models for depth-based person identification. In CVPR, 2016.
    • (2016) CVPR
    • Haque, A.1    Alahi, A.2    Fei-Fei, L.3
  • 10
    • 85020183301 scopus 로고    scopus 로고
    • Siamese neural networks for one-shot image recognition
    • G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition. In ICML, 2015.
    • (2015) ICML
    • Koch, G.1    Zemel, R.2    Salakhutdinov, R.3
  • 11
    • 84986334038 scopus 로고    scopus 로고
    • Recurrent attentional networks for saliency detection
    • J. Kuen, Z. Wang, and G. Wang. Recurrent attentional networks for saliency detection. In CVPR, 2016.
    • (2016) CVPR
    • Kuen, J.1    Wang, Z.2    Wang, G.3
  • 12
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by betweenclass attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by betweenclass attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 14
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS. 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 16
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 17
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. H. Torr. An embarrassingly simple approach to zero-shot learning. ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.H.2
  • 19
    • 84898960902 scopus 로고    scopus 로고
    • One-shot learning with a hierarchical nonparametric Bayesian model
    • R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. One-shot learning with a hierarchical nonparametric bayesian model. JMLR Workshop, 27, 2012.
    • (2012) JMLR Workshop , vol.27
    • Salakhutdinov, R.1    Tenenbaum, J.B.2    Torralba, A.3
  • 21
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 24
    • 85017156120 scopus 로고    scopus 로고
    • Temporal pyramid pooling based convolutional neural network for action recognition
    • P. Wang, Y. Cao, C. Shen, L. Liu, and H. T. Shen. Temporal pyramid pooling based convolutional neural network for action recognition. TCSVT, 2016.
    • (2016) TCSVT
    • Wang, P.1    Cao, Y.2    Shen, C.3    Liu, L.4    Shen, H.T.5
  • 25
    • 84959255406 scopus 로고    scopus 로고
    • The application of two-level attention models in deep convolutional neural network for fine-grained image classification
    • T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Xiao, T.1    Xu, Y.2    Yang, K.3    Zhang, J.4    Peng, Y.5    Zhang, Z.6
  • 27
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. In CVPR, 2016.
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.