-
1
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
2
-
M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pages 3981-3989, 2016. 2
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3981-3989
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
5
-
-
84986274465
-
Deep residual learning for image recognition
-
1, 7, 8
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016. 1, 7, 8
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
1
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998. 1
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
11
-
-
84867864557
-
Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
-
Springer 3, 4
-
T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In Computer Vision-ECCV 2012, pages 488-501. Springer, 2012. 3, 4
-
(2012)
Computer Vision-ECCV 2012
, pp. 488-501
-
-
Mensink, T.1
Verbeek, J.2
Perronnin, F.3
Csurka, G.4
-
12
-
-
85055118478
-
-
2, 7
-
N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. Meta-learning with temporal convolutions. arXiv preprint arXiv: 1707. 03141, 2017. 2, 7
-
(2017)
Meta-learning with temporal convolutions
-
-
Mishra, N.1
Rohaninejad, M.2
Chen, X.3
Abbeel, P.4
-
17
-
-
85041900315
-
Icarl: Incremental classifier and representation learning
-
4
-
S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2001-2010, 2017. 4
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2001-2010
-
-
Rebuffi, S.-A.1
Kolesnikov, A.2
Sperl, G.3
Lampert, C.H.4
-
18
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
1
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115 (3): 211-252, 2015. 1
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
19
-
-
84989350802
-
-
2
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One-shot learning with memory-augmented neural networks. arXiv preprint arXiv: 1605. 06065, 2016. 2
-
(2016)
One-shot Learning with Memory-augmented Neural Networks
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
20
-
-
0031186687
-
Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement
-
2
-
J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 28 (1): 105-130, 1997. 2
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 105-130
-
-
Schmidhuber, J.1
Zhao, J.2
Wiering, M.3
-
22
-
-
85046303425
-
-
3, 5, 6, 7, 8
-
J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. arXiv preprint arXiv: 1703. 05175, 2017. 3, 5, 6, 7, 8
-
(2017)
Prototypical Networks for Few-shot Learning
-
-
Snell, J.1
Swersky, K.2
Zemel, R.S.3
-
23
-
-
84937522268
-
Going deeper with convolutions
-
1
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1-9, 2015. 1
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
24
-
-
0010687621
-
Lifelong learning algorithms
-
2
-
S. Thrun. Lifelong learning algorithms. Learning to learn, 8: 181-209, 1998. 2
-
(1998)
Learning to Learn
, vol.8
, pp. 181-209
-
-
Thrun, S.1
-
25
-
-
85018863845
-
Matching networks for one shot learning
-
3, 4, 6, 7, 8
-
O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pages 3630-3638, 2016. 3, 4, 6, 7, 8
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Wierstra, D.4
-
27
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors Curran Associates, Inc. 1
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 487-495. Curran Associates, Inc., 2014. 1
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 487-495
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|