-
1
-
-
84986309960
-
Multicue zero-shot learning with strong supervision
-
Z. Akata, M. Malinowski, M. Fritz, and B. Schiele. Multicue zero-shot learning with strong supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 59-68, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 59-68
-
-
Akata, Z.1
Malinowski, M.2
Fritz, M.3
Schiele, B.4
-
2
-
-
84959243017
-
Evaluation of output embeddings for fine-grained image classification
-
Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.
-
(2015)
CVPR
-
-
Akata, Z.1
Reed, S.2
Walter, D.3
Lee, H.4
Schiele, B.5
-
5
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors Curran Associates, Inc.
-
Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 899-907. Curran Associates, Inc., 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 899-907
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
6
-
-
84990040797
-
Improving semantic embedding consistency by metric learning for zero-shot classiffication
-
Springer
-
M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding consistency by metric learning for zero-shot classiffication. In European Conference on Computer Vision, pages 730-746. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 730-746
-
-
Bucher, M.1
Herbin, S.2
Jurie, F.3
-
7
-
-
84986274021
-
Synthesized classifiers for zero-shot learning
-
S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5327-5336, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5327-5336
-
-
Changpinyo, S.1
Chao, W.-L.2
Gong, B.3
Sha, F.4
-
9
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep visual-semantic embedding model. In NIPS, 2013.
-
(2013)
NIPS
-
-
Frome, A.1
Corrado, G.S.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Mikolov, T.6
-
10
-
-
84941001216
-
Transductive multi-view zero-shot learning
-
Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. IEEE transactions on pattern analysis and machine intelligence, 37 (11):2332-2345, 2015.
-
(2015)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.37
, Issue.11
, pp. 2332-2345
-
-
Fu, Y.1
Hospedales, T.M.2
Xiang, T.3
Gong, S.4
-
11
-
-
85148036176
-
A kernel method for the two-sample-problem
-
A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the two-sample-problem. In NIPS, 2006.
-
(2006)
NIPS
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
12
-
-
85006109653
-
Transductive zeroshot recognition via shared model space learning
-
Y. Guo, G. Ding, X. Jin, and J. Wang. Transductive zeroshot recognition via shared model space learning. In AAAI, volume 3, page 8, 2016.
-
(2016)
AAAI
, vol.3
, pp. 8
-
-
Guo, Y.1
Ding, G.2
Jin, X.3
Wang, J.4
-
13
-
-
84878180089
-
Improving word representations via global context and multiple word prototypes
-
Association for Computational Linguistics
-
E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pages 873-882. Association for Computational Linguistics, 2012.
-
(2012)
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers
, vol.1
, pp. 873-882
-
-
Huang, E.H.1
Socher, R.2
Manning, C.D.3
Ng, A.Y.4
-
17
-
-
84965153327
-
Skip-thought vectors
-
R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-thought vectors. In Advances in neural information processing systems, pages 3294-3302, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3294-3302
-
-
Kiros, R.1
Zhu, Y.2
Salakhutdinov, R.R.3
Zemel, R.4
Urtasun, R.5
Torralba, A.6
Fidler, S.7
-
18
-
-
84986250441
-
Visual word2vec (vis-w2v): Learning visually grounded word embeddings using abstract scenes
-
S. Kottur, R. Vedantam, J. M. Moura, and D. Parikh. Visual word2vec (vis-w2v): Learning visually grounded word embeddings using abstract scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4985-4994, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4985-4994
-
-
Kottur, S.1
Vedantam, R.2
Moura, J.M.3
Parikh, D.4
-
21
-
-
84894522762
-
Attributebased classification for zero-shot visual object categorization
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (3):453-465, 2014.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.3
, pp. 453-465
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
22
-
-
85041907562
-
Predicting deep zeroshot convolutional neural networks using textual descriptions
-
J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zeroshot convolutional neural networks using textual descriptions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lei Ba, J.1
Swersky, K.2
Fidler, S.3
-
23
-
-
84953712089
-
Zero-shot image tagging by hierarchical semantic embedding
-
ACM
-
X. Li, S. Liao, W. Lan, X. Du, and G. Yang. Zero-shot image tagging by hierarchical semantic embedding. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 879-882. ACM, 2015.
-
(2015)
Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 879-882
-
-
Li, X.1
Liao, S.2
Lan, W.3
Du, X.4
Yang, G.5
-
24
-
-
84947599757
-
Multi-task deep visual-semantic embedding for video thumbnail selection
-
W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo. Multi-task deep visual-semantic embedding for video thumbnail selection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3707-3715, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3707-3715
-
-
Liu, W.1
Mei, T.2
Zhang, Y.3
Che, C.4
Luo, J.5
-
25
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In ICML, pages 97-105, 2015.
-
(2015)
ICML
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.I.4
-
27
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
28
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 689-696, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
29
-
-
85083952206
-
Zero-shot learning by convex combination of semantic embeddings
-
M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning by convex combination of semantic embeddings. In ICLR, 2014.
-
(2014)
ICLR
-
-
Norouzi, M.1
Mikolov, T.2
Bengio, S.3
Singer, Y.4
Shlens, J.5
Frome, A.6
Corrado, G.S.7
Dean, J.8
-
30
-
-
80053456996
-
Zero-shot learning with semantic output codes
-
M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot learning with semantic output codes. In Advances in neural information processing systems, pages 1410-1418, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1410-1418
-
-
Palatucci, M.1
Pomerleau, D.2
Hinton, G.E.3
Mitchell, T.M.4
-
32
-
-
84961289992
-
Glove: Global vectors for word representation
-
J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, volume 14, pages 1532-43, 2014.
-
(2014)
EMNLP
, vol.14
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
34
-
-
84986250442
-
Learning deep representations of fine-grained visual descriptions
-
S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning deep representations of fine-grained visual descriptions. In 29th IEEE Conference on Computer Vision and Pattern Recognition, pages 49-58, 2016.
-
(2016)
29th IEEE Conference on Computer Vision and Pattern Recognition
, pp. 49-58
-
-
Reed, S.1
Akata, Z.2
Lee, H.3
Schiele, B.4
-
36
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 833-840, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
37
-
-
84969931523
-
An embarrassingly simple approach to zero-shot learning
-
B. Romera-Paredes and P. H. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, pages 2152-2161, 2015.
-
(2015)
ICML
, pp. 2152-2161
-
-
Romera-Paredes, B.1
Torr, P.H.2
-
39
-
-
84879873133
-
Learning with hierarchical-deep models
-
R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. Learning with hierarchical-deep models. IEEE transactions on pattern analysis and machine intelligence, 35 (8):1958-1971, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1958-1971
-
-
Salakhutdinov, R.1
Tenenbaum, J.B.2
Torralba, A.3
-
43
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
44
-
-
84986328049
-
Large scale semi-supervised object detection using visual and semantic knowledge transfer
-
Y. Tang, J. Wang, B. Gao, E. Dellandréa, R. Gaizauskas, and L. Chen. Large scale semi-supervised object detection using visual and semantic knowledge transfer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). IEEE, 2016.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). IEEE
-
-
Tang, Y.1
Wang, J.2
Gao, B.3
Dellandréa, E.4
Gaizauskas, R.5
Chen, L.6
-
45
-
-
84946747440
-
Show and tell: A neural image caption generator
-
Boston, MA, USA, June 7-12 2015
-
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3156-3164, 2015.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
47
-
-
80052891795
-
Caltech-UCSD birds 200
-
California Institute of Technology
-
P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.
-
(2010)
Technical Report CNS-TR-2010-001
-
-
Welinder, P.1
Branson, S.2
Mita, T.3
Wah, C.4
Schroff, F.5
Belongie, S.6
Perona, P.7
-
48
-
-
84986243127
-
Latent embeddings for zero-shot classification
-
Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele. Latent embeddings for zero-shot classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 69-77, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 69-77
-
-
Xian, Y.1
Akata, Z.2
Sharma, G.3
Nguyen, Q.4
Hein, M.5
Schiele, B.6
|