-
1
-
-
84873597627
-
Multiscale scattering for audio classification
-
2, 5, 6, 7
-
J. Andén and S. Mallat. Multiscale scattering for audio classification. In ISMIR, pages 657-662, 2011. 2, 5, 6, 7
-
(2011)
ISMIR
, pp. 657-662
-
-
Andén, J.1
Mallat, S.2
-
2
-
-
78650413402
-
Face recognition for newborns: A preliminary study
-
1
-
S. Bharadwaj, H. S. Bhatt, R. Singh, M. Vatsa, and S. K. Singh. Face recognition for newborns: A preliminary study. In IEEE BTAS, pages 1-6, 2010. 1
-
(2010)
IEEE BTAS
, pp. 1-6
-
-
Bharadwaj, S.1
Bhatt, H.S.2
Singh, R.3
Vatsa, M.4
Singh, S.K.5
-
3
-
-
84964825737
-
Domain specific learning for newborn face recognition
-
1, 2, 5, 7, 8
-
S. Bharadwaj, H. S. Bhatt, M. Vatsa, and R. Singh. Domain specific learning for newborn face recognition. IEEE TIFS, 11 (7): 1630-1641, 2016. 1, 2, 5, 7, 8
-
(2016)
IEEE TIFS
, vol.11
, Issue.7
, pp. 1630-1641
-
-
Bharadwaj, S.1
Bhatt, H.S.2
Vatsa, M.3
Singh, R.4
-
4
-
-
84959533227
-
Pcanet: A simple deep learning baseline for image classification
-
2, 5, 6
-
T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. PCANet: A simple deep learning baseline for image classification IEEE TIP, 24 (12): 5017-5032, 2015. 2, 5, 6
-
(2015)
IEEE TIP
, vol.24
, Issue.12
, pp. 5017-5032
-
-
Chan, T.-H.1
Jia, K.2
Gao, S.3
Lu, J.4
Zeng, Z.5
Ma, Y.6
-
5
-
-
85030478541
-
-
2
-
M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra. Reducing overfitting in deep networks by decorrelating representations. ArXiv preprint arXiv: 1511. 06068, 2015. 2
-
(2015)
Reducing Overfitting in Deep Networks by Decorrelating Representations
-
-
Cogswell, M.1
Ahmed, F.2
Girshick, R.3
Zitnick, L.4
Batra, D.5
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
8
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009. 8
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84887443325
-
Disguise detection and face recognition in visible and thermal spectrums
-
8
-
T. I. Dhamecha, A. Nigam, R. Singh, and M. Vatsa. Disguise detection and face recognition in visible and thermal spectrums. In ICB, pages 1-8, 2013. 8
-
(2013)
ICB
, pp. 1-8
-
-
Dhamecha, T.I.1
Nigam, A.2
Singh, R.3
Vatsa, M.4
-
8
-
-
0032627073
-
Method of optimal directions for frame design
-
IEEE Computer Society, 3
-
K. Engan, S. O. Aase, and J. Hakon Husoy. Method of optimal directions for frame design. In ICASSP, pages 2443-2446. IEEE Computer Society, 1999. 3
-
(1999)
ICASSP
, pp. 2443-2446
-
-
Engan, K.1
Aase, S.O.2
Hakon Husoy, J.3
-
9
-
-
77949522811
-
Why does unsupervised pre-training help deep learning
-
(Feb), 1
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning JMLR, 11 (Feb): 625-660, 2010. 1
-
(2010)
JMLR
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
10
-
-
84973901098
-
Learning the structure of deep convolutional networks
-
2
-
J. Feng and T. Darrell. Learning the structure of deep convolutional networks. In ICCV, pages 2749-2757, 2015. 2
-
(2015)
ICCV
, pp. 2749-2757
-
-
Feng, J.1
Darrell, T.2
-
11
-
-
84924087041
-
Dlanet: A manifoldlearning-based discriminative feature learning network for scene classification
-
2
-
Z. Feng, L. Jin, D. Tao, and S. Huang. Dlanet: A manifoldlearning-based discriminative feature learning network for scene classification. Neurocomputing, 157: 11-21, 2015. 2
-
(2015)
Neurocomputing
, vol.157
, pp. 11-21
-
-
Feng, Z.1
Jin, L.2
Tao, D.3
Huang, S.4
-
13
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
4, 5
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, volume 9, pages 249-256, 2010. 4, 5
-
(2010)
AISTATS
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
14
-
-
84921760162
-
Mdlface: Memorability augmented deep learning for video face recognition
-
8
-
G. Goswami, R. Bhardwaj, R. Singh, and M. Vatsa. MDLFace: Memorability augmented deep learning for video face recognition. In IEEE IJCB, pages 1-7, 2014. 8
-
(2014)
IEEE IJCB
, pp. 1-7
-
-
Goswami, G.1
Bhardwaj, R.2
Singh, R.3
Vatsa, M.4
-
15
-
-
85041907438
-
Low-shot visual recognition by shrinking and hallucinating features
-
7, 8
-
B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In ICCV, 2017. 7, 8
-
(2017)
ICCV
-
-
Hariharan, B.1
Girshick, R.2
-
16
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
4, 5
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, pages 1026-1034, 2015. 4, 5
-
(2015)
ICCV
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
1, 3, 4, 5, 7
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE CVPR, pages 770-778, 2016. 1, 3, 4, 5, 7
-
(2016)
IEEE CVPR
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
85035343801
-
Densely connected convolutional networks
-
1, 4, 7
-
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In CVPR, 2017. 1, 4, 7
-
(2017)
CVPR
-
-
Huang, G.1
Liu, Z.2
Maaten Der Van, L.3
Weinberger, K.Q.4
-
19
-
-
51849117118
-
-
Technical report, 07-49, University of Massachusetts, Amherst, 7
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, 07-49, University of Massachusetts, Amherst, 2007. 7
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
20
-
-
77953183471
-
What is the best multi-stage architecture for object recognition
-
2
-
K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. What is the best multi-stage architecture for object recognition In IEEE ICCV, pages 2146-2153, 2009. 2
-
(2009)
IEEE ICCV
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
LeCun, Y.3
-
22
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
2, 5
-
A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, 2009. 2, 5
-
(2009)
Technical Report
-
-
Krizhevsky, A.1
Hinton, G.2
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012. 1
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
85135606166
-
One shot learning of simple visual concepts
-
2, 5, 7, 8
-
B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 33, 2011. 2, 5, 7, 8
-
(2011)
Proceedings of the Annual Meeting of the Cognitive Science Society
, vol.33
-
-
Lake, B.1
Salakhutdinov, R.2
Gross, J.3
Tenenbaum, J.4
-
25
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
1
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1 (4): 541-551, 1989. 1
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
26
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
2, 5
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998. 2, 5
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
27
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
2, 5
-
Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In IEEE CVPR, volume 2, pages II-104, 2004. 2, 5
-
(2004)
IEEE CVPR
, vol.2
, pp. II-104
-
-
LeCun, Y.1
Huang, F.J.2
Bottou, L.3
-
28
-
-
23944436740
-
A theoretical framework for back-propagation
-
CMU, Pittsburgh, Pa: Morgan Kaufmann. 4
-
Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theoretical framework for back-propagation. In Proceedings of the connectionist models summer school, pages 21-28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988. 4
-
(1988)
Proceedings of the Connectionist Models Summer School
, pp. 21-28
-
-
LeCun, Y.1
Touresky, D.2
Hinton, G.3
Sejnowski, T.4
-
29
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
3
-
D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401: 788-791, 1999. 3
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
30
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
(Jan), 3
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 11 (Jan): 19-60, 2010. 3
-
(2010)
JMLR
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
31
-
-
34547543010
-
A new method to assist small data set neural network learning
-
IEEE. 2
-
R. Mao, H. Zhu, L. Zhang, and A. Chen. A new method to assist small data set neural network learning. In ISDA, volume 1, pages 17-22. IEEE, 2006. 2
-
(2006)
ISDA
, vol.1
, pp. 17-22
-
-
Mao, R.1
Zhu, H.2
Zhang, L.3
Chen, A.4
-
33
-
-
85041916438
-
Face sketch matching via coupled deep transform learning
-
8
-
S. Nagpal, M. Singh, R. Singh, M. Vatsa, A. Noore, and A. Majumdar. Face sketch matching via coupled deep transform learning. In IEEE ICCV, pages 5429-5438, 2017. 8
-
(2017)
IEEE ICCV
, pp. 5429-5438
-
-
Nagpal, S.1
Singh, M.2
Singh, R.3
Vatsa, M.4
Noore, A.5
Majumdar, A.6
-
34
-
-
85161972005
-
Tiled convolutional neural networks
-
2
-
J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng. Tiled convolutional neural networks. In NIPS, pages 1279-1287, 2010. 2
-
(2010)
NIPS
, pp. 1279-1287
-
-
Ngiam, J.1
Chen, Z.2
Chia, D.3
Koh, P.W.4
Le, Q.V.5
Ng, A.Y.6
-
35
-
-
85042256214
-
-
2, 5, 6, 7
-
E. Oyallon, E. Belilovsky, and S. Zagoruyko. Scaling the scattering transform: Deep hybrid networks. ArXiv preprint arXiv: 1703. 08961, 2017. 2, 5, 6, 7
-
(2017)
Scaling the Scattering Transform: Deep Hybrid Networks
-
-
Oyallon, E.1
Belilovsky, E.2
Zagoruyko, S.3
-
37
-
-
85040308896
-
Meta-learning with memory-augmented neural networks
-
8
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, pages 1842-1850, 2016. 8
-
(2016)
ICML
, pp. 1842-1850
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
39
-
-
84937522268
-
Going deeper with convolutions
-
1
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, pages 1-9, 2015. 1
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
40
-
-
85015258106
-
Deep dictionary learning
-
2, 3
-
S. Tariyal, A. Majumdar, R. Singh, and M. Vatsa. Deep dictionary learning. IEEE Access, 4: 10096-10109, 2016. 2, 3
-
(2016)
IEEE Access
, vol.4
, pp. 10096-10109
-
-
Tariyal, S.1
Majumdar, A.2
Singh, R.3
Vatsa, M.4
-
41
-
-
85032751780
-
Dictionary learning
-
2, 3
-
I. Tosic and P. Frossard. Dictionary learning. IEEE SPM, 28 (2): 27-38, 2011. 2, 3
-
(2011)
IEEE SPM
, vol.28
, Issue.2
, pp. 27-38
-
-
Tosic, I.1
Frossard, P.2
-
42
-
-
85018863845
-
Matching networks for one shot learning
-
7, 8
-
O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pages 3630-3638, 2016. 7, 8
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Wierstra, D.4
-
43
-
-
84899064374
-
Regularization of neural networks using dropconnect
-
5
-
L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect. In ICML, pages 1058-1066, 2013. 5
-
(2013)
ICML
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
44
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
IEEE, 7
-
L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, pages 529-534. IEEE, 2011. 7
-
(2011)
CVPR
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
45
-
-
85035079648
-
-
2
-
D. Wu, J. Wu, R. Zeng, L. Jiang, L. Senhadji, and H. Shu. Kernel principal component analysis network for image classification. ArXiv preprint arXiv: 1512. 06337, 2015. 2
-
(2015)
Kernel Principal Component Analysis Network for Image Classification
-
-
Wu, D.1
Wu, J.2
Zeng, R.3
Jiang, L.4
Senhadji, L.5
Shu, H.6
-
47
-
-
85014527870
-
Regularizing deep convolutional neural networks with a structured decorrelation constraint
-
IEEE, 2
-
W. Xiong, B. Du, L. Zhang, R. Hu, and D. Tao. Regularizing deep convolutional neural networks with a structured decorrelation constraint. In ICDM, 519-528. IEEE, 2016. 2
-
(2016)
ICDM
, pp. 519-528
-
-
Xiong, W.1
Du, B.2
Zhang, L.3
Hu, R.4
Tao, D.5
-
48
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer. 5
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 818-833. Springer, 2014. 5
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
49
-
-
84946073395
-
Tensor object classification via multilinear discriminant analysis network
-
2
-
R. Zeng, J. Wu, L. Senhadji, and H. Shu. Tensor object classification via multilinear discriminant analysis network. In IEEE ICASSP, 2015. 2
-
(2015)
IEEE ICASSP
-
-
Zeng, R.1
Wu, J.2
Senhadji, L.3
Shu, H.4
|