메뉴 건너뛰기




Volumn , Issue , 2018, Pages 9349-9358

Learning Structure and Strength of CNN Filters for Small Sample Size Training

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DATABASE SYSTEMS; LEARNING ALGORITHMS; NEURAL NETWORKS; SAMPLING; SILICON COMPOUNDS;

EID: 85062829783     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00974     Document Type: Conference Paper
Times cited : (97)

References (50)
  • 1
    • 84873597627 scopus 로고    scopus 로고
    • Multiscale scattering for audio classification
    • 2, 5, 6, 7
    • J. Andén and S. Mallat. Multiscale scattering for audio classification. In ISMIR, pages 657-662, 2011. 2, 5, 6, 7
    • (2011) ISMIR , pp. 657-662
    • Andén, J.1    Mallat, S.2
  • 3
    • 84964825737 scopus 로고    scopus 로고
    • Domain specific learning for newborn face recognition
    • 1, 2, 5, 7, 8
    • S. Bharadwaj, H. S. Bhatt, M. Vatsa, and R. Singh. Domain specific learning for newborn face recognition. IEEE TIFS, 11 (7): 1630-1641, 2016. 1, 2, 5, 7, 8
    • (2016) IEEE TIFS , vol.11 , Issue.7 , pp. 1630-1641
    • Bharadwaj, S.1    Bhatt, H.S.2    Vatsa, M.3    Singh, R.4
  • 4
    • 84959533227 scopus 로고    scopus 로고
    • Pcanet: A simple deep learning baseline for image classification
    • 2, 5, 6
    • T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. PCANet: A simple deep learning baseline for image classification IEEE TIP, 24 (12): 5017-5032, 2015. 2, 5, 6
    • (2015) IEEE TIP , vol.24 , Issue.12 , pp. 5017-5032
    • Chan, T.-H.1    Jia, K.2    Gao, S.3    Lu, J.4    Zeng, Z.5    Ma, Y.6
  • 7
    • 84887443325 scopus 로고    scopus 로고
    • Disguise detection and face recognition in visible and thermal spectrums
    • 8
    • T. I. Dhamecha, A. Nigam, R. Singh, and M. Vatsa. Disguise detection and face recognition in visible and thermal spectrums. In ICB, pages 1-8, 2013. 8
    • (2013) ICB , pp. 1-8
    • Dhamecha, T.I.1    Nigam, A.2    Singh, R.3    Vatsa, M.4
  • 8
    • 0032627073 scopus 로고    scopus 로고
    • Method of optimal directions for frame design
    • IEEE Computer Society, 3
    • K. Engan, S. O. Aase, and J. Hakon Husoy. Method of optimal directions for frame design. In ICASSP, pages 2443-2446. IEEE Computer Society, 1999. 3
    • (1999) ICASSP , pp. 2443-2446
    • Engan, K.1    Aase, S.O.2    Hakon Husoy, J.3
  • 10
    • 84973901098 scopus 로고    scopus 로고
    • Learning the structure of deep convolutional networks
    • 2
    • J. Feng and T. Darrell. Learning the structure of deep convolutional networks. In ICCV, pages 2749-2757, 2015. 2
    • (2015) ICCV , pp. 2749-2757
    • Feng, J.1    Darrell, T.2
  • 11
    • 84924087041 scopus 로고    scopus 로고
    • Dlanet: A manifoldlearning-based discriminative feature learning network for scene classification
    • 2
    • Z. Feng, L. Jin, D. Tao, and S. Huang. Dlanet: A manifoldlearning-based discriminative feature learning network for scene classification. Neurocomputing, 157: 11-21, 2015. 2
    • (2015) Neurocomputing , vol.157 , pp. 11-21
    • Feng, Z.1    Jin, L.2    Tao, D.3    Huang, S.4
  • 13
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • 4, 5
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, volume 9, pages 249-256, 2010. 4, 5
    • (2010) AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 14
    • 84921760162 scopus 로고    scopus 로고
    • Mdlface: Memorability augmented deep learning for video face recognition
    • 8
    • G. Goswami, R. Bhardwaj, R. Singh, and M. Vatsa. MDLFace: Memorability augmented deep learning for video face recognition. In IEEE IJCB, pages 1-7, 2014. 8
    • (2014) IEEE IJCB , pp. 1-7
    • Goswami, G.1    Bhardwaj, R.2    Singh, R.3    Vatsa, M.4
  • 15
    • 85041907438 scopus 로고    scopus 로고
    • Low-shot visual recognition by shrinking and hallucinating features
    • 7, 8
    • B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In ICCV, 2017. 7, 8
    • (2017) ICCV
    • Hariharan, B.1    Girshick, R.2
  • 16
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • 4, 5
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, pages 1026-1034, 2015. 4, 5
    • (2015) ICCV , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • 1, 3, 4, 5, 7
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE CVPR, pages 770-778, 2016. 1, 3, 4, 5, 7
    • (2016) IEEE CVPR , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition
    • 2
    • K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. What is the best multi-stage architecture for object recognition In IEEE ICCV, pages 2146-2153, 2009. 2
    • (2009) IEEE ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    LeCun, Y.3
  • 22
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • 2, 5
    • A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, 2009. 2, 5
    • (2009) Technical Report
    • Krizhevsky, A.1    Hinton, G.2
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012. 1
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • 2, 5
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998. 2, 5
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • 2, 5
    • Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In IEEE CVPR, volume 2, pages II-104, 2004. 2, 5
    • (2004) IEEE CVPR , vol.2 , pp. II-104
    • LeCun, Y.1    Huang, F.J.2    Bottou, L.3
  • 29
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • 3
    • D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401: 788-791, 1999. 3
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 30
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • (Jan), 3
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 11 (Jan): 19-60, 2010. 3
    • (2010) JMLR , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 31
    • 34547543010 scopus 로고    scopus 로고
    • A new method to assist small data set neural network learning
    • IEEE. 2
    • R. Mao, H. Zhu, L. Zhang, and A. Chen. A new method to assist small data set neural network learning. In ISDA, volume 1, pages 17-22. IEEE, 2006. 2
    • (2006) ISDA , vol.1 , pp. 17-22
    • Mao, R.1    Zhu, H.2    Zhang, L.3    Chen, A.4
  • 41
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning
    • 2, 3
    • I. Tosic and P. Frossard. Dictionary learning. IEEE SPM, 28 (2): 27-38, 2011. 2, 3
    • (2011) IEEE SPM , vol.28 , Issue.2 , pp. 27-38
    • Tosic, I.1    Frossard, P.2
  • 43
    • 84899064374 scopus 로고    scopus 로고
    • Regularization of neural networks using dropconnect
    • 5
    • L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect. In ICML, pages 1058-1066, 2013. 5
    • (2013) ICML , pp. 1058-1066
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    Cun, Y.L.4    Fergus, R.5
  • 44
    • 80052899838 scopus 로고    scopus 로고
    • Face recognition in unconstrained videos with matched background similarity
    • IEEE, 7
    • L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, pages 529-534. IEEE, 2011. 7
    • (2011) CVPR , pp. 529-534
    • Wolf, L.1    Hassner, T.2    Maoz, I.3
  • 47
    • 85014527870 scopus 로고    scopus 로고
    • Regularizing deep convolutional neural networks with a structured decorrelation constraint
    • IEEE, 2
    • W. Xiong, B. Du, L. Zhang, R. Hu, and D. Tao. Regularizing deep convolutional neural networks with a structured decorrelation constraint. In ICDM, 519-528. IEEE, 2016. 2
    • (2016) ICDM , pp. 519-528
    • Xiong, W.1    Du, B.2    Zhang, L.3    Hu, R.4    Tao, D.5
  • 48
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer. 5
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 818-833. Springer, 2014. 5
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 49
    • 84946073395 scopus 로고    scopus 로고
    • Tensor object classification via multilinear discriminant analysis network
    • 2
    • R. Zeng, J. Wu, L. Senhadji, and H. Shu. Tensor object classification via multilinear discriminant analysis network. In IEEE ICASSP, 2015. 2
    • (2015) IEEE ICASSP
    • Zeng, R.1    Wu, J.2    Senhadji, L.3    Shu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.