메뉴 건너뛰기




Volumn 162, Issue , 2018, Pages 265-299

Synergizing 13C metabolic flux analysis and metabolic engineering for biochemical production

Author keywords

Biofuels; Bottleneck; Cell metabolism; Cofactor imbalance; Isotope; Synthetic biology

Indexed keywords

CARBON;

EID: 85032566480     PISSN: 07246145     EISSN: None     Source Type: Book Series    
DOI: 10.1007/10_2017_2     Document Type: Chapter
Times cited : (11)

References (183)
  • 1
    • 84936994389 scopus 로고    scopus 로고
    • Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions
    • Sheng J, Feng X Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554
    • Front Microbiol , vol.6 , pp. 554
    • Sheng, J.1    Feng, X.2
  • 2
    • 84883001788 scopus 로고    scopus 로고
    • Production of bulk chemicals via novel metabolic pathways in microorganisms
    • Shin JH, Kim HU, Kim DI, Lee SY Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31(6):925-935
    • Biotechnol Adv , vol.31 , Issue.6 , pp. 925-935
    • Shin, J.H.1    Kim, H.U.2    Kim, D.I.3    Lee, S.Y.4
  • 3
    • 79952705331 scopus 로고    scopus 로고
    • Microbial production of bulk chemicals: Development of anaerobic processes
    • Weusthuis RA, Lamot I, van der Oost J, Sanders JPM Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol 29(4):153-158
    • Trends Biotechnol , vol.29 , Issue.4 , pp. 153-158
    • Weusthuis, R.A.1    Lamot, I.2    Van Der Oost, J.3    Sanders, J.4
  • 4
    • 36248991352 scopus 로고    scopus 로고
    • Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
    • Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41(22):7915-7921
    • (2007) Environ Sci Technol , vol.41 , Issue.22 , pp. 7915-7921
    • Hermann, B.G.1    Blok, K.2    Patel, M.K.3
  • 5
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801-804
    • (2007) Science , vol.315 , Issue.5813 , pp. 801-804
    • Stephanopoulos, G.1
  • 6
    • 76649111044 scopus 로고    scopus 로고
    • Advanced biofuel production in microbes
    • Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147-162
    • (2010) Biotechnol J , vol.5 , Issue.2 , pp. 147-162
    • Peralta-Yahya, P.P.1    Keasling, J.D.2
  • 7
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320-328
    • (2012) Nature , vol.488 , Issue.7411 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 8
    • 57049098094 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels
    • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556-563
    • (2008) Curr Opin Biotechnol , vol.19 , Issue.6 , pp. 556-563
    • Lee, S.K.1    Chou, H.2    Ham, T.S.3    Lee, T.S.4    Keasling, J.D.5
  • 9
    • 57049185838 scopus 로고    scopus 로고
    • Metabolic engineering: Enabling technology for biofuels production
    • Stephanopoulos G (2008) Metabolic engineering: enabling technology for biofuels production. Metab Eng 10(6):293-294
    • (2008) Metab Eng , vol.10 , Issue.6 , pp. 293-294
    • Stephanopoulos, G.1
  • 11
    • 58149190072 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms: General strategies and drug production
    • Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14(1-2):78-88
    • (2009) Drug Discov Today , vol.14 , Issue.1-2 , pp. 78-88
    • Lee, S.Y.1    Kim, H.U.2    Park, J.H.3    Park, J.M.4    Kim, T.Y.5
  • 12
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796-802
    • (2003) Nat Biotechnol , vol.21 , Issue.7 , pp. 796-802
    • Martin, V.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 13
    • 33751120932 scopus 로고    scopus 로고
    • Production of isoprenoid pharmaceuticals by engineered microbes
    • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674-681
    • (2006) Nat Chem Biol , vol.2 , Issue.12 , pp. 674-681
    • Chang, M.1    Keasling, J.D.2
  • 14
    • 62449089680 scopus 로고    scopus 로고
    • Microbial drug discovery: 80 years of progress
    • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5-16
    • (2009) J Antibiot , vol.62 , Issue.1 , pp. 5-16
    • Demain, A.L.1    Sanchez, S.2
  • 16
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355-1358
    • (2010) Science , vol.330 , Issue.6009 , pp. 1355-1358
    • Keasling, J.D.1
  • 17
    • 85032587201 scopus 로고    scopus 로고
    • Metabolic engineering for production of small molecule drugs: Challenges and solutions
    • Huttanus H, Sheng J, Feng X (2016) Metabolic engineering for production of small molecule drugs: challenges and solutions. Fermentation 2(1):4
    • (2016) Fermentation , vol.2 , Issue.1 , pp. 4
    • Huttanus, H.1    Sheng, J.2    Feng, X.3
  • 20
    • 84863303532 scopus 로고    scopus 로고
    • Industrial production of recombinant therapeutics inEscherichia coli and its recent advancements
    • Huang C Jr, Lin H, Yang X (2012) Industrial production of recombinant therapeutics inEscherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383-399
    • (2012) J Ind Microbiol Biotechnol , vol.39 , Issue.3 , pp. 383-399
    • Huang, C.1    Lin, H.2    Yang, X.3
  • 21
    • 22844452835 scopus 로고    scopus 로고
    • Construction of lycopene-overproducingE. Coli strains by combining systematic and combinatorial gene knockout targets
    • Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducingE. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612-616
    • (2005) Nat Biotechnol , vol.23 , Issue.5 , pp. 612-616
    • Alper, H.1    Miyaoku, K.2    Stephanopoulos, G.3
  • 22
    • 0034024497 scopus 로고    scopus 로고
    • Improving lycopene production in Escherichia coli by engineering metabolic control
    • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533-537
    • (2000) Nat Biotechnol , vol.18 , Issue.5 , pp. 533-537
    • Farmer, W.R.1    Liao, J.C.2
  • 23
    • 77249149861 scopus 로고    scopus 로고
    • Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology
    • Clomburg J, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419-434
    • (2010) Appl Microbiol Biotechnol , vol.86 , Issue.2 , pp. 419-434
    • Clomburg, J.1    Gonzalez, R.2
  • 25
  • 27
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering ofSaccharomyces cerevisiae
    • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering ofSaccharomyces cerevisiae. FEMS Yeast Res 8:122
    • (2008) FEMS Yeast Res , vol.8 , pp. 122
    • Nielsen, J.1    Jewett, M.C.2
  • 28
    • 84865060983 scopus 로고    scopus 로고
    • New challenges and opportunities for industrial biotechnology
    • Chen G-Q (2012) New challenges and opportunities for industrial biotechnology. Microb Cell Factories 11:111
    • (2012) Microb Cell Factories , vol.11 , pp. 111
    • Chen, G.-Q.1
  • 29
    • 75149167486 scopus 로고    scopus 로고
    • Five hard truths for synthetic biology
    • Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288
    • (2010) Nature , vol.463 , Issue.7279 , pp. 288
    • Kwok, R.1
  • 30
    • 84922448166 scopus 로고    scopus 로고
    • Methods and advances in metabolic flux analysis: A mini-review
    • Antoniewicz M (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317-325
    • (2015) J Ind Microbiol Biotechnol , vol.42 , Issue.3 , pp. 317-325
    • Antoniewicz, M.1
  • 31
    • 84910058077 scopus 로고    scopus 로고
    • 13C metabolic flux analysis of recombinant expression hosts
    • Young JD (2014) 13C metabolic flux analysis of recombinant expression hosts. Curr Opin Biotechnol 30:238-245
    • (2014) Curr Opin Biotechnol , vol.30 , pp. 238-245
    • Young, J.D.1
  • 32
    • 84887626598 scopus 로고    scopus 로고
    • Cofactor engineering for advancing chemical biotechnology
    • Wang Y, San K-Y, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24(6):994-999
    • (2013) Curr Opin Biotechnol , vol.24 , Issue.6 , pp. 994-999
    • Wang, Y.1    San, K.-Y.2    Bennett, G.N.3
  • 33
    • 84929314719 scopus 로고    scopus 로고
    • The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose inYarrowia lipolytica
    • Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose inYarrowia lipolytica. Metab Eng 30:27-39
    • (2015) Metab Eng , vol.30 , pp. 27-39
    • Wasylenko, T.M.1    Ahn, W.S.2    Stephanopoulos, G.3
  • 34
    • 84947967425 scopus 로고    scopus 로고
    • Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting
    • Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2015) Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting. Biotechnol Bioeng 113:91-100
    • (2015) Biotechnol Bioeng , vol.113 , pp. 91-100
    • Hollinshead, W.D.1    Henson, W.R.2    Abernathy, M.3    Moon, T.S.4    Tang, Y.J.5
  • 35
    • 84940111166 scopus 로고    scopus 로고
    • Shimizu H (2015) 13C-metabolic flux analysis in S-adenosyl-l-methionine production by Saccharomyces cerevisiae
    • Hayakawa K, Kajihata S, Matsuda F, Shimizu H (2015) 13C-metabolic flux analysis in S-adenosyl-l-methionine production by Saccharomyces cerevisiae. J Biosci Bioeng 120:532-538
    • J Biosci Bioeng , vol.120 , pp. 532-538
    • Hayakawa, K.1    Kajihata, S.2    Matsuda, F.3
  • 36
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
    • Feng X, Zhao H (2013) Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Factories 12(1):114
    • (2013) Microb Cell Factories , vol.12 , Issue.1 , pp. 114
    • Feng, X.1    Zhao, H.2
  • 38
    • 84939969557 scopus 로고    scopus 로고
    • Metabolic flux analysis of Escherichia coliMG1655 under octanoic acid (C8) stress
    • Fu Y, Yoon J, Jarboe L, Shanks J (2015) Metabolic flux analysis of Escherichia coliMG1655 under octanoic acid (C8) stress. Appl Microbiol Biotechnol 99(10):4397-4408
    • (2015) Appl Microbiol Biotechnol , vol.99 , Issue.10 , pp. 4397-4408
    • Fu, Y.1    Yoon, J.2    Jarboe, L.3    Shanks, J.4
  • 39
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases
    • Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75(24):7631-7638
    • (2009) Appl Environ Microbiol , vol.75 , Issue.24 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 40
    • 15044340553 scopus 로고    scopus 로고
    • Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae
    • Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569-578
    • (2005) FEMS Yeast Res , vol.5 , pp. 569-578
    • Çakar, Z.P.1    Seker, U.2    Tamerler, C.3    Sonderegger, M.4    Sauer, U.5
  • 41
    • 0033586461 scopus 로고    scopus 로고
    • Mass spectrometry for metabolic flux analysis
    • Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62(6):739-750
    • (1999) Biotechnol Bioeng , vol.62 , Issue.6 , pp. 739-750
    • Wittmann, C.1    Heinzle, E.2
  • 42
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195-206
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 195-206
    • Wiechert, W.1
  • 43
    • 0034233268 scopus 로고    scopus 로고
    • GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing
    • Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642-649
    • (2000) Biotechnol Prog , vol.16 , pp. 642-649
    • Dauner, M.1    Sauer, U.2
  • 44
    • 0001790385 scopus 로고    scopus 로고
    • Use of 13C labelling and NMR spectroscopy in metabolic flux analysis
    • Barbotin JN, Portais JC, Horizon Scientific Press, Norwich
    • de Graaf AA (2000) Use of 13C labelling and NMR spectroscopy in metabolic flux analysis. In: Barbotin JN, Portais JC (eds) NMR in biotechnology: theory and applications, vol 4. Horizon Scientific Press, Norwich
    • (2000) NMR in Biotechnology: Theory and Applications , vol.4
    • De Graaf, A.A.1
  • 45
    • 0033205580 scopus 로고    scopus 로고
    • Isotopomer analysis using GC-MS
    • Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282-290
    • (1999) Metab Eng , vol.1 , Issue.4 , pp. 282-290
    • Christensen, B.1    Nielsen, J.2
  • 46
    • 0031594984 scopus 로고    scopus 로고
    • 13C-NMR, MS and metabolic flux balancing in biotechnology research
    • Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31(01):41-106
    • (1998) Q Rev Biophys , vol.31 , Issue.1 , pp. 41-106
    • Szyperski, T.1
  • 49
    • 33846061120 scopus 로고    scopus 로고
    • 13C-based flux analysis
    • 13C-based flux analysis. Mol Syst Biol 2:62
    • (2006) Mol Syst Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 51
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139-149
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 53
    • 84892831820 scopus 로고    scopus 로고
    • Improvement of NADPH bioavailability inEscherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase
    • Wang Y, San K-Y, Bennett GN (2013) Improvement of NADPH bioavailability inEscherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40(12):1449-1460
    • (2013) J Ind Microbiol Biotechnol , vol.40 , Issue.12 , pp. 1449-1460
    • Wang, Y.1    San, K.-Y.2    Bennett, G.N.3
  • 54
    • 80052802581 scopus 로고    scopus 로고
    • Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum
    • Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S (2011) Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77(18):6644-6652
    • (2011) Appl Environ Microbiol , vol.77 , Issue.18 , pp. 6644-6652
    • Bartek, T.1    Blombach, B.2    Lang, S.3    Eikmanns, B.J.4    Wiechert, W.5    Oldiges, M.6    Nöh, K.7    Noack, S.8
  • 55
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Hou J, Vemuri G, Bao X, Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82(5):909-919
    • (2009) Appl Microbiol Biotechnol , vol.82 , Issue.5 , pp. 909-919
    • Hou, J.1    Vemuri, G.2    Bao, X.3    Olsson, L.4
  • 56
    • 0036663710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase
    • Berrios-Rivera SJ, Bennett GN, San K-Y (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4(3):217-229
    • (2002) Metab Eng , vol.4 , Issue.3 , pp. 217-229
    • Berrios-Rivera, S.J.1    Bennett, G.N.2    San, K.-Y.3
  • 57
    • 84892799105 scopus 로고    scopus 로고
    • Central metabolic responses to the overproduction of fatty acids in Escherichia colibased on 13C-metabolic flux analysis
    • He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, Peng L (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia colibased on 13C-metabolic flux analysis. Biotechnol Bioeng 111(3):575-585
    • (2014) Biotechnol Bioeng , vol.111 , Issue.3 , pp. 575-585
    • He, L.1    Xiao, Y.2    Gebreselassie, N.3    Zhang, F.4    Antoniewicz, M.R.5    Tang, Y.J.6    Peng, L.7
  • 59
    • 84984804841 scopus 로고    scopus 로고
    • Investigate the metabolic reprogramming ofSaccharomyces cerevisiae for enhanced resistance to mixed fermentation inhibitors via13C metabolic flux analysis
    • Guo W, Chen Y, Wei N, Feng X (2016) Investigate the metabolic reprogramming ofSaccharomyces cerevisiae for enhanced resistance to mixed fermentation inhibitors via13C metabolic flux analysis. PLoS One 11(8):e0161448
    • (2016) Plos One , vol.11 , Issue.8
    • Guo, W.1    Chen, Y.2    Wei, N.3    Feng, X.4
  • 61
    • 85043369440 scopus 로고    scopus 로고
    • C-metabolic flux analysis: An accurate approach to demystify microbial metabolism for biochemical production
    • 13C-metabolic flux analysis: an accurate approach to demystify microbial metabolism for biochemical production. Bioengineering 3(1):3
    • (2016) Bioengineering , vol.3 , Issue.1 , pp. 3
    • Guo, W.1    Sheng, J.2    Feng, X.3
  • 63
    • 70350158322 scopus 로고    scopus 로고
    • Invariability of central metabolic flux distribution in Shewanella oneidensisMR-1 under environmental or genetic perturbations
    • Tang YJ, Martin HG, Deutschbauer A, Feng X, Huang R, Llora X, Arkin A, Keasling JD (2009) Invariability of central metabolic flux distribution in Shewanella oneidensisMR-1 under environmental or genetic perturbations. Biotechnol Prog 25(5):1254-1259
    • (2009) Biotechnol Prog , vol.25 , Issue.5 , pp. 1254-1259
    • Tang, Y.J.1    Martin, H.G.2    Deutschbauer, A.3    Feng, X.4    Huang, R.5    Llora, X.6    Arkin, A.7    Keasling, J.D.8
  • 64
    • 84884271403 scopus 로고    scopus 로고
    • Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions
    • Adler P, Bolten CJ, Dohnt K, Hansen CE, Wittmann C (2013) Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Appl Environ Microbiol 79(18):5670-5681
    • (2013) Appl Environ Microbiol , vol.79 , Issue.18 , pp. 5670-5681
    • Adler, P.1    Bolten, C.J.2    Dohnt, K.3    Hansen, C.E.4    Wittmann, C.5
  • 65
    • 84888807683 scopus 로고    scopus 로고
    • Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe-a quantitative approach using 13C-based metabolic flux analysis
    • Klein T, Lange S, Wilhelm N, Bureik M, Yang T-H, Heinzle E, Schneider K (2014) Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe-a quantitative approach using 13C-based metabolic flux analysis. Metab Eng 21:34-45
    • (2014) Metab Eng , vol.21 , pp. 34-45
    • Klein, T.1    Lange, S.2    Wilhelm, N.3    Bureik, M.4    Yang, T.-H.5    Heinzle, E.6    Schneider, K.7
  • 66
    • 84934438759 scopus 로고    scopus 로고
    • Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism
    • Dieuaide-Noubhani M, Alonso AP, Humana Press, Totowa
    • Jazmin L, O’Grady J, Ma F, Allen D, Morgan J, Young J (2014) Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism. In: Dieuaide-Noubhani M, Alonso AP (eds) Plant metabolic flux analysis, vol 1090. Humana Press, Totowa, pp. 181-210
    • (2014) Plant Metabolic Flux Analysis , vol.1090 , pp. 181-210
    • Jazmin, L.1    O’Grady, J.2    Ma, F.3    Allen, D.4    Morgan, J.5    Young, J.6
  • 67
    • 84872376676 scopus 로고    scopus 로고
    • Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells
    • Murphy TA, Dang CV, Young JD (2013) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206-217
    • (2013) Metab Eng , vol.15 , pp. 206-217
    • Murphy, T.A.1    Dang, C.V.2    Young, J.D.3
  • 69
    • 84887626505 scopus 로고    scopus 로고
    • Isotopically non-stationary metabolic flux analysis: Complex yet highly informative
    • Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 24(6):979-986
    • (2013) Curr Opin Biotechnol , vol.24 , Issue.6 , pp. 979-986
    • Wiechert, W.1    Nöh, K.2
  • 70
    • 17144387903 scopus 로고    scopus 로고
    • From stationary to instationary metabolic flux analysis
    • Kragl U, Springer, Berlin
    • Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. In: Kragl U (ed) Technology transfer in biotechnology, vol 92. Springer, Berlin, pp 145-172
    • (2005) Technology Transfer in Biotechnology , vol.92 , pp. 145-172
    • Wiechert, W.1    Nöh, K.2
  • 71
    • 33947431021 scopus 로고    scopus 로고
    • Analysis of amino acid isotopomers using FT-ICR MS
    • Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79(6):2483-2490
    • (2007) Anal Chem , vol.79 , Issue.6 , pp. 2483-2490
    • Pingitore, F.1    Tang, Y.2    Kruppa, G.H.3    Keasling, J.D.4
  • 72
    • 0031554635 scopus 로고    scopus 로고
    • Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments
    • Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55(1):101-117
    • (1997) Biotechnol Bioeng , vol.55 , Issue.1 , pp. 101-117
    • Wiechert, W.1    De Graaf, A.A.2
  • 73
    • 0031554628 scopus 로고    scopus 로고
    • Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis
    • Wiechert W, Siefke C, de Graaf AA, Marx A (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 55(1):118-135
    • (1997) Biotechnol Bioeng , vol.55 , Issue.1 , pp. 118-135
    • Wiechert, W.1    Siefke, C.2    De Graaf, A.A.3    Marx, A.4
  • 74
    • 0035916866 scopus 로고    scopus 로고
    • MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum
    • Wittmann C, Heinzle E (2001) MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol Bioeng 72(6):642-647
    • (2001) Biotechnol Bioeng , vol.72 , Issue.6 , pp. 642-647
    • Wittmann, C.1    Heinzle, E.2
  • 75
    • 84928964332 scopus 로고    scopus 로고
    • C pathway analysis of biofilm metabolism of shewanella oneidensis MR-1
    • 13C pathway analysis of biofilm metabolism of shewanella oneidensis MR-1. RSC Adv 5(50):39840-39843
    • (2015) RSC Adv , vol.5 , Issue.50 , pp. 39840-39843
    • Guo, W.1    Luo, S.2    He, Z.3    Feng, X.4
  • 76
    • 0036271587 scopus 로고    scopus 로고
    • Analysis of flux estimates based on13C-labelling experiments
    • Christensen B, Karoly Gombert A, Nielsen J (2002) Analysis of flux estimates based on13C-labelling experiments. Eur J Biochem 269(11):2795-2800
    • (2002) Eur J Biochem , vol.269 , Issue.11 , pp. 2795-2800
    • Christensen, B.1    Karoly Gombert, A.2    Nielsen, J.3
  • 77
    • 0034691298 scopus 로고    scopus 로고
    • Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose
    • Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose. Biotechnol Bioeng 68(6):652-659
    • (2000) Biotechnol Bioeng , vol.68 , Issue.6 , pp. 652-659
    • Christensen, B.1    Nielsen, J.2
  • 78
    • 50349092811 scopus 로고    scopus 로고
    • Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach
    • Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3(8):1299-1311
    • (2008) Nat Protoc , vol.3 , Issue.8 , pp. 1299-1311
    • Bennett, B.D.1    Yuan, J.2    Kimball, E.H.3    Rabinowitz, J.D.4
  • 80
    • 84860498026 scopus 로고    scopus 로고
    • IsoCor: Correcting MS data in isotope labeling experiments
    • Millard P, Letisse F, Sokol S, Portais J-C (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28(9):1294-1296
    • (2012) Bioinformatics , vol.28 , Issue.9 , pp. 1294-1296
    • Millard, P.1    Letisse, F.2    Sokol, S.3    Portais, J.-C.4
  • 81
    • 0842343470 scopus 로고    scopus 로고
    • New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
    • Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85(3):259-268
    • (2004) Biotechnol Bioeng , vol.85 , Issue.3 , pp. 259-268
    • Wahl, S.A.1    Dauner, M.2    Wiechert, W.3
  • 82
    • 84941279254 scopus 로고    scopus 로고
    • CeCaFDB: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics
    • Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, et al. (2014) CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics. Nucleic Acids Res 43:D549-D557
    • (2014) Nucleic Acids Res , vol.43 , pp. D549-D557
    • Zhang, Z.1    Shen, T.2    Rui, B.3    Zhou, W.4    Zhou, X.5    Shang, C.6    Xin, C.7    Liu, X.8    Li, G.9    Jiang, J.10
  • 85
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68-86
    • (2007) Metab Eng , vol.9 , Issue.1 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 86
    • 84899511589 scopus 로고    scopus 로고
    • INCA: A computational platform for isotopically non-stationary metabolic flux analysis
    • Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30(9):1333-1335
    • (2014) Bioinformatics , vol.30 , Issue.9 , pp. 1333-1335
    • Young, J.D.1
  • 87
    • 25444489844 scopus 로고    scopus 로고
    • FiatFlux-a software for metabolic flux analysis from 13C-glucose experiments
    • Zamboni N, Fischer E, Sauer U (2005) FiatFlux-a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinf 6:209-209
    • (2005) BMC Bioinf , vol.6 , pp. 209
    • Zamboni, N.1    Fischer, E.2    Sauer, U.3
  • 89
    • 38449111120 scopus 로고    scopus 로고
    • An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis
    • Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686-699
    • (2008) Biotechnol Bioeng , vol.99 , Issue.3 , pp. 686-699
    • Young, J.D.1    Walther, J.L.2    Antoniewicz, M.R.3    Yoo, H.4    Stephanopoulos, G.5
  • 90
    • 33845262706 scopus 로고    scopus 로고
    • Engineering life through synthetic biology
    • Chopra P, Kamma A (2006) Engineering life through synthetic biology. In Silico Biol 6(5):401-410
    • (2006) Silico Biol , vol.6 , Issue.5 , pp. 401-410
    • Chopra, P.1    Kamma, A.2
  • 91
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48-54
    • (2013) Metab Eng , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 92
    • 81155158878 scopus 로고    scopus 로고
    • Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity
    • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44
    • (2011) BMC Biochem , vol.12 , pp. 44
    • Jing, F.1    Cantu, D.C.2    Tvaruzkova, J.3    Chipman, J.P.4    Nikolau, B.J.5    Yandeau-Nelson, M.D.6    Reilly, P.J.7
  • 93
    • 0023645118 scopus 로고
    • Purification and characterization of pyruvate: NADP+ oxidoreductase in Euglena gracilis
    • Inui HOK, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate: NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262(19):6
    • (1987) J Biol Chem , vol.262 , Issue.19 , pp. 6
    • Inui, H.1    Miyatake, K.2    Nakano, Y.3    Kitaoka, S.4
  • 94
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ (2014) Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21:46-59
    • (2014) Metab Eng , vol.21 , pp. 46-59
    • Kozak, B.U.1    Van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.M.5    Pronk, J.T.6    Van Maris, A.J.7
  • 95
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160-168
    • (2007) Metab Eng , vol.9 , Issue.2 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 96
    • 84864858864 scopus 로고    scopus 로고
    • ATP-citrate lyase: A key player in cancer metabolism
    • Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72(15):3709-3714
    • (2012) Cancer Res , vol.72 , Issue.15 , pp. 3709-3714
    • Zaidi, N.1    Swinnen, J.V.2    Smans, K.3
  • 97
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
    • Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Factories 4:30
    • (2005) Microb Cell Factories , vol.4 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 98
    • 0035048559 scopus 로고    scopus 로고
    • Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (Xfp) fromBifidobacterium lactis
    • Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M (2001) Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) fromBifidobacterium lactis. J Bacteriol 183(9):2929-2936
    • (2001) J Bacteriol , vol.183 , Issue.9 , pp. 2929-2936
    • Meile, L.1    Rohr, L.M.2    Geissmann, T.A.3    Herensperger, M.4    Teuber, M.5
  • 99
    • 57349128941 scopus 로고    scopus 로고
    • Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans
    • Panagiotou G, Andersen MR, Grotkjaer T, Regueira TB, Hofmann G, Nielsen J, Olsson L (2008) Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS One 3(12):e3847
    • (2008) Plos One , vol.3 , Issue.12 , pp. 3847
    • Panagiotou, G.1    Ersen, M.R.2    Grotkjaer, T.3    Regueira, T.B.4    Hofmann, G.5    Nielsen, J.6    Olsson, L.7
  • 100
    • 84899154669 scopus 로고    scopus 로고
    • Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
    • de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories 13:39-39
    • (2014) Microb Cell Factories , vol.13 , pp. 39
    • De Jong, B.W.1    Shi, S.2    Siewers, V.3    Nielsen, J.4
  • 101
    • 70350376747 scopus 로고    scopus 로고
    • Escherichia coli unsaturated fatty acid synthesis: Complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB
    • Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284(43):29526-29535
    • (2009) J Biol Chem , vol.284 , Issue.43 , pp. 29526-29535
    • Feng, Y.1    Cronan, J.E.2
  • 102
    • 0034666431 scopus 로고    scopus 로고
    • Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
    • Davis MS, Solbiati J, Cronan JE Jr (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275(37):28593-28598
    • (2000) J Biol Chem , vol.275 , Issue.37 , pp. 28593-28598
    • Davis, M.S.1    Solbiati, J.2    Cronan, J.E.3
  • 103
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in E. Coli: Implications for Biodiesel Production
    • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10(6):333-339
    • (2008) Metab Eng , vol.10 , Issue.6 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 105
    • 0031783528 scopus 로고    scopus 로고
    • Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli
    • Subrahmanyam S, Cronan JE Jr (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180(17):4596-4602
    • (1998) J Bacteriol , vol.180 , Issue.17 , pp. 4596-4602
    • Subrahmanyam, S.1    Cronan, J.E.2
  • 106
    • 84976902235 scopus 로고    scopus 로고
    • Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae
    • Suástegui M, Guo W, Feng X, Shao Z (2016) Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng 113(12):2676-2685
    • (2016) Biotechnol Bioeng , vol.113 , Issue.12 , pp. 2676-2685
    • Suástegui, M.1    Guo, W.2    Feng, X.3    Shao, Z.4
  • 109
    • 0034847930 scopus 로고    scopus 로고
    • Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis
    • Dauner M, Bailey JE, Sauer U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76(2):144-156
    • (2001) Biotechnol Bioeng , vol.76 , Issue.2 , pp. 144-156
    • Dauner, M.1    Bailey, J.E.2    Sauer, U.3
  • 110
    • 0036663607 scopus 로고    scopus 로고
    • The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures
    • Berrios-Rivera SJ, Bennett GN, San K-Y (2002) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4(3):230-237
    • (2002) Metab Eng , vol.4 , Issue.3 , pp. 230-237
    • Berrios-Rivera, S.J.1    Bennett, G.N.2    San, K.-Y.3
  • 112
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307-2317
    • (2004) Appl Environ Microbiol , vol.70 , Issue.4 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Sauer, U.4
  • 113
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153(9):3044-3054
    • (2007) Microbiology , vol.153 , Issue.9 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 114
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93(4):665-673
    • (2006) Biotechnol Bioeng , vol.93 , Issue.4 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4    Hahn-Hägerdal, B.5    Gorwa-Grauslund, M.F.6
  • 115
    • 34347390887 scopus 로고    scopus 로고
    • The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae
    • Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007) The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71(5):1365-1369
    • (2007) Biosci Biotechnol Biochem , vol.71 , Issue.5 , pp. 1365-1369
    • Watanabe, S.1    Pack, S.P.2    Saleh, A.A.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 116
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49-49
    • (2009) Microb Cell Factories , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 117
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Factories 7:9-9
    • (2008) Microb Cell Factories , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 118
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase fromPichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase fromPichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9-9
    • (2009) Biotechnol Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 119
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D, Hahn-Hägerdal B, Bettiga M (2010) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76(23):7796-7802
    • (2010) Appl Environ Microbiol , vol.76 , Issue.23 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 120
    • 34250361036 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase
    • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130(3):316-319
    • (2007) J Biotechnol , vol.130 , Issue.3 , pp. 316-319
    • Watanabe, S.1    Saleh, A.A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 121
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinantSaccharomyces cerevisiae
    • Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinantSaccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243-255
    • (2008) Appl Microbiol Biotechnol , vol.81 , Issue.2 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Inoue, H.5    Murakami, K.6    Takimura, O.7    Sawayama, S.8
  • 122
    • 68049091805 scopus 로고    scopus 로고
    • Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae
    • Krahulec S, Klimacek M, Nidetzky B (2009) Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 4(5):684-694
    • (2009) Biotechnol J , vol.4 , Issue.5 , pp. 684-694
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 123
    • 66249146380 scopus 로고    scopus 로고
    • Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene
    • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009) Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75(11):3818-3822
    • (2009) Appl Environ Microbiol , vol.75 , Issue.11 , pp. 3818-3822
    • Matsushika, A.1    Inoue, H.2    Watanabe, S.3    Kodaki, T.4    Makino, K.5    Sawayama, S.6
  • 124
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizingSaccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizingSaccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68(4):1604-1609
    • (2002) Appl Environ Microbiol , vol.68 , Issue.4 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 125
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892-5897
    • (2003) Appl Environ Microbiol , vol.69 , Issue.10 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 126
    • 84863182778 scopus 로고    scopus 로고
    • Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
    • Zhang G-C, Liu J-J, Ding W-T (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78(4):1081-1086
    • (2012) Appl Environ Microbiol , vol.78 , Issue.4 , pp. 1081-1086
    • Zhang, G.-C.1    Liu, J.-J.2    Ding, W.-T.3
  • 127
    • 84922782676 scopus 로고    scopus 로고
    • Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase
    • Wasylenko TM, Stephanopoulos G (2015) Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112(3):470-483
    • (2015) Biotechnol Bioeng , vol.112 , Issue.3 , pp. 470-483
    • Wasylenko, T.M.1    Stephanopoulos, G.2
  • 128
    • 80054018281 scopus 로고    scopus 로고
    • Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli
    • Kim YM, Cho H-S, Jung GY, Park JM (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941-2946
    • (2011) Biotechnol Bioeng , vol.108 , Issue.12 , pp. 2941-2946
    • Kim, Y.M.1    Cho, H.-S.2    Jung, G.Y.3    Park, J.M.4
  • 129
    • 34547114478 scopus 로고    scopus 로고
    • Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene
    • Lee W-H, Park J-B, Park K, Kim M-D, Seo J-H (2007) Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76(2):329-338
    • (2007) Appl Microbiol Biotechnol , vol.76 , Issue.2 , pp. 329-338
    • Lee, W.-H.1    Park, J.-B.2    Park, K.3    Kim, M.-D.4    Seo, J.-H.5
  • 130
    • 79954423939 scopus 로고    scopus 로고
    • Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations
    • Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333-341
    • (2011) Biotechnol Prog , vol.27 , Issue.2 , pp. 333-341
    • Chin, J.W.1    Cirino, P.C.2
  • 131
    • 84880510233 scopus 로고    scopus 로고
    • Improvement of NADPH bioavailability inEscherichia coli through the use of phosphofructokinase deficient strains
    • Wang Y, San K-Y, Bennett G (2013) Improvement of NADPH bioavailability inEscherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol 97(15):6883-6893
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.15 , pp. 6883-6893
    • Wang, Y.1    San, K.-Y.2    Bennett, G.3
  • 132
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler JA, Fowler ZL, McHugh KP, Koffas MAG (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12(2):96-104
    • (2010) Metab Eng , vol.12 , Issue.2 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.4
  • 133
    • 79953735971 scopus 로고    scopus 로고
    • Alteration of reducing powers in an isogenic phosphoglucose isomerase (Pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase
    • Kim S, Lee CH, Nam SW, Kim P (2011) Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett Appl Microbiol 52(5):433-440
    • (2011) Lett Appl Microbiol , vol.52 , Issue.5 , pp. 433-440
    • Kim, S.1    Lee, C.H.2    Nam, S.W.3    Kim, P.4
  • 134
    • 33646045867 scopus 로고    scopus 로고
    • Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli
    • Sánchez AM, Andrews J, Hussein I, Bennett GN, San K-Y (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (udhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22(2):420-425
    • (2006) Biotechnol Prog , vol.22 , Issue.2 , pp. 420-425
    • Sánchez, A.M.1    Rews, J.2    Hussein, I.3    Bennett, G.N.4    San, K.-Y.5
  • 136
    • 0029689236 scopus 로고    scopus 로고
    • In vivo stationary flux analysis by 13C labeling experiments
    • Sahm H, Wandrey C, Springer, Berlin
    • Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labeling experiments. In: Sahm H, Wandrey C (eds) Metabolic engineering, vol 54. Springer, Berlin, pp 109-154
    • (1996) Metabolic Engineering , vol.54 , pp. 109-154
    • Wiechert, W.1    De Graaf, A.A.2
  • 137
    • 0035002653 scopus 로고    scopus 로고
    • Application of MALDI-TOF MS to lysine-producingCorynebacterium glutamicum
    • Wittmann C, Heinzle E (2001) Application of MALDI-TOF MS to lysine-producingCorynebacterium glutamicum. Eur J Biochem 268(8):2441-2455
    • (2001) Eur J Biochem , vol.268 , Issue.8 , pp. 2441-2455
    • Wittmann, C.1    Heinzle, E.2
  • 138
    • 0042825675 scopus 로고    scopus 로고
    • Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry
    • Klapa MI, Aon J-C, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem 270(17):3525-3542
    • (2003) Eur J Biochem , vol.270 , Issue.17 , pp. 3525-3542
    • Klapa, M.I.1    Aon, J.-C.2    Stephanopoulos, G.3
  • 139
    • 66949164842 scopus 로고    scopus 로고
    • OpenFLUX: Efficient modelling software for 13C-based metabolic flux analysis
    • Quek L-E, Wittmann C, Nielsen L, Kromer J (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Factories 8(1):25
    • (2009) Microb Cell Factories , vol.8 , Issue.1 , pp. 25
    • Quek, L.-E.1    Wittmann, C.2    Nielsen, L.3    Kromer, J.4
  • 140
    • 1542376957 scopus 로고    scopus 로고
    • In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome
    • Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769-1784
    • (2004) J Bacteriol , vol.186 , Issue.6 , pp. 1769-1784
    • Krömer, J.O.1    Sorgenfrei, O.2    Klopprogge, K.3    Heinzle, E.4    Wittmann, C.5
  • 141
    • 35348981360 scopus 로고    scopus 로고
    • Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase
    • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99-109
    • (2007) J Biotechnol , vol.132 , Issue.2 , pp. 99-109
    • Becker, J.1    Klopprogge, C.2    Herold, A.3    Zelder, O.4    Bolten, C.J.5    Wittmann, C.6
  • 142
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
    • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159-168
    • (2011) Metab Eng , vol.13 , Issue.2 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 143
    • 27744506402 scopus 로고    scopus 로고
    • Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
    • Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71(12):8587-8596
    • (2005) Appl Environ Microbiol , vol.71 , Issue.12 , pp. 8587-8596
    • Becker, J.1    Klopprogge, C.2    Zelder, O.3    Heinzle, E.4    Wittmann, C.5
  • 144
    • 84903743153 scopus 로고    scopus 로고
    • A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    • Bommareddy RR, Chen Z, Rappert S, Zeng A-P (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30-37
    • (2014) Metab Eng , vol.25 , pp. 30-37
    • Bommareddy, R.R.1    Chen, Z.2    Rappert, S.3    Zeng, A.-P.4
  • 145
    • 33847294641 scopus 로고    scopus 로고
    • A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris
    • Hu X-Q, Chu J, Zhang S-L, Zhuang Y-P, Wang Y-H, Zhu S, Zhu Z-G, Yuan Z-Y (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris. Enzym Microb Technol 40(4):669-674
    • (2007) Enzym Microb Technol , vol.40 , Issue.4 , pp. 669-674
    • Hu, X.-Q.1    Chu, J.2    Zhang, S.-L.3    Zhuang, Y.-P.4    Wang, Y.-H.5    Zhu, S.6    Zhu, Z.-G.7    Yuan, Z.-Y.8
  • 146
    • 52949134791 scopus 로고    scopus 로고
    • Effects of different glycerol feeding strategies on S-adenosyl-l-methionine biosynthesis by PGAP-driven Pichia pastoris overexpressing methionine adenosyltransferase
    • Hu X-Q, Chu J, Zhang Z, Zhang S-L, Zhuang Y-P, Wang Y-H, Guo M-J, Chen H-X, Yuan Z-Y (2008) Effects of different glycerol feeding strategies on S-adenosyl-l-methionine biosynthesis by PGAP-driven Pichia pastoris overexpressing methionine adenosyltransferase. J Biotechnol 137(1-4):44-49
    • (2008) J Biotechnol , vol.137 , Issue.1-4 , pp. 44-49
    • Hu, X.-Q.1    Chu, J.2    Zhang, Z.3    Zhang, S.-L.4    Zhuang, Y.-P.5    Wang, Y.-H.6    Guo, M.-J.7    Chen, H.-X.8    Yuan, Z.-Y.9
  • 147
    • 0026416683 scopus 로고
    • Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli
    • Birnbaum S, Bailey JE (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37(8):736-745
    • (1991) Biotechnol Bioeng , vol.37 , Issue.8 , pp. 736-745
    • Birnbaum, S.1    Bailey, J.E.2
  • 148
    • 0034496492 scopus 로고    scopus 로고
    • Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria
    • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2(4):328-338
    • (2000) Metab Eng , vol.2 , Issue.4 , pp. 328-338
    • Jones, K.L.1    Kim, S.W.2    Keasling, J.D.3
  • 149
    • 84939271039 scopus 로고    scopus 로고
    • Surviving the heat: Heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane
    • Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM (2015) Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 17:2982-2992
    • (2015) Environ Microbiol , vol.17 , pp. 2982-2992
    • Guyot, S.1    Gervais, P.2    Young, M.3    Winckler, P.4    Dumont, J.5    Davey, H.M.6
  • 150
    • 84940898261 scopus 로고    scopus 로고
    • Metabolomic analysis of acid stress response in Saccharomyces cerevisiae
    • Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120:396-404
    • (2015) J Biosci Bioeng , vol.120 , pp. 396-404
    • Nugroho, R.H.1    Yoshikawa, K.2    Shimizu, H.3
  • 151
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review
    • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20-31
    • (2011) Crit Rev Biotechnol , vol.31 , Issue.1 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 152
    • 78049290979 scopus 로고    scopus 로고
    • Transcriptomic analysis ofEscherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses
    • King T, Lucchini S, Hinton JCD, Gobius K (2010) Transcriptomic analysis ofEscherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 76(19):6514-6528
    • (2010) Appl Environ Microbiol , vol.76 , Issue.19 , pp. 6514-6528
    • King, T.1    Lucchini, S.2    Hinton, J.3    Gobius, K.4
  • 153
    • 79954459893 scopus 로고    scopus 로고
    • Construction of an E coli genome-scale atom mapping model for MFA calculations
    • Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108(6):1372-1382
    • (2011) Biotechnol Bioeng , vol.108 , Issue.6 , pp. 1372-1382
    • Ravikirthi, P.1    Suthers, P.F.2    Maranas, C.D.3
  • 155
    • 64649089947 scopus 로고    scopus 로고
    • Cross-platform comparison of methods for quantitative metabolomics of primary metabolism
    • Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81(6):2135-2143
    • (2009) Anal Chem , vol.81 , Issue.6 , pp. 2135-2143
    • Büscher, J.M.1    Czernik, D.2    Ewald, J.C.3    Sauer, U.4    Zamboni, N.5
  • 156
    • 79953882386 scopus 로고    scopus 로고
    • Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics
    • Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res 11(3):263-272
    • (2011) FEMS Yeast Res , vol.11 , Issue.3 , pp. 263-272
    • Christen, S.1    Sauer, U.2
  • 157
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis
    • Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13(6):656-665
    • (2011) Metab Eng , vol.13 , Issue.6 , pp. 656-665
    • Young, J.D.1    Shastri, A.A.2    Stephanopoulos, G.3    Morgan, J.A.4
  • 158
    • 84912569727 scopus 로고    scopus 로고
    • Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation
    • Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci 111(47):16967-16972
    • (2014) Proc Natl Acad Sci , vol.111 , Issue.47 , pp. 16967-16972
    • Ma, F.1    Jazmin, L.J.2    Young, J.D.3    Allen, D.K.4
  • 159
    • 72049083209 scopus 로고    scopus 로고
    • Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products
    • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557-577
    • (2010) Renew Sust Energ Rev , vol.14 , Issue.2 , pp. 557-577
    • Brennan, L.1    Owende, P.2
  • 160
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
    • Varman A, Yu Y, You L, Tang Y (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Factories 12(1):117
    • (2013) Microb Cell Factories , vol.12 , Issue.1 , pp. 117
    • Varman, A.1    Yu, Y.2    You, L.3    Tang, Y.4
  • 161
    • 79953139204 scopus 로고    scopus 로고
    • Engineering cyanobacteria for fuels and chemicals production
    • Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1(3):207-210
    • (2010) Protein Cell , vol.1 , Issue.3 , pp. 207-210
    • Zhou, J.1    Li, Y.2
  • 162
    • 84890693396 scopus 로고    scopus 로고
    • Construction of a parsimonious kinetic model to capture microbial dynamics via parameter estimation
    • Feng X, Tang Y, Dolan KD (2014) Construction of a parsimonious kinetic model to capture microbial dynamics via parameter estimation. Inverse Probl Sci Eng 22(2):309-324
    • (2014) Inverse Probl Sci Eng , vol.22 , Issue.2 , pp. 309-324
    • Feng, X.1    Tang, Y.2    Dolan, K.D.3
  • 163
    • 84870872107 scopus 로고    scopus 로고
    • Kinetic modeling and isotopic investigation of isobutanol fermentation by two engineered Escherichia coli strains
    • Xiao Y, Feng X, Varman AM, He L, Yu H, Tang YJ (2012) Kinetic modeling and isotopic investigation of isobutanol fermentation by two engineered Escherichia coli strains. Ind Eng Chem Res 51(49):15855-15863
    • (2012) Ind Eng Chem Res , vol.51 , Issue.49 , pp. 15855-15863
    • Xiao, Y.1    Feng, X.2    Varman, A.M.3    He, L.4    Yu, H.5    Tang, Y.J.6
  • 165
    • 0034125501 scopus 로고    scopus 로고
    • Mathematical modelling of metabolism
    • Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11(2):180-186
    • (2000) Curr Opin Biotechnol , vol.11 , Issue.2 , pp. 180-186
    • Gombert, A.K.1    Nielsen, J.2
  • 166
    • 10444258178 scopus 로고    scopus 로고
    • Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source
    • Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70(12):7277-7287
    • (2004) Appl Environ Microbiol , vol.70 , Issue.12 , pp. 7277-7287
    • Wittmann, C.1    Kiefer, P.2    Zelder, O.3
  • 167
    • 42449109972 scopus 로고    scopus 로고
    • Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum
    • Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Factories 7(1):8
    • (2008) Microb Cell Factories , vol.7 , Issue.1 , pp. 8
    • Becker, J.1    Klopprogge, C.2    Wittmann, C.3
  • 168
    • 0347761177 scopus 로고    scopus 로고
    • Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose
    • Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70(1):229-239
    • (2004) Appl Environ Microbiol , vol.70 , Issue.1 , pp. 229-239
    • Kiefer, P.1    Heinzle, E.2    Zelder, O.3    Wittmann, C.4
  • 169
    • 0036956758 scopus 로고    scopus 로고
    • Genealogy profiling through strain improvement by using metabolic network analysis: Metabolic flux genealogy of several generations of lysine-producing Corynebacteria
    • Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68(12):5843-5859
    • (2002) Appl Environ Microbiol , vol.68 , Issue.12 , pp. 5843-5859
    • Wittmann, C.1    Heinzle, E.2
  • 170
    • 84884386184 scopus 로고    scopus 로고
    • COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis
    • Leighty RW, Antoniewicz MR (2013) COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis. Metab Eng 20:49-55
    • (2013) Metab Eng , vol.20 , pp. 49-55
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 171
    • 84922245805 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
    • 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab Eng 28:151-158
    • (2015) Metab Eng , vol.28 , pp. 151-158
    • Crown, S.B.1    Long, C.P.2    Antoniewicz, M.R.3
  • 173
    • 84872122643 scopus 로고    scopus 로고
    • Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies
    • Crown SB, Antoniewicz MR (2013) Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies. Metab Eng 16:21-32
    • (2013) Metab Eng , vol.16 , pp. 21-32
    • Crown, S.B.1    Antoniewicz, M.R.2
  • 174
    • 0034741985 scopus 로고    scopus 로고
    • A universal framework for 13C metabolic flux analysis
    • Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3(3):265-283
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 265-283
    • Wiechert, W.1    Möllney, M.2    Petersen, S.3    De Graaf, A.A.4
  • 178
    • 84857845281 scopus 로고    scopus 로고
    • Influx_s: Increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments
    • Sokol S, Millard P, Portais J-C (2012) influx_s: increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments. Bioinformatics 28(5):687-693
    • (2012) Bioinformatics , vol.28 , Issue.5 , pp. 687-693
    • Sokol, S.1    Millard, P.2    Portais, J.-C.3
  • 179
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441-1451
    • (2001) J Bacteriol , vol.183 , Issue.4 , pp. 1441-1451
    • Gombert, A.K.1    Moreira Dos Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 180
    • 17444372724 scopus 로고    scopus 로고
    • SNOPT: An SQP algorithm for large-scale constrained optimization
    • Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99-131
    • (2005) SIAM Rev , vol.47 , Issue.1 , pp. 99-131
    • Gill, P.E.1    Murray, W.2    Saunders, M.A.3
  • 182
    • 84860649085 scopus 로고    scopus 로고
    • Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: Methanol mixtures
    • Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: Methanol mixtures. Microb Cell Factories 11:57-57
    • (2012) Microb Cell Factories , vol.11 , pp. 57
    • Jordà, J.1    Jouhten, P.2    Cámara, E.3    Maaheimo, H.4    Albiol, J.5    Ferrer, P.6
  • 183
    • 84976632689 scopus 로고    scopus 로고
    • Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-l-methionine production
    • Hayakawa K, Matsuda F, Shimizu H (2016) Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-l-methionine production. AMB Express 6(1):38
    • (2016) AMB Express , vol.6 , Issue.1 , pp. 38
    • Hayakawa, K.1    Matsuda, F.2    Shimizu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.