-
1
-
-
0033526123
-
Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
-
10099580
-
Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering. 1999; 63(1):46-55. doi: 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0. CO;2-J PMID: 10099580
-
(1999)
Biotechnology and Bioengineering.
, vol.63
, Issue.1
, pp. 46-55
-
-
Palmqvist, E.1
Grage, H.2
Meinander, N.Q.3
Hahn-Hägerdal, B.4
-
2
-
-
64849104184
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
-
21261870 PMC3815291
-
Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial biotechnology. 2008; 1(6):497-506. doi: 10.1111/j.1751-7915.2008. 00050.x. PMC3815291. PMID: 21261870
-
(2008)
Microbial Biotechnology.
, vol.1
, Issue.6
, pp. 497-506
-
-
Heer, D.1
Sauer, U.2
-
3
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology. 2007; 82(4):340-9. doi: 10.1002/jctb.1676
-
(2007)
Journal of Chemical Technology & Biotechnology.
, vol.82
, Issue.4
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hähn-Hägerdal, B.4
Lidén, G.5
Gorwa-Grauslund, M.F.6
-
4
-
-
0343183325
-
Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology. 2000; 74(1):17-24. http://dx.doi.org/10.1016/S0960-8524(99)00160-1.
-
(2000)
Bioresource Technology.
, vol.74
, Issue.1
, pp. 17-24
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
5
-
-
0020665080
-
By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae
-
18548541
-
Maiorella B, Blanch HW, Wilke CR. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering. 1983; 25(1):103-21. doi: 10.1002/bit. 260250109 PMID: 18548541
-
(1983)
Biotechnology and Bioengineering.
, vol.25
, Issue.1
, pp. 103-121
-
-
Maiorella, B.1
Blanch, H.W.2
Wilke, C.R.3
-
7
-
-
33646048327
-
Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
-
16470880
-
Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering. 2006; 93(6):1196-206. doi: 10.1002/bit.20838 PMID: 16470880
-
(2006)
Biotechnology and Bioengineering.
, vol.93
, Issue.6
, pp. 1196-1206
-
-
Keating, J.D.1
Panganiban, C.2
Mansfield, S.D.3
-
8
-
-
0141814175
-
The pathway of oxidation of acetate in baker's yeast
-
13018136 PMC1197907
-
Krebs HA, Gurin S, Eggleston LV. The pathway of oxidation of acetate in baker's yeast. Biochemical Journal. 1952; 51(5):614-28. PMC1197907. PMID: 13018136
-
(1952)
Biochemical Journal.
, vol.51
, Issue.5
, pp. 614-628
-
-
Krebs, H.A.1
Gurin, S.2
Eggleston, L.V.3
-
9
-
-
0033585830
-
Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
-
9921153
-
Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering. 1999; 62(4):447-54. doi: 10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0 PMID: 9921153
-
(1999)
Biotechnology and Bioengineering.
, vol.62
, Issue.4
, pp. 447-454
-
-
Palmqvist, E.1
Almeida, J.S.2
Hahn-Hägerdal, B.3
-
10
-
-
0037623828
-
Effects of furfural on the respiratory metabolism of saccharomyces cerevisiae in glucose-limited chemostats
-
12839784
-
Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats. Applied and Environmental Microbiology. 2003; 69(7):4076-86. doi: 10.1128/aem.69.7.4076-4086.2003 PMID: 12839784
-
(2003)
Applied and Environmental Microbiology.
, vol.69
, Issue.7
, pp. 4076-4086
-
-
Sárvári Horváth, I.1
Franzén, C.J.2
Taherzadeh, M.J.3
Niklasson, C.4
Lidén, G.5
-
12
-
-
79954648688
-
Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
-
21380517
-
Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011; 90(3):809-25. doi: 10.1007/s00253-011-3167-9 PMID: 21380517
-
(2011)
Appl Microbiol Biotechnol.
, vol.90
, Issue.3
, pp. 809-825
-
-
Liu, Z.L.1
-
13
-
-
84875904201
-
Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
-
Giannattasio S, Guaragnella N, Ždralevic M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Frontiers in Microbiology. 2013; 4. doi: 10.3389/fmicb.2013.00033
-
(2013)
Frontiers in Microbiology.
, vol.4
-
-
Giannattasio, S.1
Guaragnella, N.2
Ždralevic, M.3
Marra, E.4
-
15
-
-
79957871574
-
Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
-
21605494
-
Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae. Redox Report. 2011; 16(1):15-23. doi: 10.1179/174329211X12968219310954 PMID: 21605494.
-
(2011)
Redox Report.
, vol.16
, Issue.1
, pp. 15-23
-
-
Semchyshyn, H.M.1
Abrat, O.B.2
Miedzobrodzki, J.3
Inoue, Y.4
Lushchak, V.I.5
-
16
-
-
78751559622
-
TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae
-
21246628
-
Lee YJ, Jang JW, Kim KJ, Maeng PJ. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast. 2011; 28(2):153-66. doi: 10.1002/yea.1828 PMID: 21246628
-
(2011)
Yeast.
, vol.28
, Issue.2
, pp. 153-166
-
-
Lee, Y.J.1
Jang, J.W.2
Kim, K.J.3
Maeng, P.J.4
-
17
-
-
0041767568
-
Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
-
12869194
-
Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry. 2003; 270 (15):3189-95. doi: 10.1046/j.1432-1033.2003.03701.x PMID: 12869194
-
(2003)
European Journal of Biochemistry.
, vol.270
, Issue.15
, pp. 3189-3195
-
-
Bauer, B.E.1
Rossington, D.2
Mollapour, M.3
Mamnun, Y.4
Kuchler, K.5
Piper, P.W.6
-
18
-
-
84962206825
-
Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
-
Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Applied and Environmental Microbiology. 2016. doi: 10.1128/aem.03718-15
-
(2016)
Applied and Environmental Microbiology.
-
-
Chen, Y.1
Stabryla, L.2
Wei, N.3
-
19
-
-
84953776288
-
Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
-
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnology for Biofuels. 2016; 9(1):1-18. doi: 10.1186/s13068-015-0418-5
-
(2016)
Biotechnology for Biofuels.
, vol.9
, Issue.1
, pp. 1-18
-
-
Chen, Y.1
Sheng, J.2
Jiang, T.3
Stevens, J.4
Feng, X.5
Wei, N.6
-
20
-
-
77958162502
-
Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View
-
20955006
-
Mira NP, Teixeira MC, Sá-Correia I. Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View. OMICS: A Journal of Integrative Biology. 2010; 14(5):525-40. doi: 10.1089/omi.2010.0072 PMID: 20955006
-
(2010)
OMICS: A Journal of Integrative Biology.
, vol.14
, Issue.5
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sá-Correia, I.3
-
21
-
-
79955718565
-
Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae
-
20652356
-
Zheng D-Q, Wu X-C, Wang P-M, Chi X-Q, Tao X-L, Li P, et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2010; 38(3):415-22. doi: 10.1007/s10295-010-0784-8 PMID: 20652356
-
(2010)
J Ind Microbiol Biotechnol.
, vol.38
, Issue.3
, pp. 415-422
-
-
Zheng, D.-Q.1
Wu, X.-C.2
Wang, P.-M.3
Chi, X.-Q.4
Tao, X.-L.5
Li, P.6
-
22
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories. 2010; 9(1):1-13. doi: 10.1186/1475-2859-9-79
-
(2010)
Microbial Cell Factories.
, vol.9
, Issue.1
, pp. 1-13
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
23
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories. 2011; 10(1):1-13. doi: 10.1186/1475-2859-10-2
-
(2011)
Microbial Cell Factories.
, vol.10
, Issue.1
, pp. 1-13
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
24
-
-
78651428997
-
Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
-
20953665
-
Zhang J-G, Liu X-Y, He X-P, Guo X-N, Lu Y, Zhang B-r. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnology Letters. 2010; 33(2):277-84. doi: 10.1007/s10529-010-0433-3 PMID: 20953665
-
(2010)
Biotechnology Letters.
, vol.33
, Issue.2
, pp. 277-284
-
-
Zhang, J.-G.1
Liu, X.-Y.2
He, X.-P.3
Guo, X.-N.4
Lu, Y.5
Zhang, B.-R.6
-
25
-
-
81855227262
-
Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals
-
Jarboe LR, Liu P, Royce LA. Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Current Opinion in Chemical Engineering. 2011; 1(1):38-42. http://dx.doi.org/10.1016/j. coche.2011.08.003.
-
(2011)
Current Opinion in Chemical Engineering.
, vol.1
, Issue.1
, pp. 38-42
-
-
Jarboe, L.R.1
Liu, P.2
Royce, L.A.3
-
26
-
-
33846667838
-
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
-
16934451
-
Martín C, Marcet M, Almazán O, Jönsson LJ. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology. 2007; 98(9):1767-73. http://dx.doi.org/10.1016/j.biortech.2006.07.021. PMID: 16934451
-
(2007)
Bioresource Technology.
, vol.98
, Issue.9
, pp. 1767-1773
-
-
Martín, C.1
Marcet, M.2
Almazán, O.3
Jönsson, L.J.4
-
27
-
-
66249112812
-
Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound
-
19363068
-
Lin F-M, Qiao B, Yuan Y-J. Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound. Applied and Environmental Microbiology. 2009; 75(11):3765-76. doi: 10.1128/aem.02594-08 PMID: 19363068
-
(2009)
Applied and Environmental Microbiology.
, vol.75
, Issue.11
, pp. 3765-3776
-
-
Lin, F.-M.1
Qiao, B.2
Yuan, Y.-J.3
-
28
-
-
73249132552
-
Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases
-
19854918
-
Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases. Applied and Environmental Microbiology. 2009; 75(24):7631-8. doi: 10.1128/aem.01649-09 PMID: 19854918
-
(2009)
Applied and Environmental Microbiology.
, vol.75
, Issue.24
, pp. 7631-7638
-
-
Heer, D.1
Heine, D.2
Sauer, U.3
-
29
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
16222531
-
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006; 71(3):339-49. doi: 10.1007/s00253-005-0142-3 PMID: 16222531
-
(2006)
Appl Microbiol Biotechnol.
, vol.71
, Issue.3
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
31
-
-
0034302042
-
Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid
-
16232875
-
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. Journal of Bioscience and Bioengineering. 2000; 90(4):374-80. http://dx.doi.org/10.1016/S1389-1723(01)80004-9. PMID: 16232875
-
(2000)
Journal of Bioscience and Bioengineering.
, vol.90
, Issue.4
, pp. 374-380
-
-
Taherzadeh, M.J.1
Gustafsson, L.2
Niklasson, C.3
Lidén, G.4
-
32
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
20309542
-
Li B-Z, Yuan Y-J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010; 86(6):1915-24. doi: 10.1007/s00253-010-2518-2 PMID: 20309542
-
(2010)
Appl Microbiol Biotechnol.
, vol.86
, Issue.6
, pp. 1915-1924
-
-
Li, B.-Z.1
Yuan, Y.-J.2
-
33
-
-
85043369440
-
13C-metabolic flux analysis: An accurate approach to demystify microbial metabolism for biochemical production
-
Guo W, Sheng J, Feng X. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering. 2016; 3(1):3. doi: 10.3390/bioengineering3010003
-
(2016)
Bioengineering.
, vol.3
, Issue.1
, pp. 3
-
-
Guo, W.1
Sheng, J.2
Feng, X.3
-
34
-
-
84866467932
-
Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13C-isotope labeling
-
Navid A, editor 881: Humana Press
-
Feng X, Zhuang W-Q, Colletti P, Tang Y. Metabolic Pathway Determination and Flux Analysis in Nonmodel Microorganisms Through 13C-Isotope Labeling. In: Navid A, editor. Microbial Systems Biology. Methods in Molecular Biology. 881: Humana Press; 2012. p. 309-30.
-
(2012)
Microbial Systems Biology. Methods in Molecular Biology
, pp. 309-330
-
-
Feng, X.1
Zhuang, W.-Q.2
Colletti, P.3
Tang, Y.4
-
35
-
-
66749182798
-
13C-based metabolic flux analysis
-
19478804
-
Zamboni N, Fendt S-M, Ruhl M, Sauer U. 13C-based metabolic flux analysis. Nat Protocols. 2009; 4 (6):878-92. http://www.nature.com/nprot/journal/v4/n6/suppinfo/nprot.2009.58-S1.html. doi: 10.1038/nprot.2009.58 PMID: 19478804
-
(2009)
Nat Protocols.
, vol.4
, Issue.6
, pp. 878-892
-
-
Zamboni, N.1
Fendt, S.-M.2
Ruhl, M.3
Sauer, U.4
-
36
-
-
84962206825
-
Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
-
AEM. 03718-15
-
Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Applied and environmental microbiology. 2016:AEM. 03718-15.
-
(2016)
Applied and Environmental Microbiology
-
-
Chen, Y.1
Stabryla, L.2
Wei, N.3
-
37
-
-
0028953840
-
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
-
7737504
-
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995; 156(1):119-22. PMID: 7737504
-
(1995)
Gene.
, vol.156
, Issue.1
, pp. 119-122
-
-
Mumberg, D.1
Müller, R.2
Funk, M.3
-
38
-
-
0025848024
-
Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae
-
2040626
-
J-i Nikawa, Y Tsukagoshi, S Yamashita. Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. Journal of Biological Chemistry. 1991; 266(17):11184-91. PMID: 2040626
-
(1991)
Journal of Biological Chemistry.
, vol.266
, Issue.17
, pp. 11184-11191
-
-
Nikawa, J.-I.1
Tsukagoshi, Y.2
Yamashita, S.3
-
39
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
23468911
-
Kim S-R, Skerker JM, Kang W, Lesmana AL, Wei N, Arkin AP, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLOS One. 2013; 8(2):e57048. doi: 10.1371/journal.pone.0057048.g001 PMID: 23468911
-
(2013)
PLOS One.
, vol.8
, Issue.2
-
-
Kim, S.-R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.L.4
Wei, N.5
Arkin, A.P.6
-
40
-
-
84887769375
-
Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
-
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories. 2013; 12(1):114-23. doi: 10.1186/1475-2859-12-114. 1
-
(2013)
Microbial Cell Factories.
, vol.12
, Issue.1
, pp. 114-123
-
-
Feng, X.1
Zhao, H.2
-
41
-
-
0842343470
-
New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
-
14748080
-
Wahl SA, Dauner M, Wiechert W. New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships. Biotechnology and Bioengineering. 2004; 85(3):259-68. doi: 10.1002/bit.10909 PMID: 14748080
-
(2004)
Biotechnology and Bioengineering.
, vol.85
, Issue.3
, pp. 259-268
-
-
Wahl, S.A.1
Dauner, M.2
Wiechert, W.3
-
42
-
-
77954291914
-
BioMet toolbox: Genome-wide analysis of metabolism
-
Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, et al. BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Research. 2010; 38(suppl 2):W144-W9. doi: 10.1093/nar/gkq404
-
(2010)
Nucleic Acids Research.
, vol.38
, pp. W144-W149
-
-
Cvijovic, M.1
Olivares-Hernández, R.2
Agren, R.3
Dahr, N.4
Vongsangnak, W.5
Nookaew, I.6
-
43
-
-
2342419140
-
Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks
-
15083505
-
Çakir T, Kirdar B, Ülgen KÖ. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnology and Bioengineering. 2004; 86(3):251-60. doi: 10.1002/bit.20020 PMID: 15083505
-
(2004)
Biotechnology and Bioengineering.
, vol.86
, Issue.3
, pp. 251-260
-
-
Çakir, T.1
Kirdar, B.2
Ülgen, K.O.3
-
44
-
-
0030001104
-
Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
-
Casal M, Cardoso H, Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology. 1996; 142(6):1385-90. doi: 10.1099/13500872-142-6-1385
-
(1996)
Microbiology.
, vol.142
, Issue.6
, pp. 1385-1390
-
-
Casal, M.1
Cardoso, H.2
Leao, C.3
-
45
-
-
0032948889
-
Weak-acid preservatives: Modelling microbial inhibition and response
-
10030018
-
Lambert RJ, Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. Journal of Applied Microbiology. 1999; 86(1):157-64. doi: 10.1046/j.1365-2672.1999.00646.x PMID: 10030018
-
(1999)
Journal of Applied Microbiology.
, vol.86
, Issue.1
, pp. 157-164
-
-
Lambert, R.J.1
Stratford, M.2
|