메뉴 건너뛰기




Volumn 11, Issue 8, 2016, Pages

Investigate the metabolic reprogramming of Saccharomyces cerevisiae for enhanced resistance to mixed fermentation inhibitors via 13C metabolic flux analysis

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; ADENOSINE TRIPHOSPHATE; FURFURAL; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; BIOFUEL; CARBON; LIGNIN; LIGNOCELLULOSE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 84984804841     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0161448     Document Type: Article
Times cited : (15)

References (45)
  • 1
    • 0033526123 scopus 로고    scopus 로고
    • Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
    • 10099580
    • Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering. 1999; 63(1):46-55. doi: 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0. CO;2-J PMID: 10099580
    • (1999) Biotechnology and Bioengineering. , vol.63 , Issue.1 , pp. 46-55
    • Palmqvist, E.1    Grage, H.2    Meinander, N.Q.3    Hahn-Hägerdal, B.4
  • 2
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
    • 21261870 PMC3815291
    • Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial biotechnology. 2008; 1(6):497-506. doi: 10.1111/j.1751-7915.2008. 00050.x. PMC3815291. PMID: 21261870
    • (2008) Microbial Biotechnology. , vol.1 , Issue.6 , pp. 497-506
    • Heer, D.1    Sauer, U.2
  • 4
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology. 2000; 74(1):17-24. http://dx.doi.org/10.1016/S0960-8524(99)00160-1.
    • (2000) Bioresource Technology. , vol.74 , Issue.1 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 5
    • 0020665080 scopus 로고
    • By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae
    • 18548541
    • Maiorella B, Blanch HW, Wilke CR. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering. 1983; 25(1):103-21. doi: 10.1002/bit. 260250109 PMID: 18548541
    • (1983) Biotechnology and Bioengineering. , vol.25 , Issue.1 , pp. 103-121
    • Maiorella, B.1    Blanch, H.W.2    Wilke, C.R.3
  • 7
    • 33646048327 scopus 로고    scopus 로고
    • Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
    • 16470880
    • Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering. 2006; 93(6):1196-206. doi: 10.1002/bit.20838 PMID: 16470880
    • (2006) Biotechnology and Bioengineering. , vol.93 , Issue.6 , pp. 1196-1206
    • Keating, J.D.1    Panganiban, C.2    Mansfield, S.D.3
  • 8
    • 0141814175 scopus 로고
    • The pathway of oxidation of acetate in baker's yeast
    • 13018136 PMC1197907
    • Krebs HA, Gurin S, Eggleston LV. The pathway of oxidation of acetate in baker's yeast. Biochemical Journal. 1952; 51(5):614-28. PMC1197907. PMID: 13018136
    • (1952) Biochemical Journal. , vol.51 , Issue.5 , pp. 614-628
    • Krebs, H.A.1    Gurin, S.2    Eggleston, L.V.3
  • 9
    • 0033585830 scopus 로고    scopus 로고
    • Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
    • 9921153
    • Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering. 1999; 62(4):447-54. doi: 10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0 PMID: 9921153
    • (1999) Biotechnology and Bioengineering. , vol.62 , Issue.4 , pp. 447-454
    • Palmqvist, E.1    Almeida, J.S.2    Hahn-Hägerdal, B.3
  • 10
    • 0037623828 scopus 로고    scopus 로고
    • Effects of furfural on the respiratory metabolism of saccharomyces cerevisiae in glucose-limited chemostats
    • 12839784
    • Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats. Applied and Environmental Microbiology. 2003; 69(7):4076-86. doi: 10.1128/aem.69.7.4076-4086.2003 PMID: 12839784
    • (2003) Applied and Environmental Microbiology. , vol.69 , Issue.7 , pp. 4076-4086
    • Sárvári Horváth, I.1    Franzén, C.J.2    Taherzadeh, M.J.3    Niklasson, C.4    Lidén, G.5
  • 12
    • 79954648688 scopus 로고    scopus 로고
    • Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
    • 21380517
    • Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011; 90(3):809-25. doi: 10.1007/s00253-011-3167-9 PMID: 21380517
    • (2011) Appl Microbiol Biotechnol. , vol.90 , Issue.3 , pp. 809-825
    • Liu, Z.L.1
  • 13
    • 84875904201 scopus 로고    scopus 로고
    • Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
    • Giannattasio S, Guaragnella N, Ždralevic M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Frontiers in Microbiology. 2013; 4. doi: 10.3389/fmicb.2013.00033
    • (2013) Frontiers in Microbiology. , vol.4
    • Giannattasio, S.1    Guaragnella, N.2    Ždralevic, M.3    Marra, E.4
  • 15
    • 79957871574 scopus 로고    scopus 로고
    • Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
    • 21605494
    • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae. Redox Report. 2011; 16(1):15-23. doi: 10.1179/174329211X12968219310954 PMID: 21605494.
    • (2011) Redox Report. , vol.16 , Issue.1 , pp. 15-23
    • Semchyshyn, H.M.1    Abrat, O.B.2    Miedzobrodzki, J.3    Inoue, Y.4    Lushchak, V.I.5
  • 16
    • 78751559622 scopus 로고    scopus 로고
    • TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae
    • 21246628
    • Lee YJ, Jang JW, Kim KJ, Maeng PJ. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast. 2011; 28(2):153-66. doi: 10.1002/yea.1828 PMID: 21246628
    • (2011) Yeast. , vol.28 , Issue.2 , pp. 153-166
    • Lee, Y.J.1    Jang, J.W.2    Kim, K.J.3    Maeng, P.J.4
  • 17
    • 0041767568 scopus 로고    scopus 로고
    • Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
    • 12869194
    • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry. 2003; 270 (15):3189-95. doi: 10.1046/j.1432-1033.2003.03701.x PMID: 12869194
    • (2003) European Journal of Biochemistry. , vol.270 , Issue.15 , pp. 3189-3195
    • Bauer, B.E.1    Rossington, D.2    Mollapour, M.3    Mamnun, Y.4    Kuchler, K.5    Piper, P.W.6
  • 18
    • 84962206825 scopus 로고    scopus 로고
    • Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
    • Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Applied and Environmental Microbiology. 2016. doi: 10.1128/aem.03718-15
    • (2016) Applied and Environmental Microbiology.
    • Chen, Y.1    Stabryla, L.2    Wei, N.3
  • 19
    • 84953776288 scopus 로고    scopus 로고
    • Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
    • Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnology for Biofuels. 2016; 9(1):1-18. doi: 10.1186/s13068-015-0418-5
    • (2016) Biotechnology for Biofuels. , vol.9 , Issue.1 , pp. 1-18
    • Chen, Y.1    Sheng, J.2    Jiang, T.3    Stevens, J.4    Feng, X.5    Wei, N.6
  • 20
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View
    • 20955006
    • Mira NP, Teixeira MC, Sá-Correia I. Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View. OMICS: A Journal of Integrative Biology. 2010; 14(5):525-40. doi: 10.1089/omi.2010.0072 PMID: 20955006
    • (2010) OMICS: A Journal of Integrative Biology. , vol.14 , Issue.5 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sá-Correia, I.3
  • 21
    • 79955718565 scopus 로고    scopus 로고
    • Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae
    • 20652356
    • Zheng D-Q, Wu X-C, Wang P-M, Chi X-Q, Tao X-L, Li P, et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2010; 38(3):415-22. doi: 10.1007/s10295-010-0784-8 PMID: 20652356
    • (2010) J Ind Microbiol Biotechnol. , vol.38 , Issue.3 , pp. 415-422
    • Zheng, D.-Q.1    Wu, X.-C.2    Wang, P.-M.3    Chi, X.-Q.4    Tao, X.-L.5    Li, P.6
  • 22
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories. 2010; 9(1):1-13. doi: 10.1186/1475-2859-9-79
    • (2010) Microbial Cell Factories. , vol.9 , Issue.1 , pp. 1-13
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sá-Correia, I.4
  • 23
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories. 2011; 10(1):1-13. doi: 10.1186/1475-2859-10-2
    • (2011) Microbial Cell Factories. , vol.10 , Issue.1 , pp. 1-13
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 24
    • 78651428997 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
    • 20953665
    • Zhang J-G, Liu X-Y, He X-P, Guo X-N, Lu Y, Zhang B-r. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnology Letters. 2010; 33(2):277-84. doi: 10.1007/s10529-010-0433-3 PMID: 20953665
    • (2010) Biotechnology Letters. , vol.33 , Issue.2 , pp. 277-284
    • Zhang, J.-G.1    Liu, X.-Y.2    He, X.-P.3    Guo, X.-N.4    Lu, Y.5    Zhang, B.-R.6
  • 25
    • 81855227262 scopus 로고    scopus 로고
    • Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals
    • Jarboe LR, Liu P, Royce LA. Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Current Opinion in Chemical Engineering. 2011; 1(1):38-42. http://dx.doi.org/10.1016/j. coche.2011.08.003.
    • (2011) Current Opinion in Chemical Engineering. , vol.1 , Issue.1 , pp. 38-42
    • Jarboe, L.R.1    Liu, P.2    Royce, L.A.3
  • 26
    • 33846667838 scopus 로고    scopus 로고
    • Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
    • 16934451
    • Martín C, Marcet M, Almazán O, Jönsson LJ. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology. 2007; 98(9):1767-73. http://dx.doi.org/10.1016/j.biortech.2006.07.021. PMID: 16934451
    • (2007) Bioresource Technology. , vol.98 , Issue.9 , pp. 1767-1773
    • Martín, C.1    Marcet, M.2    Almazán, O.3    Jönsson, L.J.4
  • 27
    • 66249112812 scopus 로고    scopus 로고
    • Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound
    • 19363068
    • Lin F-M, Qiao B, Yuan Y-J. Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound. Applied and Environmental Microbiology. 2009; 75(11):3765-76. doi: 10.1128/aem.02594-08 PMID: 19363068
    • (2009) Applied and Environmental Microbiology. , vol.75 , Issue.11 , pp. 3765-3776
    • Lin, F.-M.1    Qiao, B.2    Yuan, Y.-J.3
  • 28
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases
    • 19854918
    • Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases. Applied and Environmental Microbiology. 2009; 75(24):7631-8. doi: 10.1128/aem.01649-09 PMID: 19854918
    • (2009) Applied and Environmental Microbiology. , vol.75 , Issue.24 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 29
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • 16222531
    • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006; 71(3):339-49. doi: 10.1007/s00253-005-0142-3 PMID: 16222531
    • (2006) Appl Microbiol Biotechnol. , vol.71 , Issue.3 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 31
    • 0034302042 scopus 로고    scopus 로고
    • Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid
    • 16232875
    • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. Journal of Bioscience and Bioengineering. 2000; 90(4):374-80. http://dx.doi.org/10.1016/S1389-1723(01)80004-9. PMID: 16232875
    • (2000) Journal of Bioscience and Bioengineering. , vol.90 , Issue.4 , pp. 374-380
    • Taherzadeh, M.J.1    Gustafsson, L.2    Niklasson, C.3    Lidén, G.4
  • 32
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • 20309542
    • Li B-Z, Yuan Y-J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010; 86(6):1915-24. doi: 10.1007/s00253-010-2518-2 PMID: 20309542
    • (2010) Appl Microbiol Biotechnol. , vol.86 , Issue.6 , pp. 1915-1924
    • Li, B.-Z.1    Yuan, Y.-J.2
  • 33
    • 85043369440 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis: An accurate approach to demystify microbial metabolism for biochemical production
    • Guo W, Sheng J, Feng X. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering. 2016; 3(1):3. doi: 10.3390/bioengineering3010003
    • (2016) Bioengineering. , vol.3 , Issue.1 , pp. 3
    • Guo, W.1    Sheng, J.2    Feng, X.3
  • 34
    • 84866467932 scopus 로고    scopus 로고
    • Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13C-isotope labeling
    • Navid A, editor 881: Humana Press
    • Feng X, Zhuang W-Q, Colletti P, Tang Y. Metabolic Pathway Determination and Flux Analysis in Nonmodel Microorganisms Through 13C-Isotope Labeling. In: Navid A, editor. Microbial Systems Biology. Methods in Molecular Biology. 881: Humana Press; 2012. p. 309-30.
    • (2012) Microbial Systems Biology. Methods in Molecular Biology , pp. 309-330
    • Feng, X.1    Zhuang, W.-Q.2    Colletti, P.3    Tang, Y.4
  • 35
    • 66749182798 scopus 로고    scopus 로고
    • 13C-based metabolic flux analysis
    • 19478804
    • Zamboni N, Fendt S-M, Ruhl M, Sauer U. 13C-based metabolic flux analysis. Nat Protocols. 2009; 4 (6):878-92. http://www.nature.com/nprot/journal/v4/n6/suppinfo/nprot.2009.58-S1.html. doi: 10.1038/nprot.2009.58 PMID: 19478804
    • (2009) Nat Protocols. , vol.4 , Issue.6 , pp. 878-892
    • Zamboni, N.1    Fendt, S.-M.2    Ruhl, M.3    Sauer, U.4
  • 36
    • 84962206825 scopus 로고    scopus 로고
    • Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
    • AEM. 03718-15
    • Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Applied and environmental microbiology. 2016:AEM. 03718-15.
    • (2016) Applied and Environmental Microbiology
    • Chen, Y.1    Stabryla, L.2    Wei, N.3
  • 37
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • 7737504
    • Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995; 156(1):119-22. PMID: 7737504
    • (1995) Gene. , vol.156 , Issue.1 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 38
    • 0025848024 scopus 로고
    • Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae
    • 2040626
    • J-i Nikawa, Y Tsukagoshi, S Yamashita. Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. Journal of Biological Chemistry. 1991; 266(17):11184-91. PMID: 2040626
    • (1991) Journal of Biological Chemistry. , vol.266 , Issue.17 , pp. 11184-11191
    • Nikawa, J.-I.1    Tsukagoshi, Y.2    Yamashita, S.3
  • 39
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • 23468911
    • Kim S-R, Skerker JM, Kang W, Lesmana AL, Wei N, Arkin AP, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLOS One. 2013; 8(2):e57048. doi: 10.1371/journal.pone.0057048.g001 PMID: 23468911
    • (2013) PLOS One. , vol.8 , Issue.2
    • Kim, S.-R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.L.4    Wei, N.5    Arkin, A.P.6
  • 40
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
    • Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories. 2013; 12(1):114-23. doi: 10.1186/1475-2859-12-114. 1
    • (2013) Microbial Cell Factories. , vol.12 , Issue.1 , pp. 114-123
    • Feng, X.1    Zhao, H.2
  • 41
    • 0842343470 scopus 로고    scopus 로고
    • New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
    • 14748080
    • Wahl SA, Dauner M, Wiechert W. New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships. Biotechnology and Bioengineering. 2004; 85(3):259-68. doi: 10.1002/bit.10909 PMID: 14748080
    • (2004) Biotechnology and Bioengineering. , vol.85 , Issue.3 , pp. 259-268
    • Wahl, S.A.1    Dauner, M.2    Wiechert, W.3
  • 43
    • 2342419140 scopus 로고    scopus 로고
    • Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks
    • 15083505
    • Çakir T, Kirdar B, Ülgen KÖ. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnology and Bioengineering. 2004; 86(3):251-60. doi: 10.1002/bit.20020 PMID: 15083505
    • (2004) Biotechnology and Bioengineering. , vol.86 , Issue.3 , pp. 251-260
    • Çakir, T.1    Kirdar, B.2    Ülgen, K.O.3
  • 44
    • 0030001104 scopus 로고    scopus 로고
    • Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H, Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology. 1996; 142(6):1385-90. doi: 10.1099/13500872-142-6-1385
    • (1996) Microbiology. , vol.142 , Issue.6 , pp. 1385-1390
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 45
    • 0032948889 scopus 로고    scopus 로고
    • Weak-acid preservatives: Modelling microbial inhibition and response
    • 10030018
    • Lambert RJ, Stratford M. Weak-acid preservatives: modelling microbial inhibition and response. Journal of Applied Microbiology. 1999; 86(1):157-64. doi: 10.1046/j.1365-2672.1999.00646.x PMID: 10030018
    • (1999) Journal of Applied Microbiology. , vol.86 , Issue.1 , pp. 157-164
    • Lambert, R.J.1    Stratford, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.