메뉴 건너뛰기




Volumn 70, Issue 4, 2004, Pages 2307-2317

Molecular Basis for Anaerobic Growth of Saccharomyces cerevisiae on Xylose, Investigated by Global Gene Expression and Metabolic Flux Analysis

Author keywords

[No Author keywords available]

Indexed keywords

CELL CULTURE; GENES; GLUCOSE; METABOLISM; MIXTURES; XYLOSE; YEAST;

EID: 2442641770     PISSN: 00992240     EISSN: None     Source Type: Journal    
DOI: 10.1128/AEM.70.4.2307-2317.2004     Document Type: Article
Times cited : (109)

References (51)
  • 1
    • 0002587184 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. 1. Ergosterol requirement for growth in a defined medium
    • Andreasen, A. A., and T. J. B. Stier. 1953. Anaerobic nutrition of Saccharomyces cerevisiae. 1. Ergosterol requirement for growth in a defined medium. J. Cell. Comp. Physiol. 41:23-36.
    • (1953) J. Cell. Comp. Physiol. , vol.41 , pp. 23-36
    • Andreasen, A.A.1    Stier, T.J.B.2
  • 3
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • Becker, J., and E. Boles. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69:4144-4150.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 4
    • 0037474301 scopus 로고    scopus 로고
    • The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    • Boer, V. M., J. H. de Winde, J. T. Pronk, and M. D. Piper. 2003. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278:3265-3274.
    • (2003) J. Biol. Chem. , vol.278 , pp. 3265-3274
    • Boer, V.M.1    De Winde, J.H.2    Pronk, J.T.3    Piper, M.D.4
  • 5
    • 0027524880 scopus 로고
    • The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant
    • Boles, E., W. Lehnert, and F. K. Zimmermann. 1993. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem. 217:469-477.
    • (1993) Eur. J. Biochem. , vol.217 , pp. 469-477
    • Boles, E.1    Lehnert, W.2    Zimmermann, F.K.3
  • 6
    • 0037323796 scopus 로고    scopus 로고
    • Microarray expression profiling: Capturing a genome-wide portrait of the transcriptome
    • Conway, T., and G. K. Schoolnik. 2003. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol. Microbiol. 47:879-889.
    • (2003) Mol. Microbiol. , vol.47 , pp. 879-889
    • Conway, T.1    Schoolnik, G.K.2
  • 7
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson, A., C. Christensson, C. F. Wahlbom, and B. Hahn-Hägerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 9
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert, A. K., M. M. dos Santos, B. Christensen, and J. Nielsen. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183:1441-1451.
    • (2001) J. Bacteriol. , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Dos Santos, M.M.2    Christensen, B.3    Nielsen, J.4
  • 10
    • 0032412476 scopus 로고    scopus 로고
    • Mating-type gene switching in Saccharomyces cerevisiae
    • Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561-599.
    • (1998) Annu. Rev. Genet. , vol.32 , pp. 561-599
    • Haber, J.E.1
  • 12
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher, T., J. Becker, M. Gardonyi, B. Hahn-Hägerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hägerdal, B.4    Boles, E.5
  • 14
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho, N. W. Y., Z. Chen, and A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64:1852-1859.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 15
    • 0020912407 scopus 로고
    • Utilization of xylose by bacteria, yeasts, and fungi
    • Jeffries, T. W. 1983. Utilization of xylose by bacteria, yeasts, and fungi. Adv. Biochem. Eng. Biotechnol. 27:1-32.
    • (1983) Adv. Biochem. Eng. Biotechnol. , vol.27 , pp. 1-32
    • Jeffries, T.W.1
  • 16
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson, M., B. Johansson, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68:1604-1609.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 17
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    • Jeppsson, M., K. Träff, B. Johansson, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. 2003. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 3:167-175.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 167-175
    • Jeppsson, M.1    Träff, K.2    Johansson, B.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 18
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • Jin, Y. S., H. Ni, J. M. Laplaza, and T. W. Jeffries. 2003. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 69:495-503.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 19
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson, B., C. Christensson, T. Hobley, and B. Hahn-Hägerdal. 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 67:4249-4255.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hägerdal, B.4
  • 20
    • 0028675509 scopus 로고
    • Molecular taxonomy of the yeasts
    • Kurtzman, C. P. 1994. Molecular taxonomy of the yeasts. Yeast 10:1727-1740.
    • (1994) Yeast , vol.10 , pp. 1727-1740
    • Kurtzman, C.P.1
  • 21
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xyl4 from Thermus thermophylus
    • Lonn, A., K. L. Traff-Bjerre, R. R. Codero Otero, W. H. van Zyl, and B. Hahn-Hägerdal. 2003. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xyl4 from Thermus thermophylus. Enzyme Microb. Technol. 32:567-573.
    • (2003) Enzyme Microb. Technol. , vol.32 , pp. 567-573
    • Lonn, A.1    Traff-Bjerre, K.L.2    Codero Otero, R.R.3    Van Zyl, W.H.4    Hahn-Hägerdal, B.5
  • 22
    • 0023234459 scopus 로고
    • Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development
    • Lowe, S. E., M. K. Theodorou, and A. P. Trinci. 1987. Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Appl. Environ. Microbiol. 53:1210-1215.
    • (1987) Appl. Environ. Microbiol. , vol.53 , pp. 1210-1215
    • Lowe, S.E.1    Theodorou, M.K.2    Trinci, A.P.3
  • 24
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen, T., U. Schulze, J. Nielsen, and J. Villadsen. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203-218.
    • (1997) Microbiology , vol.143 , pp. 203-218
    • Nissen, T.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 25
    • 0037020260 scopus 로고    scopus 로고
    • Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
    • Piper, M. D., P. Daran-Lapujade, C. Bro, B. Regenberg, S. Knudsen, J. Nielsen, and J. T. Pronk. 2002. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 277:37001-37008.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37001-37008
    • Piper, M.D.1    Daran-Lapujade, P.2    Bro, C.3    Regenberg, B.4    Knudsen, S.5    Nielsen, J.6    Pronk, J.T.7
  • 26
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkänen, J.-P., A. Aristidou, L. Salusjärvi, L. Ruohonen, and M. Penttilä. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5:16-31.
    • (2003) Metab. Eng. , vol.5 , pp. 16-31
    • Pitkänen, J.-P.1    Aristidou, A.2    Salusjärvi, L.3    Ruohonen, L.4    Penttilä, M.5
  • 28
    • 0035212553 scopus 로고    scopus 로고
    • Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae
    • Remize, F., L. Barnavon, and S. Dequin. 2001. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab. Eng. 3:301-312.
    • (2001) Metab. Eng. , vol.3 , pp. 301-312
    • Remize, F.1    Barnavon, L.2    Dequin, S.3
  • 29
    • 0037375506 scopus 로고    scopus 로고
    • Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway
    • Richard, P., R. Verho, M. Putkonen, J. Londesborough, and M. Penttilä. 2003. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 3:185-189.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 185-189
    • Richard, P.1    Verho, R.2    Putkonen, M.3    Londesborough, J.4    Penttilä, M.5
  • 30
    • 0024962287 scopus 로고
    • Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source
    • Rizzi, M., C. Klein, C. Schultze, N. A. Bui-Thanah, and H. Dellweg. 1989. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol. Bioeng. 34:509-514.
    • (1989) Biotechnol. Bioeng. , vol.34 , pp. 509-514
    • Rizzi, M.1    Klein, C.2    Schultze, C.3    Bui-Thanah, N.A.4    Dellweg, H.5
  • 34
    • 0035232377 scopus 로고    scopus 로고
    • Evolutionary engineering of industrially important microbial phenotypes
    • Sauer, U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 73:129-170.
    • (2001) Adv. Biochem. Eng. Biotechnol. , vol.73 , pp. 129-170
    • Sauer, U.1
  • 36
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt, M. E., T. A. Brown, and B. L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18:3091-3092.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 3091-3092
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 37
    • 0031718276 scopus 로고    scopus 로고
    • Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae
    • Shi, N. Q., and T. W. Jeffries. 1998. Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 50:339-345.
    • (1998) Appl. Microbiol. Biotechnol. , vol.50 , pp. 339-345
    • Shi, N.Q.1    Jeffries, T.W.2
  • 38
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger, M., and U. Sauer. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69:1990-1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 40
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V. G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98:5116-5121.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 41
    • 0026606667 scopus 로고
    • Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1
    • Vallari, R. C., W. J. Cook, D. C. Audino, M. J. Morgan, D. E. Jensen, A. P. Laudano, and C. L. Denis. 1992. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol. Cell. Biol. 12:1663-1673.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 1663-1673
    • Vallari, R.C.1    Cook, W.J.2    Audino, D.C.3    Morgan, M.J.4    Jensen, D.E.5    Laudano, A.P.6    Denis, C.L.7
  • 42
    • 0028108519 scopus 로고
    • Metabolic flux balancing: Basic concepts, scientific, and practical use
    • Varma, A., and B. O. Palsson. 1994. Metabolic flux balancing: basic concepts, scientific, and practical use. Bio/Technology 12:994-998.
    • (1994) Bio/Technology , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 43
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn, C., E. Postma, W. A. Scheffers, and J. P. van Dijken. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501-517.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 44
    • 0025304034 scopus 로고
    • Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn, C., E. Postma, W. A. Scheffers, and J. P. van Dijken. 1990. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136:405-412.
    • (1990) J. Gen. Microbiol. , vol.136 , pp. 405-412
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 46
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom, C. F., R. R. Cordero Otero, W. H. van Zyl, B. Hahn-Hägerdal, and L. J. Jonsson. 2003. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69:740-746.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    Van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jonsson, L.J.5
  • 47
    • 0035809032 scopus 로고    scopus 로고
    • Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
    • Wahlbom, C. F., A. Eliasson, and B. Hahn-Hägerdal. 2001. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol. Bioeng. 72:289-296.
    • (2001) Biotechnol. Bioeng. , vol.72 , pp. 289-296
    • Wahlbom, C.F.1    Eliasson, A.2    Hahn-Hägerdal, B.3
  • 48
    • 0037140422 scopus 로고    scopus 로고
    • Furfural, 5-hydroxymethyl furfural and acetoin act as external electron acceptors during anaerobic fermentation of xylose by recombinant Saccharomyces cerevisiae
    • Wahlbom, C. F., and B. Hahn-Hägerdal. 2002. Furfural, 5-hydroxymethyl furfural and acetoin act as external electron acceptors during anaerobic fermentation of xylose by recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78:172-178.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 172-178
    • Wahlbom, C.F.1    Hahn-Hägerdal, B.2
  • 49
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
    • Wahlbom, C. F., W. H. van Zyl, L. J. Jonsson, B. Hahn-Hägerdal, and R. R. Otero. 2003. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 3:319-326.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    Van Zyl, W.H.2    Jonsson, L.J.3    Hahn-Hägerdal, B.4    Otero, R.R.5
  • 50
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson, M., X. Bao, M. Anderlund, G. Lilius, L. Bülow, and B. Hahn-Hägerdal. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62:4648-4651.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 51
    • 0038530709 scopus 로고    scopus 로고
    • Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways
    • Wojda, I., R. Alonso-Monge, J. P. Bebelman, W. H. Mager, and M. Siderius. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193-1204.
    • (2003) Microbiology , vol.149 , pp. 1193-1204
    • Wojda, I.1    Alonso-Monge, R.2    Bebelman, J.P.3    Mager, W.H.4    Siderius, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.