메뉴 건너뛰기




Volumn 38, Issue 10, 2017, Pages 873-898

The Future of Cysteine Cathepsins in Disease Management

Author keywords

[No Author keywords available]

Indexed keywords

ADCT 402; AGS 15E; AGS 67E; ARX 788; ASG 5ME; BALICATIB; BRENTUXIMAB VEDOTIN; CATHEPSIN; CATHEPSIN B; CATHEPSIN B INHIBITOR; CATHEPSIN F; CATHEPSIN H; CATHEPSIN K; CATHEPSIN K INHIBITOR; CATHEPSIN L; CATHEPSIN O; CATHEPSIN S; CATHEPSIN S INHIBITOR; CATHEPSIN V; CATHEPSIN W; CATHEPSIN X; COFETUZUMAB PELIDOTIN; CRA 028129; CT 2106; CYSTEINE CATHEPSIN; DIPEPTIDYL PEPTIDASE I; DLYE 5953A; ENFORTUMAB VEDOTIN; GLEMBATUMUMAB VEDOTIN; GSK 2793660; INDUSATUMAB VEDOTIN; LIFASTUZUMAB VEDOTIN; LY 3000328; MDX 1203; MIV 711; ODANACATIB; ONO 5334; PINATUZUMAB VEDOTIN; PK 1; PK 2; POLATUZUMAB VEDOTIN; RG 7458; RG 7625; RO 5459072; ROVALPITUZUMAB TESIRINE; RWJ 445380; SACITUZUMAB GOVITECAN; SAR 114137; SGN CD 123A; SGN CD70A; SGN LIV 1A; SGNCD 19B; TISOTUMAB VEDOTIN; TRASTUZUMAB DUOCARMAZINE; UNCLASSIFIED DRUG; UNINDEXED DRUG; VADASTUXIMAB TALIRINE; VBY 036; VBY 376; VBY 891; ANTIBODY CONJUGATE; CYSTEINE; ENZYME INHIBITOR;

EID: 85021380787     PISSN: 01656147     EISSN: 18733735     Source Type: Journal    
DOI: 10.1016/j.tips.2017.06.003     Document Type: Review
Times cited : (154)

References (201)
  • 1
    • 33748308883 scopus 로고    scopus 로고
    • Targeting proteases: successes, failures and future prospects
    • Turk, B., Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5 (2006), 785–799.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 785-799
    • Turk, B.1
  • 2
    • 77956310878 scopus 로고    scopus 로고
    • Emerging principles in protease-based drug discovery
    • Drag, M., Salvesen, G.S., Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9 (2010), 690–701.
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 690-701
    • Drag, M.1    Salvesen, G.S.2
  • 3
    • 84859366447 scopus 로고    scopus 로고
    • Protease signalling: the cutting edge
    • Turk, B., et al. Protease signalling: the cutting edge. EMBO J. 31 (2012), 1630–1643.
    • (2012) EMBO J. , vol.31 , pp. 1630-1643
    • Turk, B.1
  • 4
    • 77957855881 scopus 로고    scopus 로고
    • Specialized roles for cysteine cathepsins in health and disease
    • Reiser, J., et al. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120 (2010), 3421–3431.
    • (2010) J. Clin. Invest. , vol.120 , pp. 3421-3431
    • Reiser, J.1
  • 5
    • 33947604810 scopus 로고    scopus 로고
    • Emerging roles of cysteine cathepsins in disease and their potential as drug targets
    • Vasiljeva, O., et al. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13 (2007), 387–403.
    • (2007) Curr. Pharm. Des. , vol.13 , pp. 387-403
    • Vasiljeva, O.1
  • 6
    • 33644758571 scopus 로고    scopus 로고
    • Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease
    • Tang, C.H., et al. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol. Cell. Biol. 26 (2006), 2309–2316.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2309-2316
    • Tang, C.H.1
  • 7
    • 84875264198 scopus 로고    scopus 로고
    • Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis
    • Smith, K.R., et al. Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22 (2013), 1417–1423.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 1417-1423
    • Smith, K.R.1
  • 8
    • 84965071473 scopus 로고    scopus 로고
    • Lysosomal cathepsins and their regulation in aging and neurodegeneration
    • Stoka, V., et al. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 32 (2016), 22–37.
    • (2016) Ageing Res. Rev. , vol.32 , pp. 22-37
    • Stoka, V.1
  • 9
    • 84903543514 scopus 로고    scopus 로고
    • Cysteine cathepsins and extracellular matrix degradation
    • Fonović, M., Turk, B., Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840 (2014), 2560–2570.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 2560-2570
    • Fonović, M.1    Turk, B.2
  • 10
    • 82755161948 scopus 로고    scopus 로고
    • Cysteine cathepsins: from structure, function and regulation to new frontiers
    • Turk, V., et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824 (2012), 68–88.
    • (2012) Biochim. Biophys. Acta , vol.1824 , pp. 68-88
    • Turk, V.1
  • 11
    • 2442549710 scopus 로고    scopus 로고
    • Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice
    • Nakagawa, T.Y., et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10 (1999), 207–217.
    • (1999) Immunity , vol.10 , pp. 207-217
    • Nakagawa, T.Y.1
  • 12
    • 0033083688 scopus 로고    scopus 로고
    • Cathepsin S required for normal MHC class II peptide loading and germinal center development
    • Shi, G.P., et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10 (1999), 197–206.
    • (1999) Immunity , vol.10 , pp. 197-206
    • Shi, G.P.1
  • 13
    • 0032506007 scopus 로고    scopus 로고
    • Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice
    • Saftig, P., et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 13453–13458.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 13453-13458
    • Saftig, P.1
  • 14
    • 15844397808 scopus 로고    scopus 로고
    • Proteolytic activity of human osteoclast cathepsin K expression, purification, activation, and substrate identification
    • Bossard, M.J., et al. Proteolytic activity of human osteoclast cathepsin K expression, purification, activation, and substrate identification. J. Biol. Chem. 271 (1996), 12517–12524.
    • (1996) J. Biol. Chem. , vol.271 , pp. 12517-12524
    • Bossard, M.J.1
  • 15
    • 84948680310 scopus 로고    scopus 로고
    • Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response
    • Olson, O.C., Joyce, J.A., Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15 (2015), 712–729.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 712-729
    • Olson, O.C.1    Joyce, J.A.2
  • 16
    • 84961393679 scopus 로고    scopus 로고
    • Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences
    • Brömme, D., et al. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin. Drug Discov. 11 (2016), 457–472.
    • (2016) Expert Opin. Drug Discov. , vol.11 , pp. 457-472
    • Brömme, D.1
  • 17
    • 79960150092 scopus 로고    scopus 로고
    • Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases
    • Qin, Y., Shi, G.P., Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol. Ther. 131 (2011), 338–350.
    • (2011) Pharmacol. Ther. , vol.131 , pp. 338-350
    • Qin, Y.1    Shi, G.P.2
  • 18
    • 85013290735 scopus 로고    scopus 로고
    • Lysosomes in programmed cell death pathways: from initiators to amplifiers
    • Kavčič, N., et al. Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol. Chem. 398 (2017), 289–301.
    • (2017) Biol. Chem. , vol.398 , pp. 289-301
    • Kavčič, N.1
  • 19
    • 84902181290 scopus 로고    scopus 로고
    • Activity-based profiling of proteases
    • Sanman, L.E., Bogyo, M., Activity-based profiling of proteases. Annu. Rev. Biochem. 83 (2014), 249–273.
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 249-273
    • Sanman, L.E.1    Bogyo, M.2
  • 20
    • 84969884870 scopus 로고    scopus 로고
    • Variations in MHC class II antigen processing and presentation in health and disease
    • Unanue, E.R., et al. Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34 (2016), 265–297.
    • (2016) Annu. Rev. Immunol. , vol.34 , pp. 265-297
    • Unanue, E.R.1
  • 21
    • 0032540474 scopus 로고    scopus 로고
    • Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus
    • Nakagawa, T., et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280 (1998), 450–453.
    • (1998) Science , vol.280 , pp. 450-453
    • Nakagawa, T.1
  • 22
    • 0141831692 scopus 로고    scopus 로고
    • Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis
    • Tolosa, E., et al. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J. Clin. Invest. 112 (2003), 517–526.
    • (2003) J. Clin. Invest. , vol.112 , pp. 517-526
    • Tolosa, E.1
  • 23
    • 84861192687 scopus 로고    scopus 로고
    • Cathepsin S dominates autoantigen processing in human thymic dendritic cells
    • Stoeckle, C., et al. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J. Autoimmun. 38 (2012), 332–343.
    • (2012) J. Autoimmun. , vol.38 , pp. 332-343
    • Stoeckle, C.1
  • 24
    • 72949113082 scopus 로고    scopus 로고
    • Endolysosomal proteases and their inhibitors in immunity
    • Bird, P.I., et al. Endolysosomal proteases and their inhibitors in immunity. Nat. Rev. Immunol. 9 (2009), 871–882.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 871-882
    • Bird, P.I.1
  • 25
    • 77951904981 scopus 로고    scopus 로고
    • Distinct protease requirements for antigen presentation in vitro and in vivo
    • Matthews, S.P., et al. Distinct protease requirements for antigen presentation in vitro and in vivo. J. Immunol. 184 (2010), 2423–2431.
    • (2010) J. Immunol. , vol.184 , pp. 2423-2431
    • Matthews, S.P.1
  • 26
    • 84861861142 scopus 로고    scopus 로고
    • Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling
    • Garcia-Cattaneo, A., et al. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 9053–9058.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 9053-9058
    • Garcia-Cattaneo, A.1
  • 27
    • 38849127573 scopus 로고    scopus 로고
    • Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis
    • Asagiri, M., et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319 (2008), 624–627.
    • (2008) Science , vol.319 , pp. 624-627
    • Asagiri, M.1
  • 28
    • 79955743119 scopus 로고    scopus 로고
    • Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase
    • Ewald, S.E., et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208 (2011), 643–651.
    • (2011) J. Exp. Med. , vol.208 , pp. 643-651
    • Ewald, S.E.1
  • 29
    • 84975142404 scopus 로고    scopus 로고
    • The HIV protease inhibitor saquinavir inhibits HMGB1 driven inflammation by targeting the interaction of cathepsin V with TLR4/MyD88
    • Pribis, J.P., et al. The HIV protease inhibitor saquinavir inhibits HMGB1 driven inflammation by targeting the interaction of cathepsin V with TLR4/MyD88. Mol. Med. 21 (2015), 749–757.
    • (2015) Mol. Med. , vol.21 , pp. 749-757
    • Pribis, J.P.1
  • 30
    • 84992192230 scopus 로고    scopus 로고
    • Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection
    • Qi, X., et al. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J. Exp. Med. 213 (2016), 2081–2097.
    • (2016) J. Exp. Med. , vol.213 , pp. 2081-2097
    • Qi, X.1
  • 31
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello, M., et al. A gene network regulating lysosomal biogenesis and function. Science 325 (2009), 473–477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 32
    • 0032516003 scopus 로고    scopus 로고
    • Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation
    • Deussing, J., et al. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 4516–4521.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 4516-4521
    • Deussing, J.1
  • 33
    • 84907588630 scopus 로고    scopus 로고
    • Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection
    • Gonzalez-Leal, I.J., et al. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection. PLoS Negl. Trop. Dis., 8, 2014, e3194.
    • (2014) PLoS Negl. Trop. Dis. , vol.8 , pp. e3194
    • Gonzalez-Leal, I.J.1
  • 34
    • 47949098831 scopus 로고    scopus 로고
    • Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles to the plasma membrane in macrophages
    • Ha, S.D., et al. Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles to the plasma membrane in macrophages. J. Immunol. 181 (2008), 690–697.
    • (2008) J. Immunol. , vol.181 , pp. 690-697
    • Ha, S.D.1
  • 35
    • 0033587689 scopus 로고    scopus 로고
    • Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo
    • Pham, C.T., Ley, T.J., Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 8627–8632.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 8627-8632
    • Pham, C.T.1    Ley, T.J.2
  • 36
    • 0035947568 scopus 로고    scopus 로고
    • Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice
    • Wolters, P.J., et al. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J. Biol. Chem. 276 (2001), 18551–18556.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18551-18556
    • Wolters, P.J.1
  • 37
    • 0036168150 scopus 로고    scopus 로고
    • Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis
    • Adkison, A.M., et al. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J. Clin. Invest. 109 (2002), 363–371.
    • (2002) J. Clin. Invest. , vol.109 , pp. 363-371
    • Adkison, A.M.1
  • 38
    • 77954230245 scopus 로고    scopus 로고
    • Cathepsin H is an additional convertase of pro-granzyme B
    • D'Angelo, M.E., et al. Cathepsin H is an additional convertase of pro-granzyme B. J. Biol. Chem. 285 (2010), 20514–20519.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20514-20519
    • D'Angelo, M.E.1
  • 39
    • 84938905143 scopus 로고    scopus 로고
    • Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells
    • Sobotič, B., et al. Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol. Cell. Proteomics 14 (2015), 2213–2228.
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 2213-2228
    • Sobotič, B.1
  • 40
    • 84930644133 scopus 로고    scopus 로고
    • Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines
    • Repnik, U., et al. Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. J. Biol. Chem. 290 (2015), 13800–13811.
    • (2015) J. Biol. Chem. , vol.290 , pp. 13800-13811
    • Repnik, U.1
  • 41
    • 84876539526 scopus 로고    scopus 로고
    • The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes
    • Caglič, D., et al. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biol. Chem. 394 (2013), 307–316.
    • (2013) Biol. Chem. , vol.394 , pp. 307-316
    • Caglič, D.1
  • 42
    • 84991706068 scopus 로고    scopus 로고
    • STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation
    • Yan, D., et al. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep. 16 (2016), 2914–2927.
    • (2016) Cell Rep. , vol.16 , pp. 2914-2927
    • Yan, D.1
  • 43
    • 36348941660 scopus 로고    scopus 로고
    • Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide–mature enzyme interactions
    • Caglič, D., et al. Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide–mature enzyme interactions. J. Biol. Chem. 282 (2007), 33076–33085.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33076-33085
    • Caglič, D.1
  • 44
    • 84869480738 scopus 로고    scopus 로고
    • Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts
    • Cremasco, V., et al. Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts. J. Bone Miner. Res. 27 (2012), 2452–2463.
    • (2012) J. Bone Miner. Res. , vol.27 , pp. 2452-2463
    • Cremasco, V.1
  • 45
    • 0033610853 scopus 로고    scopus 로고
    • The collagenolytic activity of cathepsin K is unique among mammalian proteinases
    • Garnero, P., et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 273 (1998), 32347–32352.
    • (1998) J. Biol. Chem. , vol.273 , pp. 32347-32352
    • Garnero, P.1
  • 46
    • 68949163761 scopus 로고    scopus 로고
    • Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand
    • Balkan, W., et al. Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand. Gene 446 (2009), 90–98.
    • (2009) Gene , vol.446 , pp. 90-98
    • Balkan, W.1
  • 47
    • 84918557552 scopus 로고    scopus 로고
    • Structural basis of collagen fiber degradation by cathepsin K
    • Aguda, A.H., et al. Structural basis of collagen fiber degradation by cathepsin K. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 17474–17479.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 17474-17479
    • Aguda, A.H.1
  • 48
    • 67649628133 scopus 로고    scopus 로고
    • Cathepsin K inhibitors for osteoporosis and potential off-target effects
    • Brömme, D., Lecaille, F., Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin. Investig. Drugs 18 (2009), 585–600.
    • (2009) Expert Opin. Investig. Drugs , vol.18 , pp. 585-600
    • Brömme, D.1    Lecaille, F.2
  • 49
    • 1242294466 scopus 로고    scopus 로고
    • Regulation of collagenase activities of human cathepsins by glycosaminoglycans
    • Li, Z., et al. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279 (2004), 5470–5479.
    • (2004) J. Biol. Chem. , vol.279 , pp. 5470-5479
    • Li, Z.1
  • 50
    • 84953347897 scopus 로고    scopus 로고
    • A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K
    • Panwar, P., et al. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br. J. Pharmacol. 173 (2016), 396–410.
    • (2016) Br. J. Pharmacol. , vol.173 , pp. 396-410
    • Panwar, P.1
  • 51
    • 46749086701 scopus 로고    scopus 로고
    • Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage
    • Dejica, V.M., et al. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am. J. Pathol. 173 (2008), 161–169.
    • (2008) Am. J. Pathol. , vol.173 , pp. 161-169
    • Dejica, V.M.1
  • 52
    • 84917705814 scopus 로고    scopus 로고
    • Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis
    • Duong, L.T., et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol. Cancer Ther. 13 (2014), 2898–2909.
    • (2014) Mol. Cancer Ther. , vol.13 , pp. 2898-2909
    • Duong, L.T.1
  • 53
    • 84884211491 scopus 로고    scopus 로고
    • Macrophage cathepsin K promotes prostate tumor progression in bone
    • Herroon, M.K., et al. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32 (2013), 1580–1593.
    • (2013) Oncogene , vol.32 , pp. 1580-1593
    • Herroon, M.K.1
  • 54
    • 0032145836 scopus 로고    scopus 로고
    • Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells
    • Sukhova, G.K., et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102 (1998), 576–583.
    • (1998) J. Clin. Invest. , vol.102 , pp. 576-583
    • Sukhova, G.K.1
  • 55
    • 83655167324 scopus 로고    scopus 로고
    • Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice
    • Sun, J., et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 32 (2012), 15–23.
    • (2012) Arterioscler. Thromb. Vasc. Biol. , vol.32 , pp. 15-23
    • Sun, J.1
  • 56
    • 33644865170 scopus 로고    scopus 로고
    • Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation
    • Lutgens, E., et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113 (2006), 98–107.
    • (2006) Circulation , vol.113 , pp. 98-107
    • Lutgens, E.1
  • 57
    • 84897114576 scopus 로고    scopus 로고
    • Pathological pain and the neuroimmune interface
    • Grace, P.M., et al. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14 (2014), 217–231.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 217-231
    • Grace, P.M.1
  • 58
    • 84992039573 scopus 로고    scopus 로고
    • Microglia, seen from the CX3CR1 angle
    • Wolf, Y., et al. Microglia, seen from the CX3CR1 angle. Front. Cell. Neurosci., 7, 2013, 26.
    • (2013) Front. Cell. Neurosci. , vol.7 , pp. 26
    • Wolf, Y.1
  • 59
    • 34547505414 scopus 로고    scopus 로고
    • Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain
    • Clark, A.K., et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 10655–10660.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 10655-10660
    • Clark, A.K.1
  • 60
    • 0345381021 scopus 로고    scopus 로고
    • Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage
    • Chapman, G.A., et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci., 20, 2000, RC87.
    • (2000) J. Neurosci. , vol.20 , pp. RC87
    • Chapman, G.A.1
  • 61
    • 84907916606 scopus 로고    scopus 로고
    • Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4
    • Zhao, P., et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J. Biol. Chem. 289 (2014), 27215–27234.
    • (2014) J. Biol. Chem. , vol.289 , pp. 27215-27234
    • Zhao, P.1
  • 62
    • 80054846758 scopus 로고    scopus 로고
    • Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice
    • Cattaruzza, F., et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141 (2011), 1864–1874.
    • (2011) Gastroenterology , vol.141 , pp. 1864-1874
    • Cattaruzza, F.1
  • 63
    • 84938151125 scopus 로고    scopus 로고
    • Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs
    • Reddy, V.B., et al. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat. Commun., 6, 2015, 7864.
    • (2015) Nat. Commun. , vol.6 , pp. 7864
    • Reddy, V.B.1
  • 64
    • 84987648062 scopus 로고    scopus 로고
    • Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation
    • Stellos, K., et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22 (2016), 1140–1150.
    • (2016) Nat. Med. , vol.22 , pp. 1140-1150
    • Stellos, K.1
  • 65
    • 84907942042 scopus 로고    scopus 로고
    • Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm
    • Jadhav, P.K., et al. Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm. ACS Med. Chem. Lett. 5 (2014), 1138–1142.
    • (2014) ACS Med. Chem. Lett. , vol.5 , pp. 1138-1142
    • Jadhav, P.K.1
  • 66
    • 65349154635 scopus 로고    scopus 로고
    • Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease
    • Aikawa, E., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119 (2009), 1785–1794.
    • (2009) Circulation , vol.119 , pp. 1785-1794
    • Aikawa, E.1
  • 67
    • 84925324732 scopus 로고    scopus 로고
    • Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease
    • Figueiredo, J.L., et al. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. Am. J. Pathol. 185 (2015), 1156–1166.
    • (2015) Am. J. Pathol. , vol.185 , pp. 1156-1166
    • Figueiredo, J.L.1
  • 68
    • 84861804692 scopus 로고    scopus 로고
    • Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model
    • Clark, A.K., et al. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum. 64 (2012), 2038–2047.
    • (2012) Arthritis Rheum. , vol.64 , pp. 2038-2047
    • Clark, A.K.1
  • 69
    • 33749017931 scopus 로고    scopus 로고
    • Cysteine cathepsins: multifunctional enzymes in cancer
    • Mohamed, M.M., Sloane, B.F., Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6 (2006), 764–775.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 764-775
    • Mohamed, M.M.1    Sloane, B.F.2
  • 70
    • 84948716123 scopus 로고    scopus 로고
    • Lysosomal cysteine peptidases − molecules signaling tumor cell death and survival
    • Pislar, A., et al. Lysosomal cysteine peptidases − molecules signaling tumor cell death and survival. Semin. Cancer Biol. 35 (2015), 168–179.
    • (2015) Semin. Cancer Biol. , vol.35 , pp. 168-179
    • Pislar, A.1
  • 71
    • 77249161680 scopus 로고    scopus 로고
    • Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice
    • Sevenich, L., et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 2497–2502.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 2497-2502
    • Sevenich, L.1
  • 72
    • 33644784910 scopus 로고    scopus 로고
    • Distinct roles for cysteine cathepsin genes in multistage tumorigenesis
    • Gocheva, V., et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes. Dev. 20 (2006), 543–556.
    • (2006) Genes. Dev. , vol.20 , pp. 543-556
    • Gocheva, V.1
  • 73
    • 84954506618 scopus 로고    scopus 로고
    • Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer
    • Akkari, L., et al. Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes. Dev. 30 (2016), 220–232.
    • (2016) Genes. Dev. , vol.30 , pp. 220-232
    • Akkari, L.1
  • 74
    • 84885337942 scopus 로고    scopus 로고
    • Cathepsin C is a tissue-specific regulator of squamous carcinogenesis
    • Ruffell, B., et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes. Dev. 27 (2013), 2086–2098.
    • (2013) Genes. Dev. , vol.27 , pp. 2086-2098
    • Ruffell, B.1
  • 75
    • 77949656494 scopus 로고    scopus 로고
    • Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis
    • Dennemarker, J., et al. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29 (2010), 1611–1621.
    • (2010) Oncogene , vol.29 , pp. 1611-1621
    • Dennemarker, J.1
  • 76
    • 84860557204 scopus 로고    scopus 로고
    • Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice
    • Gopinathan, A., et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61 (2012), 877–884.
    • (2012) Gut , vol.61 , pp. 877-884
    • Gopinathan, A.1
  • 77
    • 76149146398 scopus 로고    scopus 로고
    • IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion
    • Gocheva, V., et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24 (2010), 241–255.
    • (2010) Genes Dev. , vol.24 , pp. 241-255
    • Gocheva, V.1
  • 78
    • 84907507481 scopus 로고    scopus 로고
    • Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix
    • Akkari, L., et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 28 (2014), 2134–2150.
    • (2014) Genes Dev. , vol.28 , pp. 2134-2150
    • Akkari, L.1
  • 79
    • 84882630715 scopus 로고    scopus 로고
    • Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization
    • Small, D.M., et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int. J. Cancer 133 (2013), 2102–2112.
    • (2013) Int. J. Cancer , vol.133 , pp. 2102-2112
    • Small, D.M.1
  • 80
    • 82955189189 scopus 로고    scopus 로고
    • Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer
    • Shree, T., et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25 (2011), 2465–2479.
    • (2011) Genes Dev. , vol.25 , pp. 2465-2479
    • Shree, T.1
  • 81
    • 33744917827 scopus 로고    scopus 로고
    • Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer
    • Vasiljeva, O., et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66 (2006), 5242–5250.
    • (2006) Cancer Res. , vol.66 , pp. 5242-5250
    • Vasiljeva, O.1
  • 82
    • 84979782465 scopus 로고    scopus 로고
    • The multifaceted role of perivascular macrophages in tumors
    • Lewis, C.E., et al. The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30 (2016), 18–25.
    • (2016) Cancer Cell , vol.30 , pp. 18-25
    • Lewis, C.E.1
  • 83
    • 76249110097 scopus 로고    scopus 로고
    • Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes
    • Mohamed, M.M., et al. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell. Physiol. Biochem. 25 (2010), 315–324.
    • (2010) Cell. Physiol. Biochem. , vol.25 , pp. 315-324
    • Mohamed, M.M.1
  • 84
    • 84889076418 scopus 로고    scopus 로고
    • Reprogramming of lysosomal gene expression by interleukin-4 and Stat6
    • Brignull, L.M., et al. Reprogramming of lysosomal gene expression by interleukin-4 and Stat6. BMC Genomics, 14, 2013, 853.
    • (2013) BMC Genomics , vol.14 , pp. 853
    • Brignull, L.M.1
  • 85
    • 66249098899 scopus 로고    scopus 로고
    • VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation
    • Chang, S.H., et al. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res. 69 (2009), 4537–4544.
    • (2009) Cancer Res. , vol.69 , pp. 4537-4544
    • Chang, S.H.1
  • 86
    • 33646827205 scopus 로고    scopus 로고
    • Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors
    • Wang, B., et al. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 281 (2006), 6020–6029.
    • (2006) J. Biol. Chem. , vol.281 , pp. 6020-6029
    • Wang, B.1
  • 87
    • 49649094763 scopus 로고    scopus 로고
    • Cathepsin L. 1 is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment
    • Abboud-Jarrous, G., et al. Cathepsin L. 1 is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283 (2008), 18167–18176.
    • (2008) J. Biol. Chem. , vol.283 , pp. 18167-18176
    • Abboud-Jarrous, G.1
  • 88
    • 80054804700 scopus 로고    scopus 로고
    • Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin
    • Veillard, F., et al. Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J. Biol. Chem. 286 (2011), 37158–37167.
    • (2011) J. Biol. Chem. , vol.286 , pp. 37158-37167
    • Veillard, F.1
  • 89
    • 84908118492 scopus 로고    scopus 로고
    • Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S
    • Sevenich, L., et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16 (2014), 876–888.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 876-888
    • Sevenich, L.1
  • 90
    • 84872086179 scopus 로고    scopus 로고
    • Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth
    • Bruchard, M., et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19 (2013), 57–64.
    • (2013) Nat. Med. , vol.19 , pp. 57-64
    • Bruchard, M.1
  • 91
    • 47849097202 scopus 로고    scopus 로고
    • Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
    • Hornung, V., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9 (2008), 847–856.
    • (2008) Nat. Immunol. , vol.9 , pp. 847-856
    • Hornung, V.1
  • 92
    • 58849160540 scopus 로고    scopus 로고
    • Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome
    • Sharp, F.A., et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 870–875.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 870-875
    • Sharp, F.A.1
  • 93
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • Duewell, P., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464 (2010), 1357–1361.
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1
  • 94
    • 84938909778 scopus 로고    scopus 로고
    • Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation
    • Orlowski, G.M., et al. Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J. Immunol. 195 (2015), 1685–1697.
    • (2015) J. Immunol. , vol.195 , pp. 1685-1697
    • Orlowski, G.M.1
  • 95
    • 70349413073 scopus 로고    scopus 로고
    • CA-074Me protection against anthrax lethal toxin
    • Newman, Z.L., et al. CA-074Me protection against anthrax lethal toxin. Infect. Immun. 77 (2009), 4327–4336.
    • (2009) Infect. Immun. , vol.77 , pp. 4327-4336
    • Newman, Z.L.1
  • 96
    • 84911421159 scopus 로고    scopus 로고
    • A role for stefin B (cystatin B) in inflammation and endotoxemia
    • Maher, K., et al. A role for stefin B (cystatin B) in inflammation and endotoxemia. J. Biol. Chem. 289 (2014), 31736–31750.
    • (2014) J. Biol. Chem. , vol.289 , pp. 31736-31750
    • Maher, K.1
  • 97
    • 85021738895 scopus 로고    scopus 로고
    • Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1beta activation
    • Published online January 13, 2017.
    • Orlowski, G.M., et al. Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1beta activation. J. Leukoc. Biol., 2017, 10.1189/jlb.3HI0316-152R Published online January 13, 2017.
    • (2017) J. Leukoc. Biol.
    • Orlowski, G.M.1
  • 98
    • 0035801514 scopus 로고    scopus 로고
    • Lysosomal cysteine proteases: facts and opportunities
    • Turk, V., et al. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20 (2001), 4629–4633.
    • (2001) EMBO J. , vol.20 , pp. 4629-4633
    • Turk, V.1
  • 99
    • 0034615570 scopus 로고    scopus 로고
    • Lysosomal cysteine proteases: more than scavengers
    • Turk, B., et al. Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. Acta 1477 (2000), 98–111.
    • (2000) Biochim. Biophys. Acta , vol.1477 , pp. 98-111
    • Turk, B.1
  • 101
    • 0345310073 scopus 로고    scopus 로고
    • Revised definition of substrate binding sites of papain-like cysteine proteases
    • Turk, D., et al. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 379 (1998), 137–147.
    • (1998) Biol. Chem. , vol.379 , pp. 137-147
    • Turk, D.1
  • 102
    • 0029439443 scopus 로고
    • Proteinases 1: lysosomal cysteine proteinases
    • Kirschke, H., et al. Proteinases 1: lysosomal cysteine proteinases. Protein Profile 2 (1995), 1581–1643.
    • (1995) Protein Profile , vol.2 , pp. 1581-1643
    • Kirschke, H.1
  • 103
    • 33744961634 scopus 로고    scopus 로고
    • Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities
    • Choe, Y., et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281 (2006), 12824–12832.
    • (2006) J. Biol. Chem. , vol.281 , pp. 12824-12832
    • Choe, Y.1
  • 104
    • 84924390096 scopus 로고    scopus 로고
    • Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S
    • Vizovišek, M., et al. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics 15 (2015), 2479–2490.
    • (2015) Proteomics , vol.15 , pp. 2479-2490
    • Vizovišek, M.1
  • 105
    • 85027545284 scopus 로고    scopus 로고
    • Protease cleavage site fingerprinting by label-free in-gel degradomics reveals novel pH-dependent specificity switch of legumain
    • Vidmar, R., et al. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals novel pH-dependent specificity switch of legumain. EMBO J. 36 (2017), 2455–2465.
    • (2017) EMBO J. , vol.36 , pp. 2455-2465
    • Vidmar, R.1
  • 106
    • 84869088814 scopus 로고    scopus 로고
    • Global identification of peptidase specificity by multiplex substrate profiling
    • O'Donoghue, A.J., et al. Global identification of peptidase specificity by multiplex substrate profiling. Nat. Methods 9 (2012), 1095–1100.
    • (2012) Nat. Methods , vol.9 , pp. 1095-1100
    • O'Donoghue, A.J.1
  • 107
    • 82755164012 scopus 로고    scopus 로고
    • Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S
    • Biniossek, M.L., et al. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10 (2011), 5363–5373.
    • (2011) J. Proteome Res. , vol.10 , pp. 5363-5373
    • Biniossek, M.L.1
  • 108
    • 49149123424 scopus 로고    scopus 로고
    • Lysosomal cysteine and aspartic proteases are heterogeneously expressed and act redundantly to initiate human invariant chain degradation
    • Costantino, C.M., et al. Lysosomal cysteine and aspartic proteases are heterogeneously expressed and act redundantly to initiate human invariant chain degradation. J. Immunol. 180 (2008), 2876–2885.
    • (2008) J. Immunol. , vol.180 , pp. 2876-2885
    • Costantino, C.M.1
  • 109
    • 0942265544 scopus 로고    scopus 로고
    • Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins
    • Cirman, T., et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J. Biol. Chem. 279 (2004), 3578–3587.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3578-3587
    • Cirman, T.1
  • 110
    • 84979782459 scopus 로고    scopus 로고
    • TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors
    • Prudova, A., et al. TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors. Cell Rep. 16 (2016), 1762–1773.
    • (2016) Cell Rep. , vol.16 , pp. 1762-1773
    • Prudova, A.1
  • 111
    • 0037322932 scopus 로고    scopus 로고
    • Lysosomal cysteine proteases (cathepsins): promising drug targets
    • Turk, D., Gunčar, G., Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr. D Biol. Crystallogr. 59 (2003), 203–213.
    • (2003) Acta Crystallogr. D Biol. Crystallogr. , vol.59 , pp. 203-213
    • Turk, D.1    Gunčar, G.2
  • 112
    • 0000263910 scopus 로고    scopus 로고
    • Design of potent and selective human cathepsin K inhibitors that span the active site
    • Thompson, S.K., et al. Design of potent and selective human cathepsin K inhibitors that span the active site. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 14249–14254.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 14249-14254
    • Thompson, S.K.1
  • 113
    • 0031030808 scopus 로고    scopus 로고
    • Crystal structure of human cathepsin K complexed with a potent inhibitor
    • McGrath, M.E., et al. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 4 (1997), 105–109.
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 105-109
    • McGrath, M.E.1
  • 114
    • 79952050439 scopus 로고    scopus 로고
    • Cathepsin S inhibitors: 2004–2010
    • Lee-Dutra, A., et al. Cathepsin S inhibitors: 2004–2010. Expert Opin. Ther. Pat. 21 (2011), 311–337.
    • (2011) Expert Opin. Ther. Pat. , vol.21 , pp. 311-337
    • Lee-Dutra, A.1
  • 115
    • 4444344451 scopus 로고    scopus 로고
    • Cathepsin K inhibitors: their potential as anti-osteoporosis agents
    • Deaton, D.N., Kumar, S., Cathepsin K inhibitors: their potential as anti-osteoporosis agents. Prog. Med. Chem. 42 (2004), 245–375.
    • (2004) Prog. Med. Chem. , vol.42 , pp. 245-375
    • Deaton, D.N.1    Kumar, S.2
  • 116
    • 38749144762 scopus 로고    scopus 로고
    • The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K
    • Gauthier, J.Y., et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18 (2008), 923–928.
    • (2008) Bioorg. Med. Chem. Lett. , vol.18 , pp. 923-928
    • Gauthier, J.Y.1
  • 117
    • 84941584558 scopus 로고    scopus 로고
    • Development of N-(functionalized benzoyl)-homocycloleucyl-glycinonitriles as potent cathepsin K inhibitors
    • Borišek, J., et al. Development of N-(functionalized benzoyl)-homocycloleucyl-glycinonitriles as potent cathepsin K inhibitors. J. Med. Chem. 58 (2015), 6928–6937.
    • (2015) J. Med. Chem. , vol.58 , pp. 6928-6937
    • Borišek, J.1
  • 118
    • 85014629423 scopus 로고    scopus 로고
    • Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib
    • Law, S., et al. Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib. Biochem. J. 474 (2017), 851–864.
    • (2017) Biochem. J. , vol.474 , pp. 851-864
    • Law, S.1
  • 119
    • 84864250242 scopus 로고    scopus 로고
    • (1R,2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole -2-carbonyl)cyclohexanecarboxamide (AZD4996): a potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis
    • Dossetter, A.G., et al. (1R,2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole -2-carbonyl)cyclohexanecarboxamide (AZD4996): a potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis. J. Med. Chem. 55 (2012), 6363–6374.
    • (2012) J. Med. Chem. , vol.55 , pp. 6363-6374
    • Dossetter, A.G.1
  • 120
    • 77949486200 scopus 로고    scopus 로고
    • Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2: modification of P3, P4, and P5 regions
    • Wiener, J.J., et al. Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2: modification of P3, P4, and P5 regions. Bioorg. Med. Chem. Lett. 20 (2010), 2375–2378.
    • (2010) Bioorg. Med. Chem. Lett. , vol.20 , pp. 2375-2378
    • Wiener, J.J.1
  • 121
    • 67650151243 scopus 로고    scopus 로고
    • Dipeptidyl nitrile inhibitors of cathepsin L
    • Asaad, N., et al. Dipeptidyl nitrile inhibitors of cathepsin L. Bioorg. Med. Chem. Lett. 19 (2009), 4280–4283.
    • (2009) Bioorg. Med. Chem. Lett. , vol.19 , pp. 4280-4283
    • Asaad, N.1
  • 122
    • 67649617069 scopus 로고    scopus 로고
    • Subsite cooperativity in protease specificity
    • Ng, N.M., et al. Subsite cooperativity in protease specificity. Biol. Chem. 390 (2009), 401–407.
    • (2009) Biol. Chem. , vol.390 , pp. 401-407
    • Ng, N.M.1
  • 123
    • 70349471029 scopus 로고    scopus 로고
    • Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools
    • Desmarais, S., et al. Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol. Chem. 390 (2009), 941–948.
    • (2009) Biol. Chem. , vol.390 , pp. 941-948
    • Desmarais, S.1
  • 124
    • 0035953314 scopus 로고    scopus 로고
    • Azepanone-based inhibitors of human and rat cathepsin K
    • Marquis, R.W., et al. Azepanone-based inhibitors of human and rat cathepsin K. J. Med. Chem. 44 (2001), 1380–1395.
    • (2001) J. Med. Chem. , vol.44 , pp. 1380-1395
    • Marquis, R.W.1
  • 125
    • 0034808707 scopus 로고    scopus 로고
    • Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate
    • Stroup, G.B., et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone Miner. Res. 16 (2001), 1739–1746.
    • (2001) J. Bone Miner. Res. , vol.16 , pp. 1739-1746
    • Stroup, G.B.1
  • 126
    • 84155164502 scopus 로고    scopus 로고
    • Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys
    • Jerome, C., et al. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos. Int. 22 (2011), 3001–3011.
    • (2011) Osteoporos. Int. , vol.22 , pp. 3001-3011
    • Jerome, C.1
  • 127
    • 28144452675 scopus 로고    scopus 로고
    • Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity
    • Falgueyret, J.P., et al. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 48 (2005), 7535–7543.
    • (2005) J. Med. Chem. , vol.48 , pp. 7535-7543
    • Falgueyret, J.P.1
  • 128
    • 37349029510 scopus 로고    scopus 로고
    • Effect of cathepsin K inhibitor basicity on in vivo off-target activities
    • Desmarais, S., et al. Effect of cathepsin K inhibitor basicity on in vivo off-target activities. Mol. Pharmacol. 73 (2008), 147–156.
    • (2008) Mol. Pharmacol. , vol.73 , pp. 147-156
    • Desmarais, S.1
  • 129
    • 84892698576 scopus 로고    scopus 로고
    • Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study
    • Eastell, R., et al. Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J. Bone Miner. Res. 29 (2014), 458–466.
    • (2014) J. Bone Miner. Res. , vol.29 , pp. 458-466
    • Eastell, R.1
  • 130
    • 84894435615 scopus 로고    scopus 로고
    • The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study
    • Engelke, K., et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J. Bone Miner. Res. 29 (2014), 629–638.
    • (2014) J. Bone Miner. Res. , vol.29 , pp. 629-638
    • Engelke, K.1
  • 131
    • 77953510486 scopus 로고    scopus 로고
    • Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density
    • Bone, H.G., et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res. 25 (2010), 937–947.
    • (2010) J. Bone Miner. Res. , vol.25 , pp. 937-947
    • Bone, H.G.1
  • 132
    • 84930516774 scopus 로고    scopus 로고
    • Odanacatib: a review of its potential in the management of osteoporosis in postmenopausal women
    • Chapurlat, R.D., Odanacatib: a review of its potential in the management of osteoporosis in postmenopausal women. Ther. Adv. Musculoskelet. Dis. 7 (2015), 103–109.
    • (2015) Ther. Adv. Musculoskelet. Dis. , vol.7 , pp. 103-109
    • Chapurlat, R.D.1
  • 133
    • 85013167848 scopus 로고    scopus 로고
    • Merck & Co. drops osteoporosis drug odanacatib
    • 669–669
    • Mullard, A., Merck & Co. drops osteoporosis drug odanacatib. Nat. Rev. Drug Discov., 15, 2016 669–669.
    • (2016) Nat. Rev. Drug Discov. , vol.15
    • Mullard, A.1
  • 134
    • 84924364538 scopus 로고    scopus 로고
    • Efficacy and safety of odanacatib treatment for patients with osteoporosis: a meta-analysis
    • Feng, S., et al. Efficacy and safety of odanacatib treatment for patients with osteoporosis: a meta-analysis. J. Bone Miner. Metab. 33 (2015), 448–454.
    • (2015) J. Bone Miner. Metab. , vol.33 , pp. 448-454
    • Feng, S.1
  • 135
    • 85029649682 scopus 로고    scopus 로고
    • Inhibition of CTX-II release by cathepsin K inhibition in vivo but not in vitro suggests that anti-resorptive therapy protects cartilage
    • Lindstrom, E., et al. Inhibition of CTX-II release by cathepsin K inhibition in vivo but not in vitro suggests that anti-resorptive therapy protects cartilage. Osteoarthritis Cartilage, 23, 2015, A310.
    • (2015) Osteoarthritis Cartilage , vol.23 , pp. A310
    • Lindstrom, E.1
  • 136
    • 84859794984 scopus 로고    scopus 로고
    • Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis
    • Hayami, T., et al. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone 50 (2012), 1250–1259.
    • (2012) Bone , vol.50 , pp. 1250-1259
    • Hayami, T.1
  • 137
    • 85029664498 scopus 로고    scopus 로고
    • The cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis
    • Burston, J., et al. The cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis. Osteoarthritis Cartilage, 24, 2016, S454.
    • (2016) Osteoarthritis Cartilage , vol.24 , pp. S454
    • Burston, J.1
  • 138
    • 82755197933 scopus 로고    scopus 로고
    • Proteases involved in cartilage matrix degradation in osteoarthritis
    • Troeberg, L., Nagase, H., Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 1824 (2012), 133–145.
    • (2012) Biochim. Biophys. Acta , vol.1824 , pp. 133-145
    • Troeberg, L.1    Nagase, H.2
  • 139
    • 0038304085 scopus 로고    scopus 로고
    • Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts
    • Everts, V., et al. Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts. Calcif. Tissue Int. 73 (2003), 380–386.
    • (2003) Calcif. Tissue Int. , vol.73 , pp. 380-386
    • Everts, V.1
  • 140
    • 2442694270 scopus 로고    scopus 로고
    • Pivotal role of cathepsin K in lung fibrosis
    • Buhling, F., et al. Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 164 (2004), 2203–2216.
    • (2004) Am. J. Pathol. , vol.164 , pp. 2203-2216
    • Buhling, F.1
  • 141
    • 0038481173 scopus 로고    scopus 로고
    • Thyroid functions of mouse cathepsins B, K, and L
    • Friedrichs, B., et al. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111 (2003), 1733–1745.
    • (2003) J. Clin. Invest. , vol.111 , pp. 1733-1745
    • Friedrichs, B.1
  • 142
    • 9144270600 scopus 로고    scopus 로고
    • Cathepsin K: a cysteine protease with unique kinin-degrading properties
    • Godat, E., et al. Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem. J. 383 (2004), 501–506.
    • (2004) Biochem. J. , vol.383 , pp. 501-506
    • Godat, E.1
  • 143
    • 84946225964 scopus 로고    scopus 로고
    • Local co-delivery of rhBMP-2 and cathepsin K inhibitor L006235 in poly(d,l-lactide-co-glycolide) nanospheres
    • Yu, N.Y., et al. Local co-delivery of rhBMP-2 and cathepsin K inhibitor L006235 in poly(d,l-lactide-co-glycolide) nanospheres. J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017), 136–144.
    • (2017) J. Biomed. Mater. Res. B Appl. Biomater. , vol.105 , pp. 136-144
    • Yu, N.Y.1
  • 144
    • 84918586752 scopus 로고    scopus 로고
    • Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor
    • Sharma, V., et al. Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochem. J. 465 (2015), 163–173.
    • (2015) Biochem. J. , vol.465 , pp. 163-173
    • Sharma, V.1
  • 145
    • 84906993712 scopus 로고    scopus 로고
    • A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods
    • Novinec, M., et al. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat. Commun., 5, 2014, 3287.
    • (2014) Nat. Commun. , vol.5 , pp. 3287
    • Novinec, M.1
  • 146
    • 79954784781 scopus 로고    scopus 로고
    • Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity
    • Baugh, M., et al. Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. J. Autoimmun. 36 (2011), 201–209.
    • (2011) J. Autoimmun. , vol.36 , pp. 201-209
    • Baugh, M.1
  • 147
    • 79952921391 scopus 로고    scopus 로고
    • Genetic and pharmacological evaluation of cathepsin s in a mouse model of asthma
    • Deschamps, K., et al. Genetic and pharmacological evaluation of cathepsin s in a mouse model of asthma. Am. J. Respir. Cell Mol. Biol. 45 (2011), 81–87.
    • (2011) Am. J. Respir. Cell Mol. Biol. , vol.45 , pp. 81-87
    • Deschamps, K.1
  • 148
    • 12444250686 scopus 로고    scopus 로고
    • Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis
    • Yang, H., et al. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J. Immunol. 174 (2005), 1729–1737.
    • (2005) J. Immunol. , vol.174 , pp. 1729-1737
    • Yang, H.1
  • 149
    • 84887562856 scopus 로고    scopus 로고
    • Characterization of VBY-129, a cathepsin S inhibitor efficacious in a mouse model of psoriasis
    • Holsinger, L.J., et al. Characterization of VBY-129, a cathepsin S inhibitor efficacious in a mouse model of psoriasis. J. Invest. Dermatol., 129, 2009.
    • (2009) J. Invest. Dermatol. , vol.129
    • Holsinger, L.J.1
  • 150
    • 84903456552 scopus 로고    scopus 로고
    • Tear cathepsin S as a candidate biomarker for Sjogren's syndrome
    • Hamm-Alvarez, S.F., et al. Tear cathepsin S as a candidate biomarker for Sjogren's syndrome. Arthritis Rheumatol. 66 (2014), 1872–1881.
    • (2014) Arthritis Rheumatol. , vol.66 , pp. 1872-1881
    • Hamm-Alvarez, S.F.1
  • 151
    • 84921366294 scopus 로고    scopus 로고
    • Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming
    • Rupanagudi, K.V., et al. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann. Rheum. Dis. 74 (2015), 452–463.
    • (2015) Ann. Rheum. Dis. , vol.74 , pp. 452-463
    • Rupanagudi, K.V.1
  • 152
    • 84983731357 scopus 로고    scopus 로고
    • Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain
    • Hewitt, E., et al. Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J. Pharmacol. Exp. Ther. 358 (2016), 387–396.
    • (2016) J. Pharmacol. Exp. Ther. , vol.358 , pp. 387-396
    • Hewitt, E.1
  • 153
    • 52049104957 scopus 로고    scopus 로고
    • Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-cyanopyrimidines. Part 2
    • Irie, O., et al. Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-cyanopyrimidines. Part 2. Bioorg. Med. Chem. Lett. 18 (2008), 5280–5284.
    • (2008) Bioorg. Med. Chem. Lett. , vol.18 , pp. 5280-5284
    • Irie, O.1
  • 154
    • 84918775242 scopus 로고    scopus 로고
    • Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects
    • Payne, C.D., et al. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. Br. J. Clin. Pharmacol. 78 (2014), 1334–1342.
    • (2014) Br. J. Clin. Pharmacol. , vol.78 , pp. 1334-1342
    • Payne, C.D.1
  • 155
    • 84949202999 scopus 로고    scopus 로고
    • Discontinued neuropathic pain therapy between 2009-2015
    • Knezevic, N.N., et al. Discontinued neuropathic pain therapy between 2009-2015. Expert Opin. Investig. Drugs 24 (2015), 1631–1646.
    • (2015) Expert Opin. Investig. Drugs , vol.24 , pp. 1631-1646
    • Knezevic, N.N.1
  • 156
    • 77952475301 scopus 로고    scopus 로고
    • Therapeutic utility and medicinal chemistry of cathepsin C inhibitors
    • Guay, D., et al. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors. Curr. Top. Med. Chem. 10 (2010), 708–716.
    • (2010) Curr. Top. Med. Chem. , vol.10 , pp. 708-716
    • Guay, D.1
  • 157
    • 44249115565 scopus 로고    scopus 로고
    • In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C
    • Methot, N., et al. In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C. Mol. Pharmacol. 73 (2008), 1857–1865.
    • (2008) Mol. Pharmacol. , vol.73 , pp. 1857-1865
    • Methot, N.1
  • 158
    • 50849133244 scopus 로고    scopus 로고
    • Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
    • Schurigt, U., et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol. Chem. 389 (2008), 1067–1074.
    • (2008) Biol. Chem. , vol.389 , pp. 1067-1074
    • Schurigt, U.1
  • 159
    • 84863229642 scopus 로고    scopus 로고
    • Cathepsin B inhibition limits bone metastasis in breast cancer
    • Withana, N.P., et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res. 72 (2012), 1199–1209.
    • (2012) Cancer Res. , vol.72 , pp. 1199-1209
    • Withana, N.P.1
  • 160
    • 80052587306 scopus 로고    scopus 로고
    • Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment
    • Mikhaylov, G., et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6 (2011), 594–602.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 594-602
    • Mikhaylov, G.1
  • 161
    • 78149358974 scopus 로고    scopus 로고
    • Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model
    • Elie, B.T., et al. Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 92 (2010), 1618–1624.
    • (2010) Biochimie , vol.92 , pp. 1618-1624
    • Elie, B.T.1
  • 162
    • 84949534493 scopus 로고    scopus 로고
    • A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression
    • Salpeter, S.J., et al. A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene 34 (2015), 6066–6078.
    • (2015) Oncogene , vol.34 , pp. 6066-6078
    • Salpeter, S.J.1
  • 163
    • 84938834681 scopus 로고    scopus 로고
    • Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity
    • Mirkovic, B., et al. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 6 (2015), 19027–19042.
    • (2015) Oncotarget , vol.6 , pp. 19027-19042
    • Mirkovic, B.1
  • 164
    • 84963805097 scopus 로고    scopus 로고
    • A bioavailable cathepsin S nitrile inhibitor abrogates tumor development
    • Wilkinson, R.D., et al. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol. Cancer, 15, 2016, 29.
    • (2016) Mol. Cancer , vol.15 , pp. 29
    • Wilkinson, R.D.1
  • 165
    • 84964048466 scopus 로고    scopus 로고
    • Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94
    • Sudhan, D.R., et al. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin. Exp. Metastasis 33 (2016), 461–473.
    • (2016) Clin. Exp. Metastasis , vol.33 , pp. 461-473
    • Sudhan, D.R.1
  • 166
    • 84994759902 scopus 로고    scopus 로고
    • Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3
    • Alishekevitz, D., et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17 (2016), 1344–1356.
    • (2016) Cell Rep. , vol.17 , pp. 1344-1356
    • Alishekevitz, D.1
  • 167
    • 84855828185 scopus 로고    scopus 로고
    • Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas
    • Burden, R.E., et al. Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 94 (2012), 487–493.
    • (2012) Biochimie , vol.94 , pp. 487-493
    • Burden, R.E.1
  • 168
    • 84929629269 scopus 로고    scopus 로고
    • Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin
    • Gangoda, L., et al. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget 6 (2015), 11175–11190.
    • (2015) Oncotarget , vol.6 , pp. 11175-11190
    • Gangoda, L.1
  • 169
    • 78649283330 scopus 로고    scopus 로고
    • Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis
    • Alamir, I., et al. Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis. Clin. Exp. Immunol. 162 (2010), 298–305.
    • (2010) Clin. Exp. Immunol. , vol.162 , pp. 298-305
    • Alamir, I.1
  • 170
    • 84960194141 scopus 로고    scopus 로고
    • Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques
    • Abd-Elrahman, I., et al. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke 47 (2016), 1101–1108.
    • (2016) Stroke , vol.47 , pp. 1101-1108
    • Abd-Elrahman, I.1
  • 171
    • 84904438282 scopus 로고    scopus 로고
    • In vivo imaging of mouse tumors by a lipidated cathepsin S substrate
    • Hu, H.Y., et al. In vivo imaging of mouse tumors by a lipidated cathepsin S substrate. Angew. Chem. Int. Ed. Engl. 53 (2014), 7669–7673.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 7669-7673
    • Hu, H.Y.1
  • 172
    • 84898045812 scopus 로고    scopus 로고
    • In vivo molecular imaging of cathepsin and matrix metalloproteinase activity discriminates between arthritic and osteoarthritic processes in mice
    • Vermeij, E.A., et al. In vivo molecular imaging of cathepsin and matrix metalloproteinase activity discriminates between arthritic and osteoarthritic processes in mice. Mol. Imaging 13 (2014), 1–10.
    • (2014) Mol. Imaging , vol.13 , pp. 1-10
    • Vermeij, E.A.1
  • 173
    • 79551503110 scopus 로고    scopus 로고
    • Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation
    • Caglič, D., et al. Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation. Bioorg. Med. Chem. 19 (2011), 1055–1061.
    • (2011) Bioorg. Med. Chem. , vol.19 , pp. 1055-1061
    • Caglič, D.1
  • 174
    • 84955451151 scopus 로고    scopus 로고
    • Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes
    • Withana, N.P., et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci. Rep., 6, 2016, 19755.
    • (2016) Sci. Rep. , vol.6 , pp. 19755
    • Withana, N.P.1
  • 175
    • 34548666006 scopus 로고    scopus 로고
    • Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes
    • Blum, G., et al. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3 (2007), 668–677.
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 668-677
    • Blum, G.1
  • 176
    • 38049057786 scopus 로고    scopus 로고
    • Selective activity-based probes for cysteine cathepsins
    • Watzke, A., et al. Selective activity-based probes for cysteine cathepsins. Angew. Chem. Int. Ed. Engl. 47 (2008), 406–409.
    • (2008) Angew. Chem. Int. Ed. Engl. , vol.47 , pp. 406-409
    • Watzke, A.1
  • 177
    • 84885112885 scopus 로고    scopus 로고
    • Improved quenched fluorescent probe for imaging of cysteine cathepsin activity
    • Verdoes, M., et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135 (2013), 14726–14730.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 14726-14730
    • Verdoes, M.1
  • 178
    • 84954509620 scopus 로고    scopus 로고
    • A mouse–human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer
    • Whitley, M.J., et al. A mouse–human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med., 8, 2016, 320ra324.
    • (2016) Sci. Transl. Med. , vol.8 , pp. 320ra324
    • Whitley, M.J.1
  • 179
    • 84875801897 scopus 로고    scopus 로고
    • A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs
    • Eward, W.C., et al. A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs. Clin. Orthop. Relat. Res. 471 (2013), 834–842.
    • (2013) Clin. Orthop. Relat. Res. , vol.471 , pp. 834-842
    • Eward, W.C.1
  • 180
    • 84867887408 scopus 로고    scopus 로고
    • Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging
    • Mito, J.K., et al. Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging. Cancer 118 (2012), 5320–5330.
    • (2012) Cancer , vol.118 , pp. 5320-5330
    • Mito, J.K.1
  • 181
    • 84965082269 scopus 로고    scopus 로고
    • A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application
    • Garland, M., et al. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23 (2016), 122–136.
    • (2016) Cell Chem. Biol. , vol.23 , pp. 122-136
    • Garland, M.1
  • 182
    • 84991384034 scopus 로고    scopus 로고
    • Dual-modality activity-based probes as molecular imaging agents for vascular inflammation
    • Withana, N.P., et al. Dual-modality activity-based probes as molecular imaging agents for vascular inflammation. J. Nucl. Med. 57 (2016), 1583–1590.
    • (2016) J. Nucl. Med. , vol.57 , pp. 1583-1590
    • Withana, N.P.1
  • 183
    • 84925314224 scopus 로고    scopus 로고
    • Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor
    • Mikhaylov, G., et al. Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor. Angew. Chem. Int. Ed. Engl. 53 (2014), 10077–10081.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 10077-10081
    • Mikhaylov, G.1
  • 184
    • 84906258696 scopus 로고    scopus 로고
    • In vivo magnetic resonance imaging of tumor protease activity
    • Haris, M., et al. In vivo magnetic resonance imaging of tumor protease activity. Sci. Rep., 4, 2014, 6081.
    • (2014) Sci. Rep. , vol.4 , pp. 6081
    • Haris, M.1
  • 185
    • 85022342001 scopus 로고    scopus 로고
    • Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin
    • Kramer, L., et al. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Theranostics 7 (2017), 2806–2821.
    • (2017) Theranostics , vol.7 , pp. 2806-2821
    • Kramer, L.1
  • 186
    • 84979862414 scopus 로고    scopus 로고
    • Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes
    • Withana, N.P., et al. Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nat. Protoc. 11 (2016), 184–191.
    • (2016) Nat. Protoc. , vol.11 , pp. 184-191
    • Withana, N.P.1
  • 187
    • 84924094144 scopus 로고    scopus 로고
    • Principles in the design of ligand-targeted cancer therapeutics and imaging agents
    • Srinivasarao, M., et al. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14 (2015), 203–219.
    • (2015) Nat. Rev. Drug Discov. , vol.14 , pp. 203-219
    • Srinivasarao, M.1
  • 188
    • 84957798682 scopus 로고    scopus 로고
    • Proteases in cancer drug delivery
    • Vandooren, J., et al. Proteases in cancer drug delivery. Adv. Drug Deliv. Rev. 97 (2016), 144–155.
    • (2016) Adv. Drug Deliv. Rev. , vol.97 , pp. 144-155
    • Vandooren, J.1
  • 189
    • 84959456912 scopus 로고    scopus 로고
    • New developments for antibody–drug conjugate-based therapeutic approaches
    • de Goeij, B.E., Lambert, J.M., New developments for antibody–drug conjugate-based therapeutic approaches. Curr. Opin. Immunol. 40 (2016), 14–23.
    • (2016) Curr. Opin. Immunol. , vol.40 , pp. 14-23
    • de Goeij, B.E.1    Lambert, J.M.2
  • 190
    • 84988642872 scopus 로고    scopus 로고
    • Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs
    • Kern, J.C., et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug. Chem. 27 (2016), 2081–2088.
    • (2016) Bioconjug. Chem. , vol.27 , pp. 2081-2088
    • Kern, J.C.1
  • 191
    • 84943585919 scopus 로고    scopus 로고
    • Current ADC linker chemistry
    • Jain, N., et al. Current ADC linker chemistry. Pharm. Res. 32 (2015), 3526–3540.
    • (2015) Pharm. Res. , vol.32 , pp. 3526-3540
    • Jain, N.1
  • 192
    • 84969509943 scopus 로고    scopus 로고
    • Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design
    • Dorywalska, M., et al. Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Cancer Ther. 15 (2016), 958–970.
    • (2016) Mol. Cancer Ther. , vol.15 , pp. 958-970
    • Dorywalska, M.1
  • 193
    • 80054117546 scopus 로고    scopus 로고
    • Brentuximab vedotin (SGN-35)
    • Katz, J., et al. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 17 (2011), 6428–6436.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 6428-6436
    • Katz, J.1
  • 194
    • 85007500664 scopus 로고    scopus 로고
    • Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix
    • Gebleux, R., et al. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int. J. Cancer 140 (2017), 1670–1679.
    • (2017) Int. J. Cancer , vol.140 , pp. 1670-1679
    • Gebleux, R.1
  • 195
    • 33846331255 scopus 로고    scopus 로고
    • In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases
    • Shaffer, S.A., et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 59 (2007), 537–548.
    • (2007) Cancer Chemother. Pharmacol. , vol.59 , pp. 537-548
    • Shaffer, S.A.1
  • 196
    • 44649193032 scopus 로고    scopus 로고
    • Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer
    • Langer, C.J., et al. Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J. Thorac. Oncol. 3 (2008), 623–630.
    • (2008) J. Thorac. Oncol. , vol.3 , pp. 623-630
    • Langer, C.J.1
  • 197
    • 84941312661 scopus 로고    scopus 로고
    • Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy
    • Ben-Nun, Y., et al. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy. Theranostics 5 (2015), 847–862.
    • (2015) Theranostics , vol.5 , pp. 847-862
    • Ben-Nun, Y.1
  • 198
    • 84879126791 scopus 로고    scopus 로고
    • Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo
    • Shon, S.M., et al. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo. Arterioscler. Thromb. Vasc. Biol. 33 (2013), 1360–1365.
    • (2013) Arterioscler. Thromb. Vasc. Biol. , vol.33 , pp. 1360-1365
    • Shon, S.M.1
  • 199
    • 12044253640 scopus 로고
    • The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity
    • Musil, D., et al. The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10 (1991), 2321–2330.
    • (1991) EMBO J. , vol.10 , pp. 2321-2330
    • Musil, D.1
  • 200
    • 0039547996 scopus 로고    scopus 로고
    • Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S
    • Guncar, G., et al. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 18 (1999), 793–803.
    • (1999) EMBO J. , vol.18 , pp. 793-803
    • Guncar, G.1
  • 201
    • 17944366493 scopus 로고    scopus 로고
    • Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases
    • Turk, D., et al. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 20 (2001), 6570–6582.
    • (2001) EMBO J. , vol.20 , pp. 6570-6582
    • Turk, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.