-
1
-
-
33748308883
-
Targeting proteases: successes, failures and future prospects
-
Turk, B., Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5 (2006), 785–799.
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, pp. 785-799
-
-
Turk, B.1
-
2
-
-
77956310878
-
Emerging principles in protease-based drug discovery
-
Drag, M., Salvesen, G.S., Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9 (2010), 690–701.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 690-701
-
-
Drag, M.1
Salvesen, G.S.2
-
3
-
-
84859366447
-
Protease signalling: the cutting edge
-
Turk, B., et al. Protease signalling: the cutting edge. EMBO J. 31 (2012), 1630–1643.
-
(2012)
EMBO J.
, vol.31
, pp. 1630-1643
-
-
Turk, B.1
-
4
-
-
77957855881
-
Specialized roles for cysteine cathepsins in health and disease
-
Reiser, J., et al. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120 (2010), 3421–3431.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3421-3431
-
-
Reiser, J.1
-
5
-
-
33947604810
-
Emerging roles of cysteine cathepsins in disease and their potential as drug targets
-
Vasiljeva, O., et al. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13 (2007), 387–403.
-
(2007)
Curr. Pharm. Des.
, vol.13
, pp. 387-403
-
-
Vasiljeva, O.1
-
6
-
-
33644758571
-
Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease
-
Tang, C.H., et al. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol. Cell. Biol. 26 (2006), 2309–2316.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2309-2316
-
-
Tang, C.H.1
-
7
-
-
84875264198
-
Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis
-
Smith, K.R., et al. Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22 (2013), 1417–1423.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 1417-1423
-
-
Smith, K.R.1
-
8
-
-
84965071473
-
Lysosomal cathepsins and their regulation in aging and neurodegeneration
-
Stoka, V., et al. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 32 (2016), 22–37.
-
(2016)
Ageing Res. Rev.
, vol.32
, pp. 22-37
-
-
Stoka, V.1
-
9
-
-
84903543514
-
Cysteine cathepsins and extracellular matrix degradation
-
Fonović, M., Turk, B., Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840 (2014), 2560–2570.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 2560-2570
-
-
Fonović, M.1
Turk, B.2
-
10
-
-
82755161948
-
Cysteine cathepsins: from structure, function and regulation to new frontiers
-
Turk, V., et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824 (2012), 68–88.
-
(2012)
Biochim. Biophys. Acta
, vol.1824
, pp. 68-88
-
-
Turk, V.1
-
11
-
-
2442549710
-
Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice
-
Nakagawa, T.Y., et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10 (1999), 207–217.
-
(1999)
Immunity
, vol.10
, pp. 207-217
-
-
Nakagawa, T.Y.1
-
12
-
-
0033083688
-
Cathepsin S required for normal MHC class II peptide loading and germinal center development
-
Shi, G.P., et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10 (1999), 197–206.
-
(1999)
Immunity
, vol.10
, pp. 197-206
-
-
Shi, G.P.1
-
13
-
-
0032506007
-
Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice
-
Saftig, P., et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 13453–13458.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 13453-13458
-
-
Saftig, P.1
-
14
-
-
15844397808
-
Proteolytic activity of human osteoclast cathepsin K expression, purification, activation, and substrate identification
-
Bossard, M.J., et al. Proteolytic activity of human osteoclast cathepsin K expression, purification, activation, and substrate identification. J. Biol. Chem. 271 (1996), 12517–12524.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 12517-12524
-
-
Bossard, M.J.1
-
15
-
-
84948680310
-
Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response
-
Olson, O.C., Joyce, J.A., Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15 (2015), 712–729.
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 712-729
-
-
Olson, O.C.1
Joyce, J.A.2
-
16
-
-
84961393679
-
Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences
-
Brömme, D., et al. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin. Drug Discov. 11 (2016), 457–472.
-
(2016)
Expert Opin. Drug Discov.
, vol.11
, pp. 457-472
-
-
Brömme, D.1
-
17
-
-
79960150092
-
Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases
-
Qin, Y., Shi, G.P., Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol. Ther. 131 (2011), 338–350.
-
(2011)
Pharmacol. Ther.
, vol.131
, pp. 338-350
-
-
Qin, Y.1
Shi, G.P.2
-
18
-
-
85013290735
-
Lysosomes in programmed cell death pathways: from initiators to amplifiers
-
Kavčič, N., et al. Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biol. Chem. 398 (2017), 289–301.
-
(2017)
Biol. Chem.
, vol.398
, pp. 289-301
-
-
Kavčič, N.1
-
19
-
-
84902181290
-
Activity-based profiling of proteases
-
Sanman, L.E., Bogyo, M., Activity-based profiling of proteases. Annu. Rev. Biochem. 83 (2014), 249–273.
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 249-273
-
-
Sanman, L.E.1
Bogyo, M.2
-
20
-
-
84969884870
-
Variations in MHC class II antigen processing and presentation in health and disease
-
Unanue, E.R., et al. Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34 (2016), 265–297.
-
(2016)
Annu. Rev. Immunol.
, vol.34
, pp. 265-297
-
-
Unanue, E.R.1
-
21
-
-
0032540474
-
Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus
-
Nakagawa, T., et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280 (1998), 450–453.
-
(1998)
Science
, vol.280
, pp. 450-453
-
-
Nakagawa, T.1
-
22
-
-
0141831692
-
Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis
-
Tolosa, E., et al. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J. Clin. Invest. 112 (2003), 517–526.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 517-526
-
-
Tolosa, E.1
-
23
-
-
84861192687
-
Cathepsin S dominates autoantigen processing in human thymic dendritic cells
-
Stoeckle, C., et al. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J. Autoimmun. 38 (2012), 332–343.
-
(2012)
J. Autoimmun.
, vol.38
, pp. 332-343
-
-
Stoeckle, C.1
-
24
-
-
72949113082
-
Endolysosomal proteases and their inhibitors in immunity
-
Bird, P.I., et al. Endolysosomal proteases and their inhibitors in immunity. Nat. Rev. Immunol. 9 (2009), 871–882.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 871-882
-
-
Bird, P.I.1
-
25
-
-
77951904981
-
Distinct protease requirements for antigen presentation in vitro and in vivo
-
Matthews, S.P., et al. Distinct protease requirements for antigen presentation in vitro and in vivo. J. Immunol. 184 (2010), 2423–2431.
-
(2010)
J. Immunol.
, vol.184
, pp. 2423-2431
-
-
Matthews, S.P.1
-
26
-
-
84861861142
-
Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling
-
Garcia-Cattaneo, A., et al. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 9053–9058.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 9053-9058
-
-
Garcia-Cattaneo, A.1
-
27
-
-
38849127573
-
Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis
-
Asagiri, M., et al. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319 (2008), 624–627.
-
(2008)
Science
, vol.319
, pp. 624-627
-
-
Asagiri, M.1
-
28
-
-
79955743119
-
Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase
-
Ewald, S.E., et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208 (2011), 643–651.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 643-651
-
-
Ewald, S.E.1
-
29
-
-
84975142404
-
The HIV protease inhibitor saquinavir inhibits HMGB1 driven inflammation by targeting the interaction of cathepsin V with TLR4/MyD88
-
Pribis, J.P., et al. The HIV protease inhibitor saquinavir inhibits HMGB1 driven inflammation by targeting the interaction of cathepsin V with TLR4/MyD88. Mol. Med. 21 (2015), 749–757.
-
(2015)
Mol. Med.
, vol.21
, pp. 749-757
-
-
Pribis, J.P.1
-
30
-
-
84992192230
-
Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection
-
Qi, X., et al. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J. Exp. Med. 213 (2016), 2081–2097.
-
(2016)
J. Exp. Med.
, vol.213
, pp. 2081-2097
-
-
Qi, X.1
-
31
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M., et al. A gene network regulating lysosomal biogenesis and function. Science 325 (2009), 473–477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
32
-
-
0032516003
-
Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation
-
Deussing, J., et al. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 4516–4521.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 4516-4521
-
-
Deussing, J.1
-
33
-
-
84907588630
-
Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection
-
Gonzalez-Leal, I.J., et al. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection. PLoS Negl. Trop. Dis., 8, 2014, e3194.
-
(2014)
PLoS Negl. Trop. Dis.
, vol.8
, pp. e3194
-
-
Gonzalez-Leal, I.J.1
-
34
-
-
47949098831
-
Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles to the plasma membrane in macrophages
-
Ha, S.D., et al. Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles to the plasma membrane in macrophages. J. Immunol. 181 (2008), 690–697.
-
(2008)
J. Immunol.
, vol.181
, pp. 690-697
-
-
Ha, S.D.1
-
35
-
-
0033587689
-
Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo
-
Pham, C.T., Ley, T.J., Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 8627–8632.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 8627-8632
-
-
Pham, C.T.1
Ley, T.J.2
-
36
-
-
0035947568
-
Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice
-
Wolters, P.J., et al. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J. Biol. Chem. 276 (2001), 18551–18556.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 18551-18556
-
-
Wolters, P.J.1
-
37
-
-
0036168150
-
Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis
-
Adkison, A.M., et al. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J. Clin. Invest. 109 (2002), 363–371.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 363-371
-
-
Adkison, A.M.1
-
38
-
-
77954230245
-
Cathepsin H is an additional convertase of pro-granzyme B
-
D'Angelo, M.E., et al. Cathepsin H is an additional convertase of pro-granzyme B. J. Biol. Chem. 285 (2010), 20514–20519.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 20514-20519
-
-
D'Angelo, M.E.1
-
39
-
-
84938905143
-
Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells
-
Sobotič, B., et al. Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol. Cell. Proteomics 14 (2015), 2213–2228.
-
(2015)
Mol. Cell. Proteomics
, vol.14
, pp. 2213-2228
-
-
Sobotič, B.1
-
40
-
-
84930644133
-
Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines
-
Repnik, U., et al. Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. J. Biol. Chem. 290 (2015), 13800–13811.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 13800-13811
-
-
Repnik, U.1
-
41
-
-
84876539526
-
The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes
-
Caglič, D., et al. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biol. Chem. 394 (2013), 307–316.
-
(2013)
Biol. Chem.
, vol.394
, pp. 307-316
-
-
Caglič, D.1
-
42
-
-
84991706068
-
STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation
-
Yan, D., et al. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep. 16 (2016), 2914–2927.
-
(2016)
Cell Rep.
, vol.16
, pp. 2914-2927
-
-
Yan, D.1
-
43
-
-
36348941660
-
Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide–mature enzyme interactions
-
Caglič, D., et al. Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide–mature enzyme interactions. J. Biol. Chem. 282 (2007), 33076–33085.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33076-33085
-
-
Caglič, D.1
-
44
-
-
84869480738
-
Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts
-
Cremasco, V., et al. Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts. J. Bone Miner. Res. 27 (2012), 2452–2463.
-
(2012)
J. Bone Miner. Res.
, vol.27
, pp. 2452-2463
-
-
Cremasco, V.1
-
45
-
-
0033610853
-
The collagenolytic activity of cathepsin K is unique among mammalian proteinases
-
Garnero, P., et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 273 (1998), 32347–32352.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 32347-32352
-
-
Garnero, P.1
-
46
-
-
68949163761
-
Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand
-
Balkan, W., et al. Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand. Gene 446 (2009), 90–98.
-
(2009)
Gene
, vol.446
, pp. 90-98
-
-
Balkan, W.1
-
47
-
-
84918557552
-
Structural basis of collagen fiber degradation by cathepsin K
-
Aguda, A.H., et al. Structural basis of collagen fiber degradation by cathepsin K. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 17474–17479.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 17474-17479
-
-
Aguda, A.H.1
-
48
-
-
67649628133
-
Cathepsin K inhibitors for osteoporosis and potential off-target effects
-
Brömme, D., Lecaille, F., Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin. Investig. Drugs 18 (2009), 585–600.
-
(2009)
Expert Opin. Investig. Drugs
, vol.18
, pp. 585-600
-
-
Brömme, D.1
Lecaille, F.2
-
49
-
-
1242294466
-
Regulation of collagenase activities of human cathepsins by glycosaminoglycans
-
Li, Z., et al. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279 (2004), 5470–5479.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 5470-5479
-
-
Li, Z.1
-
50
-
-
84953347897
-
A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K
-
Panwar, P., et al. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br. J. Pharmacol. 173 (2016), 396–410.
-
(2016)
Br. J. Pharmacol.
, vol.173
, pp. 396-410
-
-
Panwar, P.1
-
51
-
-
46749086701
-
Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage
-
Dejica, V.M., et al. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am. J. Pathol. 173 (2008), 161–169.
-
(2008)
Am. J. Pathol.
, vol.173
, pp. 161-169
-
-
Dejica, V.M.1
-
52
-
-
84917705814
-
Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis
-
Duong, L.T., et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol. Cancer Ther. 13 (2014), 2898–2909.
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 2898-2909
-
-
Duong, L.T.1
-
53
-
-
84884211491
-
Macrophage cathepsin K promotes prostate tumor progression in bone
-
Herroon, M.K., et al. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32 (2013), 1580–1593.
-
(2013)
Oncogene
, vol.32
, pp. 1580-1593
-
-
Herroon, M.K.1
-
54
-
-
0032145836
-
Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells
-
Sukhova, G.K., et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102 (1998), 576–583.
-
(1998)
J. Clin. Invest.
, vol.102
, pp. 576-583
-
-
Sukhova, G.K.1
-
55
-
-
83655167324
-
Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice
-
Sun, J., et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 32 (2012), 15–23.
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 15-23
-
-
Sun, J.1
-
56
-
-
33644865170
-
Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation
-
Lutgens, E., et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113 (2006), 98–107.
-
(2006)
Circulation
, vol.113
, pp. 98-107
-
-
Lutgens, E.1
-
57
-
-
84897114576
-
Pathological pain and the neuroimmune interface
-
Grace, P.M., et al. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14 (2014), 217–231.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 217-231
-
-
Grace, P.M.1
-
58
-
-
84992039573
-
Microglia, seen from the CX3CR1 angle
-
Wolf, Y., et al. Microglia, seen from the CX3CR1 angle. Front. Cell. Neurosci., 7, 2013, 26.
-
(2013)
Front. Cell. Neurosci.
, vol.7
, pp. 26
-
-
Wolf, Y.1
-
59
-
-
34547505414
-
Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain
-
Clark, A.K., et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 10655–10660.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 10655-10660
-
-
Clark, A.K.1
-
60
-
-
0345381021
-
Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage
-
Chapman, G.A., et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci., 20, 2000, RC87.
-
(2000)
J. Neurosci.
, vol.20
, pp. RC87
-
-
Chapman, G.A.1
-
61
-
-
84907916606
-
Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4
-
Zhao, P., et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J. Biol. Chem. 289 (2014), 27215–27234.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 27215-27234
-
-
Zhao, P.1
-
62
-
-
80054846758
-
Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice
-
Cattaruzza, F., et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141 (2011), 1864–1874.
-
(2011)
Gastroenterology
, vol.141
, pp. 1864-1874
-
-
Cattaruzza, F.1
-
63
-
-
84938151125
-
Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs
-
Reddy, V.B., et al. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat. Commun., 6, 2015, 7864.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7864
-
-
Reddy, V.B.1
-
64
-
-
84987648062
-
Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation
-
Stellos, K., et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22 (2016), 1140–1150.
-
(2016)
Nat. Med.
, vol.22
, pp. 1140-1150
-
-
Stellos, K.1
-
65
-
-
84907942042
-
Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm
-
Jadhav, P.K., et al. Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm. ACS Med. Chem. Lett. 5 (2014), 1138–1142.
-
(2014)
ACS Med. Chem. Lett.
, vol.5
, pp. 1138-1142
-
-
Jadhav, P.K.1
-
66
-
-
65349154635
-
Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease
-
Aikawa, E., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119 (2009), 1785–1794.
-
(2009)
Circulation
, vol.119
, pp. 1785-1794
-
-
Aikawa, E.1
-
67
-
-
84925324732
-
Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease
-
Figueiredo, J.L., et al. Selective cathepsin S inhibition attenuates atherosclerosis in apolipoprotein E-deficient mice with chronic renal disease. Am. J. Pathol. 185 (2015), 1156–1166.
-
(2015)
Am. J. Pathol.
, vol.185
, pp. 1156-1166
-
-
Figueiredo, J.L.1
-
68
-
-
84861804692
-
Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model
-
Clark, A.K., et al. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum. 64 (2012), 2038–2047.
-
(2012)
Arthritis Rheum.
, vol.64
, pp. 2038-2047
-
-
Clark, A.K.1
-
69
-
-
33749017931
-
Cysteine cathepsins: multifunctional enzymes in cancer
-
Mohamed, M.M., Sloane, B.F., Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6 (2006), 764–775.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 764-775
-
-
Mohamed, M.M.1
Sloane, B.F.2
-
70
-
-
84948716123
-
Lysosomal cysteine peptidases − molecules signaling tumor cell death and survival
-
Pislar, A., et al. Lysosomal cysteine peptidases − molecules signaling tumor cell death and survival. Semin. Cancer Biol. 35 (2015), 168–179.
-
(2015)
Semin. Cancer Biol.
, vol.35
, pp. 168-179
-
-
Pislar, A.1
-
71
-
-
77249161680
-
Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice
-
Sevenich, L., et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 2497–2502.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 2497-2502
-
-
Sevenich, L.1
-
72
-
-
33644784910
-
Distinct roles for cysteine cathepsin genes in multistage tumorigenesis
-
Gocheva, V., et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes. Dev. 20 (2006), 543–556.
-
(2006)
Genes. Dev.
, vol.20
, pp. 543-556
-
-
Gocheva, V.1
-
73
-
-
84954506618
-
Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer
-
Akkari, L., et al. Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes. Dev. 30 (2016), 220–232.
-
(2016)
Genes. Dev.
, vol.30
, pp. 220-232
-
-
Akkari, L.1
-
74
-
-
84885337942
-
Cathepsin C is a tissue-specific regulator of squamous carcinogenesis
-
Ruffell, B., et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes. Dev. 27 (2013), 2086–2098.
-
(2013)
Genes. Dev.
, vol.27
, pp. 2086-2098
-
-
Ruffell, B.1
-
75
-
-
77949656494
-
Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis
-
Dennemarker, J., et al. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29 (2010), 1611–1621.
-
(2010)
Oncogene
, vol.29
, pp. 1611-1621
-
-
Dennemarker, J.1
-
76
-
-
84860557204
-
Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice
-
Gopinathan, A., et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61 (2012), 877–884.
-
(2012)
Gut
, vol.61
, pp. 877-884
-
-
Gopinathan, A.1
-
77
-
-
76149146398
-
IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion
-
Gocheva, V., et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24 (2010), 241–255.
-
(2010)
Genes Dev.
, vol.24
, pp. 241-255
-
-
Gocheva, V.1
-
78
-
-
84907507481
-
Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix
-
Akkari, L., et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 28 (2014), 2134–2150.
-
(2014)
Genes Dev.
, vol.28
, pp. 2134-2150
-
-
Akkari, L.1
-
79
-
-
84882630715
-
Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization
-
Small, D.M., et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int. J. Cancer 133 (2013), 2102–2112.
-
(2013)
Int. J. Cancer
, vol.133
, pp. 2102-2112
-
-
Small, D.M.1
-
80
-
-
82955189189
-
Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer
-
Shree, T., et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25 (2011), 2465–2479.
-
(2011)
Genes Dev.
, vol.25
, pp. 2465-2479
-
-
Shree, T.1
-
81
-
-
33744917827
-
Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer
-
Vasiljeva, O., et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66 (2006), 5242–5250.
-
(2006)
Cancer Res.
, vol.66
, pp. 5242-5250
-
-
Vasiljeva, O.1
-
82
-
-
84979782465
-
The multifaceted role of perivascular macrophages in tumors
-
Lewis, C.E., et al. The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30 (2016), 18–25.
-
(2016)
Cancer Cell
, vol.30
, pp. 18-25
-
-
Lewis, C.E.1
-
83
-
-
76249110097
-
Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes
-
Mohamed, M.M., et al. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell. Physiol. Biochem. 25 (2010), 315–324.
-
(2010)
Cell. Physiol. Biochem.
, vol.25
, pp. 315-324
-
-
Mohamed, M.M.1
-
84
-
-
84889076418
-
Reprogramming of lysosomal gene expression by interleukin-4 and Stat6
-
Brignull, L.M., et al. Reprogramming of lysosomal gene expression by interleukin-4 and Stat6. BMC Genomics, 14, 2013, 853.
-
(2013)
BMC Genomics
, vol.14
, pp. 853
-
-
Brignull, L.M.1
-
85
-
-
66249098899
-
VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation
-
Chang, S.H., et al. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res. 69 (2009), 4537–4544.
-
(2009)
Cancer Res.
, vol.69
, pp. 4537-4544
-
-
Chang, S.H.1
-
86
-
-
33646827205
-
Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors
-
Wang, B., et al. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 281 (2006), 6020–6029.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 6020-6029
-
-
Wang, B.1
-
87
-
-
49649094763
-
Cathepsin L. 1 is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment
-
Abboud-Jarrous, G., et al. Cathepsin L. 1 is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283 (2008), 18167–18176.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18167-18176
-
-
Abboud-Jarrous, G.1
-
88
-
-
80054804700
-
Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin
-
Veillard, F., et al. Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J. Biol. Chem. 286 (2011), 37158–37167.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 37158-37167
-
-
Veillard, F.1
-
89
-
-
84908118492
-
Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S
-
Sevenich, L., et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16 (2014), 876–888.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 876-888
-
-
Sevenich, L.1
-
90
-
-
84872086179
-
Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth
-
Bruchard, M., et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19 (2013), 57–64.
-
(2013)
Nat. Med.
, vol.19
, pp. 57-64
-
-
Bruchard, M.1
-
91
-
-
47849097202
-
Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
-
Hornung, V., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9 (2008), 847–856.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 847-856
-
-
Hornung, V.1
-
92
-
-
58849160540
-
Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome
-
Sharp, F.A., et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 870–875.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 870-875
-
-
Sharp, F.A.1
-
93
-
-
77951800951
-
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
-
Duewell, P., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464 (2010), 1357–1361.
-
(2010)
Nature
, vol.464
, pp. 1357-1361
-
-
Duewell, P.1
-
94
-
-
84938909778
-
Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation
-
Orlowski, G.M., et al. Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J. Immunol. 195 (2015), 1685–1697.
-
(2015)
J. Immunol.
, vol.195
, pp. 1685-1697
-
-
Orlowski, G.M.1
-
95
-
-
70349413073
-
CA-074Me protection against anthrax lethal toxin
-
Newman, Z.L., et al. CA-074Me protection against anthrax lethal toxin. Infect. Immun. 77 (2009), 4327–4336.
-
(2009)
Infect. Immun.
, vol.77
, pp. 4327-4336
-
-
Newman, Z.L.1
-
96
-
-
84911421159
-
A role for stefin B (cystatin B) in inflammation and endotoxemia
-
Maher, K., et al. A role for stefin B (cystatin B) in inflammation and endotoxemia. J. Biol. Chem. 289 (2014), 31736–31750.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 31736-31750
-
-
Maher, K.1
-
97
-
-
85021738895
-
Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1beta activation
-
Published online January 13, 2017.
-
Orlowski, G.M., et al. Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1beta activation. J. Leukoc. Biol., 2017, 10.1189/jlb.3HI0316-152R Published online January 13, 2017.
-
(2017)
J. Leukoc. Biol.
-
-
Orlowski, G.M.1
-
98
-
-
0035801514
-
Lysosomal cysteine proteases: facts and opportunities
-
Turk, V., et al. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20 (2001), 4629–4633.
-
(2001)
EMBO J.
, vol.20
, pp. 4629-4633
-
-
Turk, V.1
-
99
-
-
0034615570
-
Lysosomal cysteine proteases: more than scavengers
-
Turk, B., et al. Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. Acta 1477 (2000), 98–111.
-
(2000)
Biochim. Biophys. Acta
, vol.1477
, pp. 98-111
-
-
Turk, B.1
-
101
-
-
0345310073
-
Revised definition of substrate binding sites of papain-like cysteine proteases
-
Turk, D., et al. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 379 (1998), 137–147.
-
(1998)
Biol. Chem.
, vol.379
, pp. 137-147
-
-
Turk, D.1
-
102
-
-
0029439443
-
Proteinases 1: lysosomal cysteine proteinases
-
Kirschke, H., et al. Proteinases 1: lysosomal cysteine proteinases. Protein Profile 2 (1995), 1581–1643.
-
(1995)
Protein Profile
, vol.2
, pp. 1581-1643
-
-
Kirschke, H.1
-
103
-
-
33744961634
-
Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities
-
Choe, Y., et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281 (2006), 12824–12832.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 12824-12832
-
-
Choe, Y.1
-
104
-
-
84924390096
-
Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S
-
Vizovišek, M., et al. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics 15 (2015), 2479–2490.
-
(2015)
Proteomics
, vol.15
, pp. 2479-2490
-
-
Vizovišek, M.1
-
105
-
-
85027545284
-
Protease cleavage site fingerprinting by label-free in-gel degradomics reveals novel pH-dependent specificity switch of legumain
-
Vidmar, R., et al. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals novel pH-dependent specificity switch of legumain. EMBO J. 36 (2017), 2455–2465.
-
(2017)
EMBO J.
, vol.36
, pp. 2455-2465
-
-
Vidmar, R.1
-
106
-
-
84869088814
-
Global identification of peptidase specificity by multiplex substrate profiling
-
O'Donoghue, A.J., et al. Global identification of peptidase specificity by multiplex substrate profiling. Nat. Methods 9 (2012), 1095–1100.
-
(2012)
Nat. Methods
, vol.9
, pp. 1095-1100
-
-
O'Donoghue, A.J.1
-
107
-
-
82755164012
-
Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S
-
Biniossek, M.L., et al. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10 (2011), 5363–5373.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 5363-5373
-
-
Biniossek, M.L.1
-
108
-
-
49149123424
-
Lysosomal cysteine and aspartic proteases are heterogeneously expressed and act redundantly to initiate human invariant chain degradation
-
Costantino, C.M., et al. Lysosomal cysteine and aspartic proteases are heterogeneously expressed and act redundantly to initiate human invariant chain degradation. J. Immunol. 180 (2008), 2876–2885.
-
(2008)
J. Immunol.
, vol.180
, pp. 2876-2885
-
-
Costantino, C.M.1
-
109
-
-
0942265544
-
Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins
-
Cirman, T., et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J. Biol. Chem. 279 (2004), 3578–3587.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3578-3587
-
-
Cirman, T.1
-
110
-
-
84979782459
-
TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors
-
Prudova, A., et al. TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors. Cell Rep. 16 (2016), 1762–1773.
-
(2016)
Cell Rep.
, vol.16
, pp. 1762-1773
-
-
Prudova, A.1
-
111
-
-
0037322932
-
Lysosomal cysteine proteases (cathepsins): promising drug targets
-
Turk, D., Gunčar, G., Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr. D Biol. Crystallogr. 59 (2003), 203–213.
-
(2003)
Acta Crystallogr. D Biol. Crystallogr.
, vol.59
, pp. 203-213
-
-
Turk, D.1
Gunčar, G.2
-
112
-
-
0000263910
-
Design of potent and selective human cathepsin K inhibitors that span the active site
-
Thompson, S.K., et al. Design of potent and selective human cathepsin K inhibitors that span the active site. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 14249–14254.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 14249-14254
-
-
Thompson, S.K.1
-
113
-
-
0031030808
-
Crystal structure of human cathepsin K complexed with a potent inhibitor
-
McGrath, M.E., et al. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 4 (1997), 105–109.
-
(1997)
Nat. Struct. Biol.
, vol.4
, pp. 105-109
-
-
McGrath, M.E.1
-
114
-
-
79952050439
-
Cathepsin S inhibitors: 2004–2010
-
Lee-Dutra, A., et al. Cathepsin S inhibitors: 2004–2010. Expert Opin. Ther. Pat. 21 (2011), 311–337.
-
(2011)
Expert Opin. Ther. Pat.
, vol.21
, pp. 311-337
-
-
Lee-Dutra, A.1
-
115
-
-
4444344451
-
Cathepsin K inhibitors: their potential as anti-osteoporosis agents
-
Deaton, D.N., Kumar, S., Cathepsin K inhibitors: their potential as anti-osteoporosis agents. Prog. Med. Chem. 42 (2004), 245–375.
-
(2004)
Prog. Med. Chem.
, vol.42
, pp. 245-375
-
-
Deaton, D.N.1
Kumar, S.2
-
116
-
-
38749144762
-
The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K
-
Gauthier, J.Y., et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18 (2008), 923–928.
-
(2008)
Bioorg. Med. Chem. Lett.
, vol.18
, pp. 923-928
-
-
Gauthier, J.Y.1
-
117
-
-
84941584558
-
Development of N-(functionalized benzoyl)-homocycloleucyl-glycinonitriles as potent cathepsin K inhibitors
-
Borišek, J., et al. Development of N-(functionalized benzoyl)-homocycloleucyl-glycinonitriles as potent cathepsin K inhibitors. J. Med. Chem. 58 (2015), 6928–6937.
-
(2015)
J. Med. Chem.
, vol.58
, pp. 6928-6937
-
-
Borišek, J.1
-
118
-
-
85014629423
-
Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib
-
Law, S., et al. Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib. Biochem. J. 474 (2017), 851–864.
-
(2017)
Biochem. J.
, vol.474
, pp. 851-864
-
-
Law, S.1
-
119
-
-
84864250242
-
(1R,2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole -2-carbonyl)cyclohexanecarboxamide (AZD4996): a potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis
-
Dossetter, A.G., et al. (1R,2R)-N-(1-cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole -2-carbonyl)cyclohexanecarboxamide (AZD4996): a potent and highly selective cathepsin K inhibitor for the treatment of osteoarthritis. J. Med. Chem. 55 (2012), 6363–6374.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 6363-6374
-
-
Dossetter, A.G.1
-
120
-
-
77949486200
-
Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2: modification of P3, P4, and P5 regions
-
Wiener, J.J., et al. Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2: modification of P3, P4, and P5 regions. Bioorg. Med. Chem. Lett. 20 (2010), 2375–2378.
-
(2010)
Bioorg. Med. Chem. Lett.
, vol.20
, pp. 2375-2378
-
-
Wiener, J.J.1
-
121
-
-
67650151243
-
Dipeptidyl nitrile inhibitors of cathepsin L
-
Asaad, N., et al. Dipeptidyl nitrile inhibitors of cathepsin L. Bioorg. Med. Chem. Lett. 19 (2009), 4280–4283.
-
(2009)
Bioorg. Med. Chem. Lett.
, vol.19
, pp. 4280-4283
-
-
Asaad, N.1
-
122
-
-
67649617069
-
Subsite cooperativity in protease specificity
-
Ng, N.M., et al. Subsite cooperativity in protease specificity. Biol. Chem. 390 (2009), 401–407.
-
(2009)
Biol. Chem.
, vol.390
, pp. 401-407
-
-
Ng, N.M.1
-
123
-
-
70349471029
-
Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools
-
Desmarais, S., et al. Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol. Chem. 390 (2009), 941–948.
-
(2009)
Biol. Chem.
, vol.390
, pp. 941-948
-
-
Desmarais, S.1
-
124
-
-
0035953314
-
Azepanone-based inhibitors of human and rat cathepsin K
-
Marquis, R.W., et al. Azepanone-based inhibitors of human and rat cathepsin K. J. Med. Chem. 44 (2001), 1380–1395.
-
(2001)
J. Med. Chem.
, vol.44
, pp. 1380-1395
-
-
Marquis, R.W.1
-
125
-
-
0034808707
-
Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate
-
Stroup, G.B., et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone Miner. Res. 16 (2001), 1739–1746.
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 1739-1746
-
-
Stroup, G.B.1
-
126
-
-
84155164502
-
Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys
-
Jerome, C., et al. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos. Int. 22 (2011), 3001–3011.
-
(2011)
Osteoporos. Int.
, vol.22
, pp. 3001-3011
-
-
Jerome, C.1
-
127
-
-
28144452675
-
Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity
-
Falgueyret, J.P., et al. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 48 (2005), 7535–7543.
-
(2005)
J. Med. Chem.
, vol.48
, pp. 7535-7543
-
-
Falgueyret, J.P.1
-
128
-
-
37349029510
-
Effect of cathepsin K inhibitor basicity on in vivo off-target activities
-
Desmarais, S., et al. Effect of cathepsin K inhibitor basicity on in vivo off-target activities. Mol. Pharmacol. 73 (2008), 147–156.
-
(2008)
Mol. Pharmacol.
, vol.73
, pp. 147-156
-
-
Desmarais, S.1
-
129
-
-
84892698576
-
Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study
-
Eastell, R., et al. Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J. Bone Miner. Res. 29 (2014), 458–466.
-
(2014)
J. Bone Miner. Res.
, vol.29
, pp. 458-466
-
-
Eastell, R.1
-
130
-
-
84894435615
-
The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study
-
Engelke, K., et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J. Bone Miner. Res. 29 (2014), 629–638.
-
(2014)
J. Bone Miner. Res.
, vol.29
, pp. 629-638
-
-
Engelke, K.1
-
131
-
-
77953510486
-
Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density
-
Bone, H.G., et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res. 25 (2010), 937–947.
-
(2010)
J. Bone Miner. Res.
, vol.25
, pp. 937-947
-
-
Bone, H.G.1
-
132
-
-
84930516774
-
Odanacatib: a review of its potential in the management of osteoporosis in postmenopausal women
-
Chapurlat, R.D., Odanacatib: a review of its potential in the management of osteoporosis in postmenopausal women. Ther. Adv. Musculoskelet. Dis. 7 (2015), 103–109.
-
(2015)
Ther. Adv. Musculoskelet. Dis.
, vol.7
, pp. 103-109
-
-
Chapurlat, R.D.1
-
133
-
-
85013167848
-
Merck & Co. drops osteoporosis drug odanacatib
-
669–669
-
Mullard, A., Merck & Co. drops osteoporosis drug odanacatib. Nat. Rev. Drug Discov., 15, 2016 669–669.
-
(2016)
Nat. Rev. Drug Discov.
, vol.15
-
-
Mullard, A.1
-
134
-
-
84924364538
-
Efficacy and safety of odanacatib treatment for patients with osteoporosis: a meta-analysis
-
Feng, S., et al. Efficacy and safety of odanacatib treatment for patients with osteoporosis: a meta-analysis. J. Bone Miner. Metab. 33 (2015), 448–454.
-
(2015)
J. Bone Miner. Metab.
, vol.33
, pp. 448-454
-
-
Feng, S.1
-
135
-
-
85029649682
-
Inhibition of CTX-II release by cathepsin K inhibition in vivo but not in vitro suggests that anti-resorptive therapy protects cartilage
-
Lindstrom, E., et al. Inhibition of CTX-II release by cathepsin K inhibition in vivo but not in vitro suggests that anti-resorptive therapy protects cartilage. Osteoarthritis Cartilage, 23, 2015, A310.
-
(2015)
Osteoarthritis Cartilage
, vol.23
, pp. A310
-
-
Lindstrom, E.1
-
136
-
-
84859794984
-
Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis
-
Hayami, T., et al. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone 50 (2012), 1250–1259.
-
(2012)
Bone
, vol.50
, pp. 1250-1259
-
-
Hayami, T.1
-
137
-
-
85029664498
-
The cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis
-
Burston, J., et al. The cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis. Osteoarthritis Cartilage, 24, 2016, S454.
-
(2016)
Osteoarthritis Cartilage
, vol.24
, pp. S454
-
-
Burston, J.1
-
138
-
-
82755197933
-
Proteases involved in cartilage matrix degradation in osteoarthritis
-
Troeberg, L., Nagase, H., Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 1824 (2012), 133–145.
-
(2012)
Biochim. Biophys. Acta
, vol.1824
, pp. 133-145
-
-
Troeberg, L.1
Nagase, H.2
-
139
-
-
0038304085
-
Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts
-
Everts, V., et al. Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts. Calcif. Tissue Int. 73 (2003), 380–386.
-
(2003)
Calcif. Tissue Int.
, vol.73
, pp. 380-386
-
-
Everts, V.1
-
140
-
-
2442694270
-
Pivotal role of cathepsin K in lung fibrosis
-
Buhling, F., et al. Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 164 (2004), 2203–2216.
-
(2004)
Am. J. Pathol.
, vol.164
, pp. 2203-2216
-
-
Buhling, F.1
-
141
-
-
0038481173
-
Thyroid functions of mouse cathepsins B, K, and L
-
Friedrichs, B., et al. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111 (2003), 1733–1745.
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 1733-1745
-
-
Friedrichs, B.1
-
142
-
-
9144270600
-
Cathepsin K: a cysteine protease with unique kinin-degrading properties
-
Godat, E., et al. Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem. J. 383 (2004), 501–506.
-
(2004)
Biochem. J.
, vol.383
, pp. 501-506
-
-
Godat, E.1
-
143
-
-
84946225964
-
Local co-delivery of rhBMP-2 and cathepsin K inhibitor L006235 in poly(d,l-lactide-co-glycolide) nanospheres
-
Yu, N.Y., et al. Local co-delivery of rhBMP-2 and cathepsin K inhibitor L006235 in poly(d,l-lactide-co-glycolide) nanospheres. J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017), 136–144.
-
(2017)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.105
, pp. 136-144
-
-
Yu, N.Y.1
-
144
-
-
84918586752
-
Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor
-
Sharma, V., et al. Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochem. J. 465 (2015), 163–173.
-
(2015)
Biochem. J.
, vol.465
, pp. 163-173
-
-
Sharma, V.1
-
145
-
-
84906993712
-
A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods
-
Novinec, M., et al. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat. Commun., 5, 2014, 3287.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3287
-
-
Novinec, M.1
-
146
-
-
79954784781
-
Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity
-
Baugh, M., et al. Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. J. Autoimmun. 36 (2011), 201–209.
-
(2011)
J. Autoimmun.
, vol.36
, pp. 201-209
-
-
Baugh, M.1
-
147
-
-
79952921391
-
Genetic and pharmacological evaluation of cathepsin s in a mouse model of asthma
-
Deschamps, K., et al. Genetic and pharmacological evaluation of cathepsin s in a mouse model of asthma. Am. J. Respir. Cell Mol. Biol. 45 (2011), 81–87.
-
(2011)
Am. J. Respir. Cell Mol. Biol.
, vol.45
, pp. 81-87
-
-
Deschamps, K.1
-
148
-
-
12444250686
-
Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis
-
Yang, H., et al. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J. Immunol. 174 (2005), 1729–1737.
-
(2005)
J. Immunol.
, vol.174
, pp. 1729-1737
-
-
Yang, H.1
-
149
-
-
84887562856
-
Characterization of VBY-129, a cathepsin S inhibitor efficacious in a mouse model of psoriasis
-
Holsinger, L.J., et al. Characterization of VBY-129, a cathepsin S inhibitor efficacious in a mouse model of psoriasis. J. Invest. Dermatol., 129, 2009.
-
(2009)
J. Invest. Dermatol.
, vol.129
-
-
Holsinger, L.J.1
-
150
-
-
84903456552
-
Tear cathepsin S as a candidate biomarker for Sjogren's syndrome
-
Hamm-Alvarez, S.F., et al. Tear cathepsin S as a candidate biomarker for Sjogren's syndrome. Arthritis Rheumatol. 66 (2014), 1872–1881.
-
(2014)
Arthritis Rheumatol.
, vol.66
, pp. 1872-1881
-
-
Hamm-Alvarez, S.F.1
-
151
-
-
84921366294
-
Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming
-
Rupanagudi, K.V., et al. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann. Rheum. Dis. 74 (2015), 452–463.
-
(2015)
Ann. Rheum. Dis.
, vol.74
, pp. 452-463
-
-
Rupanagudi, K.V.1
-
152
-
-
84983731357
-
Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain
-
Hewitt, E., et al. Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J. Pharmacol. Exp. Ther. 358 (2016), 387–396.
-
(2016)
J. Pharmacol. Exp. Ther.
, vol.358
, pp. 387-396
-
-
Hewitt, E.1
-
153
-
-
52049104957
-
Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-cyanopyrimidines. Part 2
-
Irie, O., et al. Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-cyanopyrimidines. Part 2. Bioorg. Med. Chem. Lett. 18 (2008), 5280–5284.
-
(2008)
Bioorg. Med. Chem. Lett.
, vol.18
, pp. 5280-5284
-
-
Irie, O.1
-
154
-
-
84918775242
-
Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects
-
Payne, C.D., et al. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. Br. J. Clin. Pharmacol. 78 (2014), 1334–1342.
-
(2014)
Br. J. Clin. Pharmacol.
, vol.78
, pp. 1334-1342
-
-
Payne, C.D.1
-
155
-
-
84949202999
-
Discontinued neuropathic pain therapy between 2009-2015
-
Knezevic, N.N., et al. Discontinued neuropathic pain therapy between 2009-2015. Expert Opin. Investig. Drugs 24 (2015), 1631–1646.
-
(2015)
Expert Opin. Investig. Drugs
, vol.24
, pp. 1631-1646
-
-
Knezevic, N.N.1
-
156
-
-
77952475301
-
Therapeutic utility and medicinal chemistry of cathepsin C inhibitors
-
Guay, D., et al. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors. Curr. Top. Med. Chem. 10 (2010), 708–716.
-
(2010)
Curr. Top. Med. Chem.
, vol.10
, pp. 708-716
-
-
Guay, D.1
-
157
-
-
44249115565
-
In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C
-
Methot, N., et al. In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C. Mol. Pharmacol. 73 (2008), 1857–1865.
-
(2008)
Mol. Pharmacol.
, vol.73
, pp. 1857-1865
-
-
Methot, N.1
-
158
-
-
50849133244
-
Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
-
Schurigt, U., et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol. Chem. 389 (2008), 1067–1074.
-
(2008)
Biol. Chem.
, vol.389
, pp. 1067-1074
-
-
Schurigt, U.1
-
159
-
-
84863229642
-
Cathepsin B inhibition limits bone metastasis in breast cancer
-
Withana, N.P., et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res. 72 (2012), 1199–1209.
-
(2012)
Cancer Res.
, vol.72
, pp. 1199-1209
-
-
Withana, N.P.1
-
160
-
-
80052587306
-
Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment
-
Mikhaylov, G., et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6 (2011), 594–602.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 594-602
-
-
Mikhaylov, G.1
-
161
-
-
78149358974
-
Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model
-
Elie, B.T., et al. Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 92 (2010), 1618–1624.
-
(2010)
Biochimie
, vol.92
, pp. 1618-1624
-
-
Elie, B.T.1
-
162
-
-
84949534493
-
A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression
-
Salpeter, S.J., et al. A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene 34 (2015), 6066–6078.
-
(2015)
Oncogene
, vol.34
, pp. 6066-6078
-
-
Salpeter, S.J.1
-
163
-
-
84938834681
-
Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity
-
Mirkovic, B., et al. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 6 (2015), 19027–19042.
-
(2015)
Oncotarget
, vol.6
, pp. 19027-19042
-
-
Mirkovic, B.1
-
164
-
-
84963805097
-
A bioavailable cathepsin S nitrile inhibitor abrogates tumor development
-
Wilkinson, R.D., et al. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol. Cancer, 15, 2016, 29.
-
(2016)
Mol. Cancer
, vol.15
, pp. 29
-
-
Wilkinson, R.D.1
-
165
-
-
84964048466
-
Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94
-
Sudhan, D.R., et al. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin. Exp. Metastasis 33 (2016), 461–473.
-
(2016)
Clin. Exp. Metastasis
, vol.33
, pp. 461-473
-
-
Sudhan, D.R.1
-
166
-
-
84994759902
-
Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3
-
Alishekevitz, D., et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17 (2016), 1344–1356.
-
(2016)
Cell Rep.
, vol.17
, pp. 1344-1356
-
-
Alishekevitz, D.1
-
167
-
-
84855828185
-
Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas
-
Burden, R.E., et al. Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 94 (2012), 487–493.
-
(2012)
Biochimie
, vol.94
, pp. 487-493
-
-
Burden, R.E.1
-
168
-
-
84929629269
-
Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin
-
Gangoda, L., et al. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget 6 (2015), 11175–11190.
-
(2015)
Oncotarget
, vol.6
, pp. 11175-11190
-
-
Gangoda, L.1
-
169
-
-
78649283330
-
Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis
-
Alamir, I., et al. Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis. Clin. Exp. Immunol. 162 (2010), 298–305.
-
(2010)
Clin. Exp. Immunol.
, vol.162
, pp. 298-305
-
-
Alamir, I.1
-
170
-
-
84960194141
-
Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques
-
Abd-Elrahman, I., et al. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke 47 (2016), 1101–1108.
-
(2016)
Stroke
, vol.47
, pp. 1101-1108
-
-
Abd-Elrahman, I.1
-
171
-
-
84904438282
-
In vivo imaging of mouse tumors by a lipidated cathepsin S substrate
-
Hu, H.Y., et al. In vivo imaging of mouse tumors by a lipidated cathepsin S substrate. Angew. Chem. Int. Ed. Engl. 53 (2014), 7669–7673.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 7669-7673
-
-
Hu, H.Y.1
-
172
-
-
84898045812
-
In vivo molecular imaging of cathepsin and matrix metalloproteinase activity discriminates between arthritic and osteoarthritic processes in mice
-
Vermeij, E.A., et al. In vivo molecular imaging of cathepsin and matrix metalloproteinase activity discriminates between arthritic and osteoarthritic processes in mice. Mol. Imaging 13 (2014), 1–10.
-
(2014)
Mol. Imaging
, vol.13
, pp. 1-10
-
-
Vermeij, E.A.1
-
173
-
-
79551503110
-
Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation
-
Caglič, D., et al. Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation. Bioorg. Med. Chem. 19 (2011), 1055–1061.
-
(2011)
Bioorg. Med. Chem.
, vol.19
, pp. 1055-1061
-
-
Caglič, D.1
-
174
-
-
84955451151
-
Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes
-
Withana, N.P., et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci. Rep., 6, 2016, 19755.
-
(2016)
Sci. Rep.
, vol.6
, pp. 19755
-
-
Withana, N.P.1
-
175
-
-
34548666006
-
Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes
-
Blum, G., et al. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3 (2007), 668–677.
-
(2007)
Nat. Chem. Biol.
, vol.3
, pp. 668-677
-
-
Blum, G.1
-
176
-
-
38049057786
-
Selective activity-based probes for cysteine cathepsins
-
Watzke, A., et al. Selective activity-based probes for cysteine cathepsins. Angew. Chem. Int. Ed. Engl. 47 (2008), 406–409.
-
(2008)
Angew. Chem. Int. Ed. Engl.
, vol.47
, pp. 406-409
-
-
Watzke, A.1
-
177
-
-
84885112885
-
Improved quenched fluorescent probe for imaging of cysteine cathepsin activity
-
Verdoes, M., et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135 (2013), 14726–14730.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 14726-14730
-
-
Verdoes, M.1
-
178
-
-
84954509620
-
A mouse–human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer
-
Whitley, M.J., et al. A mouse–human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med., 8, 2016, 320ra324.
-
(2016)
Sci. Transl. Med.
, vol.8
, pp. 320ra324
-
-
Whitley, M.J.1
-
179
-
-
84875801897
-
A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs
-
Eward, W.C., et al. A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs. Clin. Orthop. Relat. Res. 471 (2013), 834–842.
-
(2013)
Clin. Orthop. Relat. Res.
, vol.471
, pp. 834-842
-
-
Eward, W.C.1
-
180
-
-
84867887408
-
Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging
-
Mito, J.K., et al. Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging. Cancer 118 (2012), 5320–5330.
-
(2012)
Cancer
, vol.118
, pp. 5320-5330
-
-
Mito, J.K.1
-
181
-
-
84965082269
-
A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application
-
Garland, M., et al. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23 (2016), 122–136.
-
(2016)
Cell Chem. Biol.
, vol.23
, pp. 122-136
-
-
Garland, M.1
-
182
-
-
84991384034
-
Dual-modality activity-based probes as molecular imaging agents for vascular inflammation
-
Withana, N.P., et al. Dual-modality activity-based probes as molecular imaging agents for vascular inflammation. J. Nucl. Med. 57 (2016), 1583–1590.
-
(2016)
J. Nucl. Med.
, vol.57
, pp. 1583-1590
-
-
Withana, N.P.1
-
183
-
-
84925314224
-
Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor
-
Mikhaylov, G., et al. Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor. Angew. Chem. Int. Ed. Engl. 53 (2014), 10077–10081.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 10077-10081
-
-
Mikhaylov, G.1
-
184
-
-
84906258696
-
In vivo magnetic resonance imaging of tumor protease activity
-
Haris, M., et al. In vivo magnetic resonance imaging of tumor protease activity. Sci. Rep., 4, 2014, 6081.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6081
-
-
Haris, M.1
-
185
-
-
85022342001
-
Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin
-
Kramer, L., et al. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Theranostics 7 (2017), 2806–2821.
-
(2017)
Theranostics
, vol.7
, pp. 2806-2821
-
-
Kramer, L.1
-
186
-
-
84979862414
-
Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes
-
Withana, N.P., et al. Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nat. Protoc. 11 (2016), 184–191.
-
(2016)
Nat. Protoc.
, vol.11
, pp. 184-191
-
-
Withana, N.P.1
-
187
-
-
84924094144
-
Principles in the design of ligand-targeted cancer therapeutics and imaging agents
-
Srinivasarao, M., et al. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14 (2015), 203–219.
-
(2015)
Nat. Rev. Drug Discov.
, vol.14
, pp. 203-219
-
-
Srinivasarao, M.1
-
188
-
-
84957798682
-
Proteases in cancer drug delivery
-
Vandooren, J., et al. Proteases in cancer drug delivery. Adv. Drug Deliv. Rev. 97 (2016), 144–155.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.97
, pp. 144-155
-
-
Vandooren, J.1
-
189
-
-
84959456912
-
New developments for antibody–drug conjugate-based therapeutic approaches
-
de Goeij, B.E., Lambert, J.M., New developments for antibody–drug conjugate-based therapeutic approaches. Curr. Opin. Immunol. 40 (2016), 14–23.
-
(2016)
Curr. Opin. Immunol.
, vol.40
, pp. 14-23
-
-
de Goeij, B.E.1
Lambert, J.M.2
-
190
-
-
84988642872
-
Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs
-
Kern, J.C., et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug. Chem. 27 (2016), 2081–2088.
-
(2016)
Bioconjug. Chem.
, vol.27
, pp. 2081-2088
-
-
Kern, J.C.1
-
191
-
-
84943585919
-
Current ADC linker chemistry
-
Jain, N., et al. Current ADC linker chemistry. Pharm. Res. 32 (2015), 3526–3540.
-
(2015)
Pharm. Res.
, vol.32
, pp. 3526-3540
-
-
Jain, N.1
-
192
-
-
84969509943
-
Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design
-
Dorywalska, M., et al. Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Cancer Ther. 15 (2016), 958–970.
-
(2016)
Mol. Cancer Ther.
, vol.15
, pp. 958-970
-
-
Dorywalska, M.1
-
193
-
-
80054117546
-
Brentuximab vedotin (SGN-35)
-
Katz, J., et al. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 17 (2011), 6428–6436.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 6428-6436
-
-
Katz, J.1
-
194
-
-
85007500664
-
Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix
-
Gebleux, R., et al. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int. J. Cancer 140 (2017), 1670–1679.
-
(2017)
Int. J. Cancer
, vol.140
, pp. 1670-1679
-
-
Gebleux, R.1
-
195
-
-
33846331255
-
In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases
-
Shaffer, S.A., et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 59 (2007), 537–548.
-
(2007)
Cancer Chemother. Pharmacol.
, vol.59
, pp. 537-548
-
-
Shaffer, S.A.1
-
196
-
-
44649193032
-
Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer
-
Langer, C.J., et al. Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J. Thorac. Oncol. 3 (2008), 623–630.
-
(2008)
J. Thorac. Oncol.
, vol.3
, pp. 623-630
-
-
Langer, C.J.1
-
197
-
-
84941312661
-
Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy
-
Ben-Nun, Y., et al. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy. Theranostics 5 (2015), 847–862.
-
(2015)
Theranostics
, vol.5
, pp. 847-862
-
-
Ben-Nun, Y.1
-
198
-
-
84879126791
-
Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo
-
Shon, S.M., et al. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo. Arterioscler. Thromb. Vasc. Biol. 33 (2013), 1360–1365.
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 1360-1365
-
-
Shon, S.M.1
-
199
-
-
12044253640
-
The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity
-
Musil, D., et al. The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10 (1991), 2321–2330.
-
(1991)
EMBO J.
, vol.10
, pp. 2321-2330
-
-
Musil, D.1
-
200
-
-
0039547996
-
Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S
-
Guncar, G., et al. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 18 (1999), 793–803.
-
(1999)
EMBO J.
, vol.18
, pp. 793-803
-
-
Guncar, G.1
-
201
-
-
17944366493
-
Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases
-
Turk, D., et al. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 20 (2001), 6570–6582.
-
(2001)
EMBO J.
, vol.20
, pp. 6570-6582
-
-
Turk, D.1
|