메뉴 건너뛰기




Volumn 35, Issue , 2017, Pages 85-118

Thymic epithelial cells

Author keywords

Aire; Foxp3; T cell; Thymic epithelium; Thymus; Tolerance

Indexed keywords

TRANSCRIPTION FACTOR FOXP3; AUTOIMMUNE REGULATOR PROTEIN; FORKHEAD TRANSCRIPTION FACTOR; FOXP3 PROTEIN, HUMAN; TRANSCRIPTION FACTOR;

EID: 85018285755     PISSN: 07320582     EISSN: 15453278     Source Type: Book Series    
DOI: 10.1146/annurev-immunol-051116-052320     Document Type: Review
Times cited : (242)

References (218)
  • 1
    • 84906272537 scopus 로고    scopus 로고
    • Origin and evolution of adaptive immunity
    • Boehm T, Swann JB. 2014. Origin and evolution of adaptive immunity. Annu. Rev. Anim. Biosci. 2:259-83
    • (2014) Annu. Rev. Anim. Biosci. , vol.2 , pp. 259-283
    • Boehm, T.1    Swann, J.B.2
  • 2
    • 33644845679 scopus 로고    scopus 로고
    • Journey through the thymus: Stromal guides for T-cell development and selection
    • Takahama Y. 2006. Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6(2):127-35
    • (2006) Nat. Rev. Immunol. , vol.6 , Issue.2 , pp. 127-135
    • Takahama, Y.1
  • 5
    • 33745516115 scopus 로고    scopus 로고
    • Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium
    • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ. 2006. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988-91
    • (2006) Nature , vol.441 , Issue.7096 , pp. 988-991
    • Rossi, S.W.1    Jenkinson, W.E.2    Anderson, G.3    Jenkinson, E.J.4
  • 6
    • 33745532385 scopus 로고    scopus 로고
    • Formation of a functional thymus initiated by a postnatal epithelial progenitor cell
    • Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T. 2006. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992-96
    • (2006) Nature , vol.441 , Issue.7096 , pp. 992-996
    • Bleul, C.C.1    Corbeaux, T.2    Reuter, A.3    Fisch, P.4    Monting, J.S.5    Boehm, T.6
  • 7
    • 84962917590 scopus 로고    scopus 로고
    • Dynamic spatio-temporal contribution of singleβ5t+ cortical epithelial precursors to the thymusmedulla
    • Mayer CE, Zuklys S, Zhanybekova S, Ohigashi I, Teh H-Y, et al. 2016.Dynamic spatio-temporal contribution of singleβ5t+ cortical epithelial precursors to the thymusmedulla. Eur. J. Immunol. 46(4):846-56
    • (2016) Eur. J. Immunol. , vol.46 , Issue.4 , pp. 846-856
    • Mayer, C.E.1    Zuklys, S.2    Zhanybekova, S.3    Ohigashi, I.4    Teh, H.-Y.5
  • 8
    • 84947347108 scopus 로고    scopus 로고
    • Adult thymic medullary epithelium is maintained and regenerated by lineage-restricted cells rather than bipotent progenitors
    • Ohigashi I, Zuklys S, Sakata M, Mayer CE, Hamazaki Y, et al. 2015. Adult thymic medullary epithelium is maintained and regenerated by lineage-restricted cells rather than bipotent progenitors. Cell Rep. 13(7):1432-43
    • (2015) Cell Rep. , vol.13 , Issue.7 , pp. 1432-1443
    • Ohigashi, I.1    Zuklys, S.2    Sakata, M.3    Mayer, C.E.4    Hamazaki, Y.5
  • 9
    • 84880685834 scopus 로고    scopus 로고
    • Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo
    • Ribeiro AR, Rodrigues PM, Meireles C, Di Santo JP, Alves NL. 2013. Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo. J. Immunol. 191(3):1200-9
    • (2013) J. Immunol. , vol.191 , Issue.3 , pp. 1200-1209
    • Ribeiro, A.R.1    Rodrigues, P.M.2    Meireles, C.3    Di Santo, J.P.4    Alves, N.L.5
  • 10
    • 84874962972 scopus 로고    scopus 로고
    • Generation of both cortical and AIRE+ medullary thymic epithelial compartments from CD205+ progenitors
    • Baik S, Jenkinson EJ, Lane PJL, Anderson G, Jenkinson WE. 2013. Generation of both cortical and AIRE+ medullary thymic epithelial compartments from CD205+ progenitors. Eur. J. Immunol. 43(3):589-94
    • (2013) Eur. J. Immunol. , vol.43 , Issue.3 , pp. 589-594
    • Baik, S.1    Jenkinson, E.J.2    Lane, P.J.L.3    Anderson, G.4    Jenkinson, W.E.5
  • 11
    • 84892472653 scopus 로고    scopus 로고
    • Serial progression of cortical and medullary thymic epithelial microenvironments
    • Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, et al. 2014. Serial progression of cortical and medullary thymic epithelial microenvironments. Eur. J. Immunol. 44(1):16-22
    • (2014) Eur. J. Immunol. , vol.44 , Issue.1 , pp. 16-22
    • Alves, N.L.1    Takahama, Y.2    Ohigashi, I.3    Ribeiro, A.R.4    Baik, S.5
  • 12
    • 0036305567 scopus 로고    scopus 로고
    • Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells
    • Gill J, Malin M, Hollander GA, Boyd R. 2002. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat. Immunol. 3(7):635-42
    • (2002) Nat. Immunol. , vol.3 , Issue.7 , pp. 635-642
    • Gill, J.1    Malin, M.2    Hollander, G.A.3    Boyd, R.4
  • 14
    • 38949110778 scopus 로고    scopus 로고
    • Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells
    • Depreter MGL, Blair NF, Gaskell TL, Nowell CS, Davern K, et al. 2008. Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. PNAS 105(3):961-66
    • (2008) PNAS , vol.105 , Issue.3 , pp. 961-966
    • Depreter, M.G.L.1    Blair, N.F.2    Gaskell, T.L.3    Nowell, C.S.4    Davern, K.5
  • 16
    • 84907336905 scopus 로고    scopus 로고
    • Adult thymus contains FoxN1-epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages
    • Ucar A, Ucar O, Klug P, Matt S, Brunk F, et al. 2014. Adult thymus contains FoxN1-epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages. Immunity 41(2):257-69
    • (2014) Immunity , vol.41 , Issue.2 , pp. 257-269
    • Ucar, A.1    Ucar, O.2    Klug, P.3    Matt, S.4    Brunk, F.5
  • 17
    • 84908356419 scopus 로고    scopus 로고
    • Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus
    • Wong K, Lister NL, Barsanti M, Lim JMC, Hammett MV, et al. 2014. Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep. 8(4):1198-209
    • (2014) Cell Rep. , vol.8 , Issue.4 , pp. 1198-1209
    • Wong, K.1    Lister, N.L.2    Barsanti, M.3    Lim, J.M.C.4    Hammett, M.V.5
  • 18
    • 84963829026 scopus 로고    scopus 로고
    • Identification of a bipotent epithelial progenitor population in the adult thymus
    • Ulyanchenko S, O'Neill KE, Medley T, Farley AM, Vaidya HJ, et al. 2016. Identification of a bipotent epithelial progenitor population in the adult thymus. Cell Rep. 14(12):2819-32
    • (2016) Cell Rep. , vol.14 , Issue.12 , pp. 2819-2832
    • Ulyanchenko, S.1    O'Neill, K.E.2    Medley, T.3    Farley, A.M.4    Vaidya, H.J.5
  • 19
    • 0035856960 scopus 로고    scopus 로고
    • Thymus medulla consisting of epithelial islets each derived from a single progenitor
    • Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C. 2001. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414(6865):763-68
    • (2001) Nature , vol.414 , Issue.6865 , pp. 763-768
    • Rodewald, H.R.1    Paul, S.2    Haller, C.3    Bluethmann, H.4    Blum, C.5
  • 21
    • 84857728231 scopus 로고    scopus 로고
    • Regenerative capacity of adult cortical thymic epithelial cells
    • Rode I, Boehm T. 2012. Regenerative capacity of adult cortical thymic epithelial cells. PNAS 109(9):3463-68
    • (2012) PNAS , vol.109 , Issue.9 , pp. 3463-3468
    • Rode, I.1    Boehm, T.2
  • 22
    • 35748941369 scopus 로고    scopus 로고
    • Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire
    • Gray D, Abramson J, Benoist C, Mathis D. 2007. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J. Exp. Med. 204(11):2521-28
    • (2007) J. Exp. Med. , vol.204 , Issue.11 , pp. 2521-2528
    • Gray, D.1    Abramson, J.2    Benoist, C.3    Mathis, D.4
  • 23
    • 34250336454 scopus 로고    scopus 로고
    • RANKsignals fromCD4+3-inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla
    • Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE, et al. 2007.RANKsignals fromCD4+3-inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204(6):1267-72
    • (2007) J. Exp. Med. , vol.204 , Issue.6 , pp. 1267-1272
    • Rossi, S.W.1    Kim, M.-Y.2    Leibbrandt, A.3    Parnell, S.M.4    Jenkinson, W.E.5
  • 24
    • 84877821233 scopus 로고    scopus 로고
    • Lymphotoxin β receptor regulates the development of CCL21-expressing subset of postnatal medullary thymic epithelial cells
    • Lkhagvasuren E, Sakata M, Ohigashi I, Takahama Y. 2013. Lymphotoxin β receptor regulates the development of CCL21-expressing subset of postnatal medullary thymic epithelial cells. J. Immunol. 190(10):5110-17
    • (2013) J. Immunol. , vol.190 , Issue.10 , pp. 5110-5117
    • Lkhagvasuren, E.1    Sakata, M.2    Ohigashi, I.3    Takahama, Y.4
  • 25
    • 34247868281 scopus 로고    scopus 로고
    • Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin
    • Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, et al. 2007. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat. Immunol. 8(3):304-11
    • (2007) Nat. Immunol. , vol.8 , Issue.3 , pp. 304-311
    • Hamazaki, Y.1    Fujita, H.2    Kobayashi, T.3    Choi, Y.4    Scott, H.S.5
  • 26
    • 84912084299 scopus 로고    scopus 로고
    • Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance
    • Sekai M, Hamazaki Y, Minato N. 2014. Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance. Immunity 41(5):753-61
    • (2014) Immunity , vol.41 , Issue.5 , pp. 753-761
    • Sekai, M.1    Hamazaki, Y.2    Minato, N.3
  • 27
    • 84959421084 scopus 로고    scopus 로고
    • Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK+ medullary epithelial progenitors
    • Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G. 2016. Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK+ medullary epithelial progenitors. Eur. J. Immunol. 46(4):857-62
    • (2016) Eur. J. Immunol. , vol.46 , Issue.4 , pp. 857-862
    • Baik, S.1    Sekai, M.2    Hamazaki, Y.3    Jenkinson, W.E.4    Anderson, G.5
  • 28
    • 81755183079 scopus 로고    scopus 로고
    • Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence
    • Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, et al. 2011. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLOS Genet. 7(11):e1002348
    • (2011) PLOS Genet. , vol.7 , Issue.11 , pp. e1002348
    • Nowell, C.S.1    Bredenkamp, N.2    Tetelin, S.3    Jin, X.4    Tischner, C.5
  • 29
    • 84982965083 scopus 로고    scopus 로고
    • Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator
    • Akiyama N, Takizawa N, Miyauchi M, Yanai H, Tateishi R, et al. 2016. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. J. Exp. Med. 213:1441-58
    • (2016) J. Exp. Med. , vol.213 , pp. 1441-1458
    • Akiyama, N.1    Takizawa, N.2    Miyauchi, M.3    Yanai, H.4    Tateishi, R.5
  • 30
    • 51349092893 scopus 로고    scopus 로고
    • The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator
    • Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, et al. 2008. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29(3):438-50
    • (2008) Immunity , vol.29 , Issue.3 , pp. 438-450
    • Hikosaka, Y.1    Nitta, T.2    Ohigashi, I.3    Yano, K.4    Ishimaru, N.5
  • 31
    • 51349111243 scopus 로고    scopus 로고
    • The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance
    • Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, et al. 2008. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29(3):423-37
    • (2008) Immunity , vol.29 , Issue.3 , pp. 423-437
    • Akiyama, T.1    Shimo, Y.2    Yanai, H.3    Qin, J.4    Ohshima, D.5
  • 32
    • 79955549011 scopus 로고    scopus 로고
    • Lymphotoxin signal promotes thymic organogenesis by eliciting rank expression in the embryonic thymic stroma
    • Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, et al. 2011. Lymphotoxin signal promotes thymic organogenesis by eliciting rank expression in the embryonic thymic stroma. J. Immunol. 186(9):5047-57
    • (2011) J. Immunol. , vol.186 , Issue.9 , pp. 5047-5057
    • Mouri, Y.1    Yano, M.2    Shinzawa, M.3    Shimo, Y.4    Hirota, F.5
  • 33
    • 84938958437 scopus 로고    scopus 로고
    • AlternativeNF-κB signaling regulates mTEC differentiation from podoplanin-expressing presursors in the cortico-medullary junction
    • Onder L, Nindl V, Scandella E, Chai Q, Cheng H-W, et al. 2015. AlternativeNF-κB signaling regulates mTEC differentiation from podoplanin-expressing presursors in the cortico-medullary junction. Eur. J. Immunol. 45(8):2218-31
    • (2015) Eur. J. Immunol. , vol.45 , Issue.8 , pp. 2218-2231
    • Onder, L.1    Nindl, V.2    Scandella, E.3    Chai, Q.4    Cheng, H.-W.5
  • 34
    • 77958126305 scopus 로고    scopus 로고
    • Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation
    • Manley NR, Condie BG. 2010. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog. Mol. Biol. Transl. Sci. 92(10):103-20
    • (2010) Prog. Mol. Biol. Transl. Sci. , vol.92 , Issue.10 , pp. 103-120
    • Manley, N.R.1    Condie, B.G.2
  • 35
    • 84962692394 scopus 로고    scopus 로고
    • HDAC3 is a master regulator of mTEC development
    • Goldfarb Y, Kadouri N, Levi B, Sela A, Herzig Y, et al. 2016. HDAC3 is a master regulator of mTEC development. Cell Rep. 15(3):651-65
    • (2016) Cell Rep. , vol.15 , Issue.3 , pp. 651-665
    • Goldfarb, Y.1    Kadouri, N.2    Levi, B.3    Sela, A.4    Herzig, Y.5
  • 36
    • 0029920145 scopus 로고    scopus 로고
    • Two genetically separable steps in the differentiation of thymic epithelium
    • Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, et al. 1996. Two genetically separable steps in the differentiation of thymic epithelium. Science 272(5263):886-89
    • (1996) Science , vol.272 , Issue.5263 , pp. 886-889
    • Nehls, M.1    Kyewski, B.2    Messerle, M.3    Waldschutz, R.4    Schuddekopf, K.5
  • 37
    • 77949312399 scopus 로고    scopus 로고
    • Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy
    • Cheng L, Guo J, Sun L, Fu J, Barnes PF, et al. 2010. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J. Biol. Chem. 285(8):5836-47
    • (2010) J. Biol. Chem. , vol.285 , Issue.8 , pp. 5836-5847
    • Cheng, L.1    Guo, J.2    Sun, L.3    Fu, J.4    Barnes, P.F.5
  • 39
    • 84983490069 scopus 로고    scopus 로고
    • Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells
    • Zuklys S, Handel A, Zhanybekova S, Govani F, Keller M, et al. 2016. Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat. Immunol. 17:1206-15
    • (2016) Nat. Immunol. , vol.17 , pp. 1206-1215
    • Zuklys, S.1    Handel, A.2    Zhanybekova, S.3    Govani, F.4    Keller, M.5
  • 40
    • 26844543561 scopus 로고    scopus 로고
    • BMP signaling is required for normal thymus development
    • Bleul CC, Boehm T. 2005. BMP signaling is required for normal thymus development. J. Immunol. 175(8):5213-21
    • (2005) J. Immunol. , vol.175 , Issue.8 , pp. 5213-5221
    • Bleul, C.C.1    Boehm, T.2
  • 41
    • 77649191415 scopus 로고    scopus 로고
    • Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis
    • Gordon J, Patel SR, Mishina Y, Manley NR. 2010. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 339(1):141-54
    • (2010) Dev. Biol. , vol.339 , Issue.1 , pp. 141-154
    • Gordon, J.1    Patel, S.R.2    Mishina, Y.3    Manley, N.R.4
  • 42
    • 0036852151 scopus 로고    scopus 로고
    • Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice
    • Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, et al. 2002. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat. Immunol. 3(11):1102-8
    • (2002) Nat. Immunol. , vol.3 , Issue.11 , pp. 1102-1108
    • Balciunaite, G.1    Keller, M.P.2    Balciunaite, E.3    Piali, L.4    Zuklys, S.5
  • 43
    • 81055126764 scopus 로고    scopus 로고
    • Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors
    • Heinonen KM, Vanegas JR, Brochu S, Shan J, Vainio SJ, Perreault C. 2011. Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118(19):5163-73
    • (2011) Blood , vol.118 , Issue.19 , pp. 5163-5173
    • Heinonen, K.M.1    Vanegas, J.R.2    Brochu, S.3    Shan, J.4    Vainio, S.J.5    Perreault, C.6
  • 45
    • 77949378933 scopus 로고    scopus 로고
    • DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration
    • Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M. 2010. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLOS ONE 5(2):e9062
    • (2010) PLOS ONE , vol.5 , Issue.2 , pp. e9062
    • Osada, M.1    Jardine, L.2    Misir, R.3    Andl, T.4    Millar, S.E.5    Pezzano, M.6
  • 46
    • 64849101655 scopus 로고    scopus 로고
    • Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function
    • Zuklys S, Gill J, KellerMP, Hauri-Hohl M, Zhanybekova S, et al. 2009. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. J. Immunol. 182(5):2997-3007
    • (2009) J. Immunol. , vol.182 , Issue.5 , pp. 2997-3007
    • Zuklys, S.1    Gill, J.2    Keller, M.P.3    Hauri-Hohl, M.4    Zhanybekova, S.5
  • 47
    • 84959516556 scopus 로고    scopus 로고
    • MTORC1 in thymic epithelial cells is critical for thymopoiesis, T-cell generation, and temporal control of γδT17 development and TCRγ/δ recombination
    • Wang H-X, Shin J, Wang S, Gorentla B, Lin X, et al. 2016. mTORC1 in thymic epithelial cells is critical for thymopoiesis, T-cell generation, and temporal control of γδT17 development and TCRγ/δ recombination. PLOS Biol. 14(2):e1002370
    • (2016) PLOS Biol. , vol.14 , Issue.2 , pp. e1002370
    • Wang, H.-X.1    Shin, J.2    Wang, S.3    Gorentla, B.4    Lin, X.5
  • 48
    • 84975252042 scopus 로고    scopus 로고
    • MTORC2 in thymic epithelial cells controls thymopoiesis and T cell development
    • Wang H-X, Cheng JS, Chu S, Qiu Y-R, Zhong X-P. 2016. mTORC2 in thymic epithelial cells controls thymopoiesis and T cell development. J. Immunol. 197(1):141-50
    • (2016) J. Immunol. , vol.197 , Issue.1 , pp. 141-150
    • Wang, H.-X.1    Cheng, J.S.2    Chu, S.3    Qiu, Y.-R.4    Zhong, X.-P.5
  • 49
    • 34547513872 scopus 로고    scopus 로고
    • Np63 regulates thymic development through enhanced expression of FgfR2 and Jag2
    • Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, et al. 2007. Np63 regulates thymic development through enhanced expression of FgfR2 and Jag2. PNAS 104(29):11999-2004
    • (2007) PNAS , vol.104 , Issue.29 , pp. 11999-12004
    • Candi, E.1    Rufini, A.2    Terrinoni, A.3    Giamboi-Miraglia, A.4    Lena, A.M.5
  • 50
    • 84873129944 scopus 로고    scopus 로고
    • Cbx4 regulates the proliferation of thymic epithelial cells and thymus function
    • Liu B, Liu Y-F, Du Y-R, Mardaryev AN, Yang W, et al. 2013. Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Development 140(4):780-88
    • (2013) Development , vol.140 , Issue.4 , pp. 780-788
    • Liu, B.1    Liu, Y.-F.2    Du, Y.-R.3    Mardaryev, A.N.4    Yang, W.5
  • 51
    • 84855931651 scopus 로고    scopus 로고
    • The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution viamiR-29a mediated suppression of the IFN-areceptor
    • Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, et al. 2011. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution viamiR-29a mediated suppression of the IFN-areceptor. Nat. Immunol. 13(2):181-87
    • (2011) Nat. Immunol. , vol.13 , Issue.2 , pp. 181-187
    • Papadopoulou, A.S.1    Dooley, J.2    Linterman, M.A.3    Pierson, W.4    Ucar, O.5
  • 52
    • 84867287351 scopus 로고    scopus 로고
    • MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection
    • Zuklys S, Mayer CE, Zhanybekova S, Stefanski HE, Nusspaumer G, et al. 2012. microRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. J. Immunol. 189(8):3894-904
    • (2012) J. Immunol. , vol.189 , Issue.8 , pp. 3894-3904
    • Zuklys, S.1    Mayer, C.E.2    Zhanybekova, S.3    Stefanski, H.E.4    Nusspaumer, G.5
  • 53
    • 0035881543 scopus 로고    scopus 로고
    • Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb
    • Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C. 2001. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167(4):1954-61
    • (2001) J. Immunol. , vol.167 , Issue.4 , pp. 1954-1961
    • Revest, J.M.1    Suniara, R.K.2    Kerr, K.3    Owen, J.J.4    Dickson, C.5
  • 54
  • 55
    • 84960076253 scopus 로고    scopus 로고
    • Sonic Hedgehog regulates thymic epithelial cell differentiation
    • Saldana JI, Solanki A, Lau C-I, Sahni H, Ross S, et al. 2016. Sonic Hedgehog regulates thymic epithelial cell differentiation. J. Autoimmun. 68:86-97
    • (2016) J. Autoimmun. , vol.68 , pp. 86-97
    • Saldana, J.I.1    Solanki, A.2    Lau, C.-I.3    Sahni, H.4    Ross, S.5
  • 56
    • 84881120386 scopus 로고    scopus 로고
    • Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development
    • Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, et al. 2013. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell. 13(2):219-29
    • (2013) Cell Stem Cell. , vol.13 , Issue.2 , pp. 219-229
    • Parent, A.V.1    Russ, H.A.2    Khan, I.S.3    LaFlam, T.N.4    Metzger, T.C.5
  • 57
    • 84881123537 scopus 로고    scopus 로고
    • Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo
    • Sun X, Xu J, Lu H, Liu W, Miao Z, et al. 2013. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13(2):230-36
    • (2013) Cell Stem Cell , vol.13 , Issue.2 , pp. 230-236
    • Sun, X.1    Xu, J.2    Lu, H.3    Liu, W.4    Miao, Z.5
  • 58
    • 84930616180 scopus 로고    scopus 로고
    • Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells
    • Su M, Hu R, Jin J, Yan Y, Song Y, et al. 2015. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci. Rep. 5:9882
    • (2015) Sci. Rep. , vol.5 , pp. 9882
    • Su, M.1    Hu, R.2    Jin, J.3    Yan, Y.4    Song, Y.5
  • 59
    • 84861142913 scopus 로고    scopus 로고
    • Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis
    • Sitnik KM, Kotarsky K, White AJ, Jenkinson WE, Anderson G, Agace WW. 2012. Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis. J. Immunol. 188(10):4801-9
    • (2012) J. Immunol. , vol.188 , Issue.10 , pp. 4801-4809
    • Sitnik, K.M.1    Kotarsky, K.2    White, A.J.3    Jenkinson, W.E.4    Anderson, G.5    Agace, W.W.6
  • 60
    • 64149093045 scopus 로고    scopus 로고
    • Notch activation in thymic epithelial cells induces development of thymic microenvironments
    • Masuda K, Germeraad WTV, Satoh R, Itoi M, Ikawa T, et al. 2009. Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol. Immunol. 46(8-9):1756-67
    • (2009) Mol. Immunol. , vol.46 , Issue.8-9 , pp. 1756-1767
    • Masuda, K.1    Germeraad, W.T.V.2    Satoh, R.3    Itoi, M.4    Ikawa, T.5
  • 61
    • 0041884736 scopus 로고    scopus 로고
    • Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR
    • BoehmT, Scheu S, Pfeffer K, Bleul CC. 2003. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med. 198(5):757-69
    • (2003) J. Exp. Med. , vol.198 , Issue.5 , pp. 757-769
    • Boehm, T.1    Scheu, S.2    Pfeffer, K.3    Bleul, C.C.4
  • 62
    • 84958729898 scopus 로고    scopus 로고
    • Requirement of Stat3 signaling in the postnatal development of thymic medullary epithelial cells
    • Satoh R, Kakugawa K, Yasuda T, Yoshida H, Sibilia M, et al. 2016. Requirement of Stat3 signaling in the postnatal development of thymic medullary epithelial cells. PLOS Genet. 12(1):e1005776
    • (2016) PLOS Genet. , vol.12 , Issue.1 , pp. e1005776
    • Satoh, R.1    Kakugawa, K.2    Yasuda, T.3    Yoshida, H.4    Sibilia, M.5
  • 63
    • 84885854982 scopus 로고    scopus 로고
    • Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population
    • Metzger TC, Khan IS, Gardner JM, Mouchess ML, Johannes KP, et al. 2013. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep. 5(1):166-79
    • (2013) Cell Rep. , vol.5 , Issue.1 , pp. 166-179
    • Metzger, T.C.1    Khan, I.S.2    Gardner, J.M.3    Mouchess, M.L.4    Johannes, K.P.5
  • 64
    • 58149316251 scopus 로고    scopus 로고
    • Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance
    • Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, et al. 2008. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J. Exp. Med. 205(12):2827-38
    • (2008) J. Exp. Med. , vol.205 , Issue.12 , pp. 2827-2838
    • Yano, M.1    Kuroda, N.2    Han, H.3    Meguro-Horike, M.4    Nishikawa, Y.5
  • 65
    • 0024330808 scopus 로고
    • Immunosuppression with cyclosporin A alters the thymic microenvironment
    • Kanariou M, Huby R, Ladyman H, Colic M, Sivolapenko G, et al. 1989. Immunosuppression with cyclosporin A alters the thymic microenvironment. Clin. Exp. Immunol. 78(2):263-70
    • (1989) Clin. Exp. Immunol. , vol.78 , Issue.2 , pp. 263-270
    • Kanariou, M.1    Huby, R.2    Ladyman, H.3    Colic, M.4    Sivolapenko, G.5
  • 66
    • 0025885218 scopus 로고
    • Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: Evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment
    • Shores EW, Van Ewijk W, Singer A. 1991. Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur. J. Immunol. 21(7):1657-61
    • (1991) Eur. J. Immunol. , vol.21 , Issue.7 , pp. 1657-1661
    • Shores, E.W.1    Van Ewijk, W.2    Singer, A.3
  • 67
    • 0028890704 scopus 로고
    • Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes
    • Hollander GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, et al. 1995. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373(6512):350-53
    • (1995) Nature , vol.373 , Issue.6512 , pp. 350-353
    • Hollander, G.A.1    Wang, B.2    Nichogiannopoulou, A.3    Platenburg, P.P.4    Van Ewijk, W.5
  • 68
    • 0027758094 scopus 로고
    • Expression of the αβ T-cell receptor is necessary for the generation of the thymic medulla
    • Palmer DB, Viney JL, Ritter MA, Hayday AC, Owen MJ. 1993. Expression of the αβ T-cell receptor is necessary for the generation of the thymic medulla. Dev. Immunol. 3(3):175-79
    • (1993) Dev. Immunol. , vol.3 , Issue.3 , pp. 175-179
    • Palmer, D.B.1    Viney, J.L.2    Ritter, M.A.3    Hayday, A.C.4    Owen, M.J.5
  • 69
    • 84911946540 scopus 로고    scopus 로고
    • Sex steroid blockade enhances thymopoiesis by modulating notch signaling
    • Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VWC, et al. 2014. Sex steroid blockade enhances thymopoiesis by modulating notch signaling. J. Exp. Med. 211(12):2341-49
    • (2014) J. Exp. Med. , vol.211 , Issue.12 , pp. 2341-2349
    • Velardi, E.1    Tsai, J.J.2    Holland, A.M.3    Wertheimer, T.4    Yu, V.W.C.5
  • 70
    • 58849129765 scopus 로고    scopus 로고
    • Cutting edge: Thymic crosstalk regulates delta-like 4 expression on cortical epithelial cells
    • Fiorini E, Ferrero I, Merck E, Favre S, Pierres M, et al. 2008. Cutting edge: Thymic crosstalk regulates delta-like 4 expression on cortical epithelial cells. J. Immunol. 181(12):8199-203
    • (2008) J. Immunol. , vol.181 , Issue.12 , pp. 8199-8203
    • Fiorini, E.1    Ferrero, I.2    Merck, E.3    Favre, S.4    Pierres, M.5
  • 71
    • 77953449167 scopus 로고    scopus 로고
    • Cutting edge: A thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo
    • Alves NL, Huntington ND, Mention J-J, Richard-Le Goff O, Di Santo JP. 2010. Cutting edge: A thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo. J. Immunol. 184(11):5949-53
    • (2010) J. Immunol. , vol.184 , Issue.11 , pp. 5949-5953
    • Alves, N.L.1    Huntington, N.D.2    Mention, J.-J.3    Richard-Le Goff, O.4    Di Santo, J.P.5
  • 72
    • 84861656218 scopus 로고    scopus 로고
    • Thymic epithelial cells: Working class heroes for T cell development and repertoire selection
    • Anderson G, Takahama Y. 2012. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 33(6):256-63
    • (2012) Trends Immunol. , vol.33 , Issue.6 , pp. 256-263
    • Anderson, G.1    Takahama, Y.2
  • 74
    • 38449096249 scopus 로고    scopus 로고
    • Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected
    • Venanzi ES, Gray DHD, Benoist C, Mathis D. 2007. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J. Immunol. 179(9):5693-700
    • (2007) J. Immunol. , vol.179 , Issue.9 , pp. 5693-5700
    • Venanzi, E.S.1    Gray, D.H.D.2    Benoist, C.3    Mathis, D.4
  • 75
    • 47949100152 scopus 로고    scopus 로고
    • LTβR signaling does not regulate Aire-dependent transcripts in medullary thymic epithelial cells
    • Martins VC, Boehm T, Bleul CC. 2008. LTβR signaling does not regulate Aire-dependent transcripts in medullary thymic epithelial cells. J. Immunol. 181(1):400-7
    • (2008) J. Immunol. , vol.181 , Issue.1 , pp. 400-407
    • Martins, V.C.1    Boehm, T.2    Bleul, C.C.3
  • 76
    • 78049496246 scopus 로고    scopus 로고
    • Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells
    • White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, et al. 2010. Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J. Immunol. 185(8):4769-76
    • (2010) J. Immunol. , vol.185 , Issue.8 , pp. 4769-4776
    • White, A.J.1    Nakamura, K.2    Jenkinson, W.E.3    Saini, M.4    Sinclair, C.5
  • 77
    • 84941751182 scopus 로고    scopus 로고
    • Osteoprotegerin-mediated homeostasis of Rank+ thymic epithelial cells does not limit Foxp3+ regulatory T cell development
    • McCarthy NI, Cowan JE, Nakamura K, Bacon A, Baik S, et al. 2015. Osteoprotegerin-mediated homeostasis of Rank+ thymic epithelial cells does not limit Foxp3+ regulatory T cell development. J. Immunol. 195(6):2675-82
    • (2015) J. Immunol. , vol.195 , Issue.6 , pp. 2675-2682
    • McCarthy, N.I.1    Cowan, J.E.2    Nakamura, K.3    Bacon, A.4    Baik, S.5
  • 78
    • 84871127197 scopus 로고    scopus 로고
    • Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla
    • Desanti GE, Cowan JE, Baik S, Parnell SM, White AJ, et al. 2012. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. J. Immunol. 189(12):5519-26
    • (2012) J. Immunol. , vol.189 , Issue.12 , pp. 5519-5526
    • Desanti, G.E.1    Cowan, J.E.2    Baik, S.3    Parnell, S.M.4    White, A.J.5
  • 79
    • 51349101423 scopus 로고    scopus 로고
    • Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity
    • Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, et al. 2008. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity. 29(3):451-63
    • (2008) Immunity. , vol.29 , Issue.3 , pp. 451-463
    • Irla, M.1    Hugues, S.2    Gill, J.3    Nitta, T.4    Hikosaka, Y.5
  • 80
    • 84858795036 scopus 로고    scopus 로고
    • Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium
    • Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, et al. 2012. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. Immunity 36(3):427-37
    • (2012) Immunity , vol.36 , Issue.3 , pp. 427-437
    • Roberts, N.A.1    White, A.J.2    Jenkinson, W.E.3    Turchinovich, G.4    Nakamura, K.5
  • 81
    • 84897512352 scopus 로고    scopus 로고
    • An essential role for medullary thymic epithelial cells during the intrathymic development of invariant NKT cells
    • White AJ, Jenkinson WE, Cowan JE, Parnell SM, Bacon A, et al. 2014. An essential role for medullary thymic epithelial cells during the intrathymic development of invariant NKT cells. J. Immunol. 192(6):2659-66
    • (2014) J. Immunol. , vol.192 , Issue.6 , pp. 2659-2666
    • White, A.J.1    Jenkinson, W.E.2    Cowan, J.E.3    Parnell, S.M.4    Bacon, A.5
  • 82
    • 67549104034 scopus 로고    scopus 로고
    • Neonatal tolerance revisited: A perinatal window for Aire control of autoimmunity
    • Guerau-de-Arellano M, Martinic M, Benoist C, Mathis D. 2009. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J. Exp. Med. 206(6):1245-52
    • (2009) J. Exp. Med. , vol.206 , Issue.6 , pp. 1245-1252
    • Guerau-De-Arellano, M.1    Martinic, M.2    Benoist, C.3    Mathis, D.4
  • 84
    • 65549089187 scopus 로고    scopus 로고
    • Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25
    • Gossens K, Naus S, Corbel SY, Lin S, Rossi FMV, et al. 2009. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med. 206(4):761-78
    • (2009) J. Exp. Med. , vol.206 , Issue.4 , pp. 761-778
    • Gossens, K.1    Naus, S.2    Corbel, S.Y.3    Lin, S.4    Rossi, F.M.V.5
  • 85
    • 0034536820 scopus 로고    scopus 로고
    • Chemokines define distinct microenvironments in the developing thymus
    • Bleul CC, Boehm T. 2000. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol. 30(12):3371-79
    • (2000) Eur. J. Immunol. , vol.30 , Issue.12 , pp. 3371-3379
    • Bleul, C.C.1    Boehm, T.2
  • 86
    • 34547895468 scopus 로고    scopus 로고
    • Chemokine receptor expression defines heterogeneity in the earliest thymic migrants
    • Jenkinson WE, Rossi SW, Parnell SM, Agace WW, Takahama Y, et al. 2007. Chemokine receptor expression defines heterogeneity in the earliest thymic migrants. Eur. J. Immunol. 37(8):2090-96
    • (2007) Eur. J. Immunol. , vol.37 , Issue.8 , pp. 2090-2096
    • Jenkinson, W.E.1    Rossi, S.W.2    Parnell, S.M.3    Agace, W.W.4    Takahama, Y.5
  • 87
    • 0142149043 scopus 로고    scopus 로고
    • Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus
    • Plotkin J, Prockop SE, Lepique A, Petrie HT. 2003. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171(9):4521-27
    • (2003) J. Immunol. , vol.171 , Issue.9 , pp. 4521-4527
    • Plotkin, J.1    Prockop, S.E.2    Lepique, A.3    Petrie, H.T.4
  • 88
    • 18344385280 scopus 로고    scopus 로고
    • Role forCCR7ligands in the emigration of newly generated T lymphocytes from the neonatal thymus
    • Ueno T, Hara K, Willis MS, Malin MA, Hopken UE, et al. 2002. Role forCCR7ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16(2):205-18
    • (2002) Immunity , vol.16 , Issue.2 , pp. 205-218
    • Ueno, T.1    Hara, K.2    Willis, M.S.3    Malin, M.A.4    Hopken, U.E.5
  • 89
    • 84923081542 scopus 로고    scopus 로고
    • CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice
    • Lucas B, White AJ, Ulvmar MH, Nibbs RJB, Sitnik KM, et al. 2015. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur. J. Immunol. 45(2):574-83
    • (2015) Eur. J. Immunol. , vol.45 , Issue.2 , pp. 574-583
    • Lucas, B.1    White, A.J.2    Ulvmar, M.H.3    Nibbs, R.J.B.4    Sitnik, K.M.5
  • 90
    • 71749103257 scopus 로고    scopus 로고
    • Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation
    • Griffith AV, Fallahi M, Nakase H, Gosink M, Young B, Petrie HT. 2009. Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity 31(6):999-1009
    • (2009) Immunity , vol.31 , Issue.6 , pp. 999-1009
    • Griffith, A.V.1    Fallahi, M.2    Nakase, H.3    Gosink, M.4    Young, B.5    Petrie, H.T.6
  • 91
    • 84956772709 scopus 로고    scopus 로고
    • A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors
    • Buono M, Facchini R, Matsuoka S, Thongjuea S, Waithe D, et al. 2016. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat. Cell Biol. 18(2):157-67
    • (2016) Nat. Cell Biol. , vol.18 , Issue.2 , pp. 157-167
    • Buono, M.1    Facchini, R.2    Matsuoka, S.3    Thongjuea, S.4    Waithe, D.5
  • 93
    • 58149154746 scopus 로고    scopus 로고
    • Delta-like 4 is indispensable in thymic environment specific for T cell development
    • Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, et al. 2008. Delta-like 4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 205(11):2507-13
    • (2008) J. Exp. Med. , vol.205 , Issue.11 , pp. 2507-2513
    • Hozumi, K.1    Mailhos, C.2    Negishi, N.3    Hirano, K.4    Yahata, T.5
  • 94
    • 58149151302 scopus 로고    scopus 로고
    • Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment
    • Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, et al. 2008. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205(11):2515-23
    • (2008) J. Exp. Med. , vol.205 , Issue.11 , pp. 2515-2523
    • Koch, U.1    Fiorini, E.2    Benedito, R.3    Besseyrias, V.4    Schuster-Gossler, K.5
  • 95
    • 84888056222 scopus 로고    scopus 로고
    • DL4-mediated Notch signaling is required for the development of fetal αβand γδT cells
    • Ferrero I, Koch U, Claudinot S, Favre S, Radtke F, et al. 2013. DL4-mediated Notch signaling is required for the development of fetal αβand γδT cells. Eur. J. Immunol. 43(11):2845-53
    • (2013) Eur. J. Immunol. , vol.43 , Issue.11 , pp. 2845-2853
    • Ferrero, I.1    Koch, U.2    Claudinot, S.3    Favre, S.4    Radtke, F.5
  • 96
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. 2008. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455(7211):396-400
    • (2008) Nature , vol.455 , Issue.7211 , pp. 396-400
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 97
  • 98
    • 0037141021 scopus 로고    scopus 로고
    • Cathepsin l regulates CD4+ T cell selection independently of its effect on invariant chain: A role in the generation of positively selecting peptide ligands
    • Honey K, Nakagawa T, Peters C, Rudensky A. 2002. Cathepsin l regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J. Exp. Med. 195(10):1349-58
    • (2002) J. Exp. Med. , vol.195 , Issue.10 , pp. 1349-1358
    • Honey, K.1    Nakagawa, T.2    Peters, C.3    Rudensky, A.4
  • 99
    • 65449189283 scopus 로고    scopus 로고
    • Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes
    • Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, et al. 2009. Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur. J. Immunol. 39(4):956-64
    • (2009) Eur. J. Immunol. , vol.39 , Issue.4 , pp. 956-964
    • Gommeaux, J.1    Gregoire, C.2    Nguessan, P.3    Richelme, M.4    Malissen, M.5
  • 100
    • 34249883977 scopus 로고    scopus 로고
    • Regulation of CD8+ T cell development by thymus-specific proteasomes
    • Murata S, Sasaki K, Kishimoto T, Niwa S-I, Hayashi H, et al. 2007. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316(5829):1349-53
    • (2007) Science , vol.316 , Issue.5829 , pp. 1349-1353
    • Murata, S.1    Sasaki, K.2    Kishimoto, T.3    Niwa, S.-I.4    Hayashi, H.5
  • 101
    • 74549144385 scopus 로고    scopus 로고
    • Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells
    • Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, et al. 2010. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32(1):29-40
    • (2010) Immunity , vol.32 , Issue.1 , pp. 29-40
    • Nitta, T.1    Murata, S.2    Sasaki, K.3    Fujii, H.4    Ripen, A.M.5
  • 102
    • 84941995472 scopus 로고    scopus 로고
    • TCR affinity for thymoproteasomedependent positively selecting peptides conditions antigen responsiveness inCD8+ Tcells
    • Takada K, Van Laethem F, Xing Y, Akane K, Suzuki H, et al. 2015. TCR affinity for thymoproteasomedependent positively selecting peptides conditions antigen responsiveness inCD8+ Tcells. Nat. Immunol. 16(10):1069-76
    • (2015) Nat. Immunol. , vol.16 , Issue.10 , pp. 1069-1076
    • Takada, K.1    Van Laethem, F.2    Xing, Y.3    Akane, K.4    Suzuki, H.5
  • 103
    • 84934975580 scopus 로고    scopus 로고
    • Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells
    • Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, et al. 2015. Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells. Nat. Commun. 6:7484
    • (2015) Nat. Commun. , vol.6 , pp. 7484
    • Sasaki, K.1    Takada, K.2    Ohte, Y.3    Kondo, H.4    Sorimachi, H.5
  • 104
    • 0018876548 scopus 로고
    • Thymic nurse cells-Ia-bearing epithelium involved in T-lymphocyte differentiation?
    • Wekerle H, Ketelsen UP. 1980. Thymic nurse cells-Ia-bearing epithelium involved in T-lymphocyte differentiation? Nature 283(5745):402-4
    • (1980) Nature , vol.283 , Issue.5745 , pp. 402-404
    • Wekerle, H.1    Ketelsen, U.P.2
  • 105
    • 84874422301 scopus 로고    scopus 로고
    • Thymic nurse cells providemicroenvironment for secondaryTcell receptorarearrangement in cortical thymocytes
    • Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, et al. 2012. Thymic nurse cells providemicroenvironment for secondaryTcell receptorarearrangement in cortical thymocytes. PNAS 109(50):20572-77
    • (2012) PNAS , vol.109 , Issue.50 , pp. 20572-20577
    • Nakagawa, Y.1    Ohigashi, I.2    Nitta, T.3    Sakata, M.4    Tanaka, K.5
  • 106
    • 84875257845 scopus 로고    scopus 로고
    • Murine thymic selection quantified using a unique method to capture deleted T cells
    • Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, et al. 2013. Murine thymic selection quantified using a unique method to capture deleted T cells. PNAS 110(12):4679-84
    • (2013) PNAS , vol.110 , Issue.12 , pp. 4679-4684
    • Stritesky, G.L.1    Xing, Y.2    Erickson, J.R.3    Kalekar, L.A.4    Wang, X.5
  • 107
    • 58149154739 scopus 로고    scopus 로고
    • Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla
    • McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA. 2008. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J. Exp. Med. 205(11):2575-84
    • (2008) J. Exp. Med. , vol.205 , Issue.11 , pp. 2575-2584
    • McCaughtry, T.M.1    Baldwin, T.A.2    Wilken, M.S.3    Hogquist, K.A.4
  • 108
    • 84962068228 scopus 로고    scopus 로고
    • Late stages of T cell maturation in the thymus involve NF-κB and tonic type i interferon signaling
    • Xing Y, Wang X, Jameson SC, Hogquist KA. 2016. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat. Immunol. 17(5):565-73
    • (2016) Nat. Immunol. , vol.17 , Issue.5 , pp. 565-573
    • Xing, Y.1    Wang, X.2    Jameson, S.C.3    Hogquist, K.A.4
  • 109
    • 84901487911 scopus 로고    scopus 로고
    • Positive and negative selection of theTcell repertoire: What thymocytes see (and don't see)
    • Klein L, Kyewski B, Allen PM, Hogquist KA. 2014. Positive and negative selection of theTcell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14(6):377-91
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.6 , pp. 377-391
    • Klein, L.1    Kyewski, B.2    Allen, P.M.3    Hogquist, K.A.4
  • 110
    • 33646165128 scopus 로고    scopus 로고
    • A central role for central tolerance
    • Kyewski B, Klein L. 2006. A central role for central tolerance. Annu. Rev. Immunol. 24:571-606
    • (2006) Annu. Rev. Immunol. , vol.24 , pp. 571-606
    • Kyewski, B.1    Klein, L.2
  • 111
    • 84861212351 scopus 로고    scopus 로고
    • Detection of an autoreactive Tcell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection
    • Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, et al. 2012. Detection of an autoreactive Tcell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. PNAS 109(20):7847-52
    • (2012) PNAS , vol.109 , Issue.20 , pp. 7847-7852
    • Taniguchi, R.T.1    DeVoss, J.J.2    Moon, J.J.3    Sidney, J.4    Sette, A.5
  • 112
    • 79951715831 scopus 로고    scopus 로고
    • Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development
    • Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, et al. 2011. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med. 208(2):383-94
    • (2011) J. Exp. Med. , vol.208 , Issue.2 , pp. 383-394
    • Lei, Y.1    Ripen, A.M.2    Ishimaru, N.3    Ohigashi, I.4    Nagasawa, T.5
  • 113
    • 84908118787 scopus 로고    scopus 로고
    • NF-κB-inducing kinase in thymic stroma establishes central tolerance by orchestrating cross-talk with not only thymocytes but also dendritic cells
    • Mouri Y, Nishijima H, Kawano H, Hirota F, Sakaguchi N, et al. 2014. NF-κB-inducing kinase in thymic stroma establishes central tolerance by orchestrating cross-talk with not only thymocytes but also dendritic cells. J. Immunol. 193(9):4356-67
    • (2014) J. Immunol. , vol.193 , Issue.9 , pp. 4356-4367
    • Mouri, Y.1    Nishijima, H.2    Kawano, H.3    Hirota, F.4    Sakaguchi, N.5
  • 114
    • 70349230989 scopus 로고    scopus 로고
    • Crucial contribution of thymic Sirpa+ conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner
    • Baba T, Nakamoto Y, Mukaida N. 2009. Crucial contribution of thymic Sirpa+ conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner. J. Immunol. 183(5):3053-63
    • (2009) J. Immunol. , vol.183 , Issue.5 , pp. 3053-3063
    • Baba, T.1    Nakamoto, Y.2    Mukaida, N.3
  • 115
    • 84858786391 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance
    • Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, et al. 2012. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36(3):438-50
    • (2012) Immunity , vol.36 , Issue.3 , pp. 438-450
    • Hadeiba, H.1    Lahl, K.2    Edalati, A.3    Oderup, C.4    Habtezion, A.5
  • 116
    • 84947445032 scopus 로고    scopus 로고
    • Not-so-negative selection
    • Davis MM. 2015. Not-so-negative selection. Immunity 43(5):833-35
    • (2015) Immunity , vol.43 , Issue.5 , pp. 833-835
    • Davis, M.M.1
  • 117
    • 84955100080 scopus 로고    scopus 로고
    • Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns
    • Malhotra D, Linehan JL, Dileepan T, Lee YJ, Purtha WE, et al. 2016. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17(2):187-95
    • (2016) Nat. Immunol. , vol.17 , Issue.2 , pp. 187-195
    • Malhotra, D.1    Linehan, J.L.2    Dileepan, T.3    Lee, Y.J.4    Purtha, W.E.5
  • 118
    • 84947441287 scopus 로고    scopus 로고
    • CD4+ Tcell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion
    • Legoux FP, Lim J-B, Cauley AW, Dikiy S, Ertelt J, et al. 2015. CD4+ Tcell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43(5):896-908
    • (2015) Immunity , vol.43 , Issue.5 , pp. 896-908
    • Legoux, F.P.1    Lim, J.-B.2    Cauley, A.W.3    Dikiy, S.4    Ertelt, J.5
  • 119
    • 34248598295 scopus 로고    scopus 로고
    • Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells
    • Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, et al. 2007. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8(4):351-58
    • (2007) Nat. Immunol. , vol.8 , Issue.4 , pp. 351-358
    • Aschenbrenner, K.1    D'Cruz, L.M.2    Vollmann, E.H.3    Hinterberger, M.4    Emmerich, J.5
  • 120
    • 78651091811 scopus 로고    scopus 로고
    • Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes
    • Wirnsberger G, Hinterberger M, Klein L. 2011. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol. Cell Biol. 89(1):45-53
    • (2011) Immunol. Cell Biol. , vol.89 , Issue.1 , pp. 45-53
    • Wirnsberger, G.1    Hinterberger, M.2    Klein, L.3
  • 121
    • 84878646386 scopus 로고    scopus 로고
    • Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway.
    • Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, et al. 2013. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J. Exp. Med. 210(4):715-28
    • (2013) J. Exp. Med. , vol.210 , Issue.4 , pp. 715-728
    • Coquet, J.M.1    Ribot, J.C.2    Babala, N.3    Middendorp, S.4    Van Der Horst, G.5
  • 122
    • 84878662471 scopus 로고    scopus 로고
    • The thymicmedulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development
    • Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJL, et al. 2013. The thymicmedulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J. Exp. Med. 210(4):675-81
    • (2013) J. Exp. Med. , vol.210 , Issue.4 , pp. 675-681
    • Cowan, J.E.1    Parnell, S.M.2    Nakamura, K.3    Caamano, J.H.4    Lane, P.J.L.5
  • 123
    • 84879601640 scopus 로고    scopus 로고
    • Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals
    • Tai X, Erman B, Alag A, Mu J, Kimura M, et al. 2013. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38(6):1116-28
    • (2013) Immunity , vol.38 , Issue.6 , pp. 1116-1128
    • Tai, X.1    Erman, B.2    Alag, A.3    Mu, J.4    Kimura, M.5
  • 124
    • 37849009964 scopus 로고    scopus 로고
    • A two-step process for thymic regulatory T cell development
    • Lio C-WJ, Hsieh C-S. 2008. A two-step process for thymic regulatory T cell development. Immunity 28(1):100-11
    • (2008) Immunity , vol.28 , Issue.1 , pp. 100-111
    • C-Wj, L.1    Hsieh, C.-S.2
  • 125
    • 84899475568 scopus 로고    scopus 로고
    • Costimulation via the tumornecrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells
    • Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, et al. 2014. Costimulation via the tumornecrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15(5):473-81
    • (2014) Nat. Immunol. , vol.15 , Issue.5 , pp. 473-481
    • Mahmud, S.A.1    Manlove, L.S.2    Schmitz, H.M.3    Xing, Y.4    Wang, Y.5
  • 126
    • 58149384269 scopus 로고    scopus 로고
    • Back to the thymus: PeripheralTcells come home
    • Hale JS, Fink PJ. 2009. Back to the thymus: PeripheralTcells come home. Immunol. Cell Biol. 87(1):58-64
    • (2009) Immunol. Cell Biol. , vol.87 , Issue.1 , pp. 58-64
    • Hale, J.S.1    Fink, P.J.2
  • 127
    • 49049087784 scopus 로고    scopus 로고
    • Peripheral T lymphocytes recirculating back into the thymus can mediate thymocyte positive selection
    • Kirberg J, Bosco N, Deloulme J-C, Ceredig R, Agenes F. 2008. Peripheral T lymphocytes recirculating back into the thymus can mediate thymocyte positive selection. J. Immunol. 181(2):1207-14
    • (2008) J. Immunol. , vol.181 , Issue.2 , pp. 1207-1214
    • Kirberg, J.1    Bosco, N.2    Deloulme, J.-C.3    Ceredig, R.4    Agenes, F.5
  • 129
    • 84958012871 scopus 로고    scopus 로고
    • CCR7 controls thymus recirculation, but not production and emigration, of Foxp3+ T cells
    • Cowan JE, McCarthy NI, Anderson G. 2016. CCR7 controls thymus recirculation, but not production and emigration, of Foxp3+ T cells. Cell Rep. 14(5):1041-48
    • (2016) Cell Rep. , vol.14 , Issue.5 , pp. 1041-1048
    • Cowan, J.E.1    McCarthy, N.I.2    Anderson, G.3
  • 130
    • 84901198225 scopus 로고    scopus 로고
    • A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla
    • Hauri-Hohl M, Zuklys S, Hollander GA, Ziegler SF. 2014. A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat. Immunol. 15(6):554-61
    • (2014) Nat. Immunol. , vol.15 , Issue.6 , pp. 554-561
    • Hauri-Hohl, M.1    Zuklys, S.2    Hollander, G.A.3    Ziegler, S.F.4
  • 131
    • 84911890115 scopus 로고    scopus 로고
    • Limitation of immune toleranceinducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation
    • Akiyama N, Shinzawa M, Miyauchi M, Yanai H, Tateishi R, et al. 2014. Limitation of immune toleranceinducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation. J. Exp. Med. 211(12):2425-38
    • (2014) J. Exp. Med. , vol.211 , Issue.12 , pp. 2425-2438
    • Akiyama, N.1    Shinzawa, M.2    Miyauchi, M.3    Yanai, H.4    Tateishi, R.5
  • 132
    • 84929944502 scopus 로고    scopus 로고
    • Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors
    • Thiault N, Darrigues J, Adoue V, Gros M, Binet B, et al. 2015. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 16(6):628-34
    • (2015) Nat. Immunol. , vol.16 , Issue.6 , pp. 628-634
    • Thiault, N.1    Darrigues, J.2    Adoue, V.3    Gros, M.4    Binet, B.5
  • 135
    • 0028863822 scopus 로고
    • Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes
    • Bendelac A. 1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182(6):2091-96
    • (1995) J. Exp. Med. , vol.182 , Issue.6 , pp. 2091-2096
    • Bendelac, A.1
  • 136
    • 84928929394 scopus 로고    scopus 로고
    • The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells
    • Nitta T, Muro R, Shimizu Y, Nitta S, Oda H, et al. 2015. The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells. EMBO Rep. 16(5):638-53
    • (2015) EMBO Rep. , vol.16 , Issue.5 , pp. 638-653
    • Nitta, T.1    Muro, R.2    Shimizu, Y.3    Nitta, S.4    Oda, H.5
  • 137
    • 0023663430 scopus 로고
    • T cell tolerance by clonal elimination in the thymus
    • Kappler JW, Roehm N, Marrack P. 1987. T cell tolerance by clonal elimination in the thymus. Cell 49(2):273-80
    • (1987) Cell , vol.49 , Issue.2 , pp. 273-280
    • Kappler, J.W.1    Roehm, N.2    Marrack, P.3
  • 138
    • 0023900635 scopus 로고
    • Tolerance inT-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes
    • Kisielow P, BluthmannH, Staerz UD, SteinmetzM, von BoehmerH. 1988. Tolerance inT-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333(6175):742-46
    • (1988) Nature , vol.333 , Issue.6175 , pp. 742-746
    • Kisielow, P.1    Bluthmann, H.2    Staerz, U.D.3    Steinmetz, M.4    Von Boehmer, H.5
  • 140
    • 0024968558 scopus 로고
    • Are tissues a patch quilt of ectopic gene expression?
    • Linsk R, Gottesman M, Pernis B. 1989. Are tissues a patch quilt of ectopic gene expression? Science 246(4927):261
    • (1989) Science , vol.246 , Issue.4927 , pp. 261
    • Linsk, R.1    Gottesman, M.2    Pernis, B.3
  • 141
    • 0023239988 scopus 로고
    • Tolerance induced by thymic epithelial grafts in birds
    • Ohki H, Martin C, Corbel C, Coltey M, Le DouarinNM. 1987. Tolerance induced by thymic epithelial grafts in birds. Science 237(4818):1032-35
    • (1987) Science , vol.237 , Issue.4818 , pp. 1032-1035
    • Ohki, H.1    Martin, C.2    Corbel, C.3    Coltey, M.4    Le Douarin, N.M.5
  • 142
    • 0023858019 scopus 로고
    • Pathogenesis of myasthenia gravis: Acetylcholine receptor-related antigenic determinants in tumor-free thymuses and thymic epithelial tumors
    • Kirchner T, Tzartos S, Hoppe F, Schalke B, Wekerle H, Muller-Hermelink HK. 1988. Pathogenesis of myasthenia gravis: acetylcholine receptor-related antigenic determinants in tumor-free thymuses and thymic epithelial tumors. Am. J. Pathol. 130(2):268-80
    • (1988) Am. J. Pathol. , vol.130 , Issue.2 , pp. 268-280
    • Kirchner, T.1    Tzartos, S.2    Hoppe, F.3    Schalke, B.4    Wekerle, H.5    Muller-Hermelink, H.K.6
  • 143
    • 0028301977 scopus 로고
    • T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus
    • Jolicoeur C, Hanahan D, Smith KM. 1994. T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus. PNAS 91(14):6707-11
    • (1994) PNAS , vol.91 , Issue.14 , pp. 6707-6711
    • Jolicoeur, C.1    Hanahan, D.2    Smith, K.M.3
  • 144
    • 0032402315 scopus 로고    scopus 로고
    • Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens
    • Sospedra M, Ferrer-Francesch X, Dominguez O, Juan M, Foz-Sala M, Pujol-Borrell R. 1998. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens. J. Immunol. 161(11):5918-29
    • (1998) J. Immunol. , vol.161 , Issue.11 , pp. 5918-5929
    • Sospedra, M.1    Ferrer-Francesch, X.2    Dominguez, O.3    Juan, M.4    Foz-Sala, M.5    Pujol-Borrell, R.6
  • 145
    • 0030796631 scopus 로고    scopus 로고
    • Pancreatic gene expression in rare cells of thymic medulla: Evidence for functional contribution to T cell tolerance
    • Smith KM, Olson DC, Hirose R, Hanahan D. 1997. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9(9):1355-65
    • (1997) Int. Immunol. , vol.9 , Issue.9 , pp. 1355-1365
    • Smith, K.M.1    Olson, D.C.2    Hirose, R.3    Hanahan, D.4
  • 146
    • 0032490563 scopus 로고    scopus 로고
    • CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium
    • Klein L, Klein T, Ruther U, Kyewski B. 1998. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188(1):5-16
    • (1998) J. Exp. Med. , vol.188 , Issue.1 , pp. 5-16
    • Klein, L.1    Klein, T.2    Ruther, U.3    Kyewski, B.4
  • 147
    • 0029659055 scopus 로고    scopus 로고
    • The shaping of the brain-specific T lymphocyte repertoire in the thymus
    • Wekerle H, Bradl M, Linington C, Kaab G, Kojima K. 1996. The shaping of the brain-specific T lymphocyte repertoire in the thymus. Immunol. Rev. 149:231-43
    • (1996) Immunol. Rev. , vol.149 , pp. 231-243
    • Wekerle, H.1    Bradl, M.2    Linington, C.3    Kaab, G.4    Kojima, K.5
  • 149
    • 0035171545 scopus 로고    scopus 로고
    • Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
    • Derbinski J, Schulte A, Kyewski B, Klein L. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2(11):1032-39
    • (2001) Nat. Immunol. , vol.2 , Issue.11 , pp. 1032-1039
    • Derbinski, J.1    Schulte, A.2    Kyewski, B.3    Klein, L.4
  • 151
    • 0346599403 scopus 로고    scopus 로고
    • An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains
    • Aaltonen J, Bjorses P, Perheentupa J, Horelli-Kuitunen N, et al. 1997. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17(4):399-403
    • (1997) Nat. Genet. , vol.17 , Issue.4 , pp. 399-403
    • Aaltonen, J.1    Bjorses, P.2    Perheentupa, J.3    Horelli-Kuitunen, N.4
  • 153
    • 0037112047 scopus 로고    scopus 로고
    • Projection of an immunological self shadow within the thymus by the Aire protein
    • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, et al. 2002. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298(5597):1395-1401
    • (2002) Science , vol.298 , Issue.5597 , pp. 1395-1401
    • Anderson, M.S.1    Venanzi, E.S.2    Klein, L.3    Chen, Z.4    Berzins, S.P.5
  • 154
    • 56749184864 scopus 로고    scopus 로고
    • Ectopic expression of peripheral-tissue antigens in the thymic epithelium: Probabilistic, monoallelic, misinitiated
    • Villasenor J, Besse W, Benoist C, Mathis D. 2008. Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. PNAS 105(41):15854-59
    • (2008) PNAS , vol.105 , Issue.41 , pp. 15854-15859
    • Villasenor, J.1    Besse, W.2    Benoist, C.3    Mathis, D.4
  • 155
    • 78650594600 scopus 로고    scopus 로고
    • Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells
    • Tykocinski L-O, Sinemus A, Rezavandy E, Weiland Y, Baddeley D, et al. 2010. Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells. PNAS 107(45):19426-31
    • (2010) PNAS , vol.107 , Issue.45 , pp. 19426-19431
    • Tykocinski, L.-O.1    Sinemus, A.2    Rezavandy, E.3    Weiland, Y.4    Baddeley, D.5
  • 156
    • 84913594338 scopus 로고    scopus 로고
    • Population and single-cell genomics reveal the Aire dependency, relief from polycomb silencing, and distribution of self-antigen expression in thymic epithelia
    • Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, et al. 2014. Population and single-cell genomics reveal the Aire dependency, relief from polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 24(12):1918-31
    • (2014) Genome Res. , vol.24 , Issue.12 , pp. 1918-1931
    • Sansom, S.N.1    Shikama-Dorn, N.2    Zhanybekova, S.3    Nusspaumer, G.4    Macaulay, I.C.5
  • 157
    • 84907830964 scopus 로고    scopus 로고
    • Misinitiation of intrathymic MART-1 transcription and biased TCR usage explain the high frequency of MART-1-specific T cells
    • Pinto S, Sommermeyer D, Michel C, Wilde S, Schendel D, et al. 2014. Misinitiation of intrathymic MART-1 transcription and biased TCR usage explain the high frequency of MART-1-specific T cells. Eur. J. Immunol. 44(9):2811-21
    • (2014) Eur. J. Immunol. , vol.44 , Issue.9 , pp. 2811-2821
    • Pinto, S.1    Sommermeyer, D.2    Michel, C.3    Wilde, S.4    Schendel, D.5
  • 158
    • 84992316081 scopus 로고    scopus 로고
    • Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells
    • Danan-Gotthold M, Guyon C, Giraud M, Levanon EY, Abramson J. 2016. Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol. 17:219
    • (2016) Genome Biol. , vol.17 , pp. 219
    • Danan-Gotthold, M.1    Guyon, C.2    Giraud, M.3    Levanon, E.Y.4    Abramson, J.5
  • 159
    • 22344449972 scopus 로고    scopus 로고
    • Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels
    • Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, et al. 2005. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202(1):33-45
    • (2005) J. Exp. Med. , vol.202 , Issue.1 , pp. 33-45
    • Derbinski, J.1    Gabler, J.2    Brors, B.3    Tierling, S.4    Jonnakuty, S.5
  • 160
    • 84939600854 scopus 로고    scopus 로고
    • Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells
    • Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, et al. 2015. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat. Immunol. 16(9):933-41
    • (2015) Nat. Immunol. , vol.16 , Issue.9 , pp. 933-941
    • Brennecke, P.1    Reyes, A.2    Pinto, S.3    Rattay, K.4    Nguyen, M.5
  • 161
    • 84939622896 scopus 로고    scopus 로고
    • Aire controls gene expression in the thymic epithelium with ordered stochasticity
    • Meredith M, Zemmour D, Mathis D, Benoist C. 2015. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat. Immunol. 16(9):942-49
    • (2015) Nat. Immunol. , vol.16 , Issue.9 , pp. 942-949
    • Meredith, M.1    Zemmour, D.2    Mathis, D.3    Benoist, C.4
  • 162
    • 84957592522 scopus 로고    scopus 로고
    • Evolutionary conserved gene coexpression drives generation of self-antigen diversity in medullary thymic epithelial cells
    • Rattay K, Meyer HV, Herrmann C, Brors B, Kyewski B. 2016. Evolutionary conserved gene coexpression drives generation of self-antigen diversity in medullary thymic epithelial cells. J. Autoimmun. 67:65-75
    • (2016) J. Autoimmun. , vol.67 , pp. 65-75
    • Rattay, K.1    Meyer, H.V.2    Herrmann, C.3    Brors, B.4    Kyewski, B.5
  • 163
    • 56749174388 scopus 로고    scopus 로고
    • Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity
    • Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, et al. 2008. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. PNAS 105(41):15878-83
    • (2008) PNAS , vol.105 , Issue.41 , pp. 15878-15883
    • Koh, A.S.1    Kuo, A.J.2    Park, S.Y.3    Cheung, P.4    Abramson, J.5
  • 164
    • 45849137524 scopus 로고    scopus 로고
    • The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression
    • Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, et al. 2008. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 9(4):370-76
    • (2008) EMBO Rep. , vol.9 , Issue.4 , pp. 370-376
    • Org, T.1    Chignola, F.2    Hetenyi, C.3    Gaetani, M.4    Rebane, A.5
  • 165
    • 70450192681 scopus 로고    scopus 로고
    • AIRE activated tissue specific genes have histone modifications associated with inactive chromatin
    • Org T, Rebane A, Kisand K, Laan M, Haljasorg U, et al. 2009. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum. Mol. Genet. 18(24):4699-710
    • (2009) Hum. Mol. Genet. , vol.18 , Issue.24 , pp. 4699-4710
    • Org, T.1    Rebane, A.2    Kisand, K.3    Laan, M.4    Haljasorg, U.5
  • 166
    • 84894431935 scopus 로고    scopus 로고
    • The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance
    • Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, et al. 2014. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat. Immunol. 15(3):258-65
    • (2014) Nat. Immunol. , vol.15 , Issue.3 , pp. 258-265
    • Waterfield, M.1    Khan, I.S.2    Cortez, J.T.3    Fan, U.4    Metzger, T.5
  • 167
    • 84953837556 scopus 로고    scopus 로고
    • Aire: From promiscuous molecular partnerships to promiscuous gene expression
    • Abramson J, Goldfarb Y. 2016. Aire: from promiscuous molecular partnerships to promiscuous gene expression. Eur. J. Immunol. 46(1):22-33
    • (2016) Eur. J. Immunol. , vol.46 , Issue.1 , pp. 22-33
    • Abramson, J.1    Goldfarb, Y.2
  • 168
    • 37549060329 scopus 로고    scopus 로고
    • AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells
    • Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM. 2007. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol. Cell. Biol. 27(24):8815-23
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.24 , pp. 8815-8823
    • Oven, I.1    Brdickova, N.2    Kohoutek, J.3    Vaupotic, T.4    Narat, M.5    Peterlin, B.M.6
  • 169
    • 84893370802 scopus 로고    scopus 로고
    • An rRNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription
    • Giraud M, Jmari N, Du L, Carallis F, Nieland TJF, et al. 2014. An rRNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. PNAS 111(4):1491-96
    • (2014) PNAS , vol.111 , Issue.4 , pp. 1491-1496
    • Giraud, M.1    Jmari, N.2    Du, L.3    Carallis, F.4    Nieland, T.J.F.5
  • 170
    • 84938921551 scopus 로고    scopus 로고
    • Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells
    • Yoshida H, Bansal K, Schaefer U, Chapman T, Rioja I, et al. 2015. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. PNAS 112:E4448-57
    • (2015) PNAS , vol.112 , pp. E4448-E4457
    • Yoshida, H.1    Bansal, K.2    Schaefer, U.3    Chapman, T.4    Rioja, I.5
  • 171
    • 84855995571 scopus 로고    scopus 로고
    • Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells
    • Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, et al. 2012. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. PNAS 109(2):535-40
    • (2012) PNAS , vol.109 , Issue.2 , pp. 535-540
    • Giraud, M.1    Yoshida, H.2    Abramson, J.3    Rahl, P.B.4    Young, R.A.5
  • 172
    • 73149115486 scopus 로고    scopus 로고
    • Aire's partners in the molecular control of immunological tolerance
    • Abramson J, Giraud M, Benoist C, Mathis D. 2010. Aire's partners in the molecular control of immunological tolerance. Cell 140(1):123-35
    • (2010) Cell , vol.140 , Issue.1 , pp. 123-135
    • Abramson, J.1    Giraud, M.2    Benoist, C.3    Mathis, D.4
  • 173
    • 84931432951 scopus 로고    scopus 로고
    • The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance
    • Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, et al. 2015. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat. Immunol. 16(7):737-45
    • (2015) Nat. Immunol. , vol.16 , Issue.7 , pp. 737-745
    • Chuprin, A.1    Avin, A.2    Goldfarb, Y.3    Herzig, Y.4    Levi, B.5
  • 174
    • 84946214324 scopus 로고    scopus 로고
    • Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance
    • Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, et al. 2015. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163(4):975-87
    • (2015) Cell , vol.163 , Issue.4 , pp. 975-987
    • Takaba, H.1    Morishita, Y.2    Tomofuji, Y.3    Danks, L.4    Nitta, T.5
  • 176
    • 2942700206 scopus 로고    scopus 로고
    • Reduction in the developmental potential of intrathymic T cell progenitors with age
    • Min H, Montecino-Rodriguez E, Dorshkind K. 2004. Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173(1):245-50
    • (2004) J. Immunol. , vol.173 , Issue.1 , pp. 245-250
    • Min, H.1    Montecino-Rodriguez, E.2    Dorshkind, K.3
  • 177
    • 34548030239 scopus 로고    scopus 로고
    • Multiple prethymic defects underlie age-related loss of T progenitor competence
    • Zediak VP, Maillard I, Bhandoola A. 2007. Multiple prethymic defects underlie age-related loss of T progenitor competence. Blood 110(4):1161-67
    • (2007) Blood , vol.110 , Issue.4 , pp. 1161-1167
    • Zediak, V.P.1    Maillard, I.2    Bhandoola, A.3
  • 178
    • 0033003685 scopus 로고    scopus 로고
    • Bone marrow CD34 cells generate fewer T cells in vitro with increasing age and following chemotherapy
    • Offner F, Kerre T, De SmedtM, Plum J. 1999. Bone marrow CD34 cells generate fewer T cells in vitro with increasing age and following chemotherapy. Br. J. Haematol. 104(4):801-8
    • (1999) Br. J. Haematol. , vol.104 , Issue.4 , pp. 801-808
    • Offner, F.1    Kerre, T.2    De Smedtm Plum, J.3
  • 179
    • 84941025173 scopus 로고    scopus 로고
    • Metabolic damage and premature thymus aging caused by stromal catalase deficiency
    • Griffith AV, Venables T, Shi J, Farr A, van Remmen H, et al. 2015. Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Rep. 12(7):1071-79
    • (2015) Cell Rep. , vol.12 , Issue.7 , pp. 1071-1079
    • Griffith, A.V.1    Venables, T.2    Shi, J.3    Farr, A.4    Van Remmen, H.5
  • 180
    • 60249092412 scopus 로고    scopus 로고
    • Foxn1 is required tomaintain the postnatal thymic microenvironment in a dosage-sensitive manner
    • Chen L, Xiao S, Manley NR. 2009. Foxn1 is required tomaintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113(3):567-74
    • (2009) Blood , vol.113 , Issue.3 , pp. 567-574
    • Chen, L.1    Xiao, S.2    Manley, N.R.3
  • 181
    • 34548637281 scopus 로고    scopus 로고
    • Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution
    • Zhu X, Gui J, Dohkan J, Cheng L, Barnes PF, Su D-M. 2007. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell. 6(5):663-72
    • (2007) Aging Cell. , vol.6 , Issue.5 , pp. 663-672
    • Zhu, X.1    Gui, J.2    Dohkan, J.3    Cheng, L.4    Barnes, P.F.5    Su, D.-M.6
  • 182
    • 84874199537 scopus 로고    scopus 로고
    • Thymus size and age-related thymic involution: Early programming, sexual dimorphism, progenitors and stroma
    • Gui J, Mustachio LM, Su D-M, Craig RW. 2012. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis. 3(3):280-90
    • (2012) Aging Dis. , vol.3 , Issue.3 , pp. 280-290
    • Gui, J.1    Mustachio, L.M.2    Su, D.-M.3    Craig, R.W.4
  • 183
    • 33845239216 scopus 로고    scopus 로고
    • Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells
    • Gray DHD, Seach N, Ueno T, Milton MK, Liston A, et al. 2006. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108(12):3777-85
    • (2006) Blood , vol.108 , Issue.12 , pp. 3777-3785
    • Gray, D.H.D.1    Seach, N.2    Ueno, T.3    Milton, M.K.4    Liston, A.5
  • 184
    • 70349231092 scopus 로고    scopus 로고
    • Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution
    • Yang H, Youm Y-H, Dixit VD. 2009. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J. Immunol. 183(5):3040-52
    • (2009) J. Immunol. , vol.183 , Issue.5 , pp. 3040-3052
    • Yang, H.1    Youm, Y.-H.2    Dixit, V.D.3
  • 186
    • 82155201761 scopus 로고    scopus 로고
    • Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells
    • Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB, et al. 2011. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 118(22):5723-31
    • (2011) Blood , vol.118 , Issue.22 , pp. 5723-5731
    • Zook, E.C.1    Krishack, P.A.2    Zhang, S.3    Zeleznik-Le, N.J.4    Firulli, A.B.5
  • 187
    • 84955481171 scopus 로고    scopus 로고
    • Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution
    • Youm Y-H, Horvath TL, Mangelsdorf DJ, Kliewer SA, Dixit VD. 2016. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. PNAS 113(4):1026-31
    • (2016) PNAS , vol.113 , Issue.4 , pp. 1026-1031
    • Youm, Y.-H.1    Horvath, T.L.2    Mangelsdorf, D.J.3    Kliewer, S.A.4    Dixit, V.D.5
  • 188
    • 0035098105 scopus 로고    scopus 로고
    • Androgen receptors in thymic epithelium modulate thymus size and thymocyte development
    • Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ. 2001. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142(3):1278-83
    • (2001) Endocrinology , vol.142 , Issue.3 , pp. 1278-1283
    • Olsen, N.J.1    Olson, G.2    Viselli, S.M.3    Gu, X.4    Kovacs, W.J.5
  • 189
    • 84938878882 scopus 로고    scopus 로고
    • Sex hormones have pervasive effects on thymic epithelial cells
    • Dumont-Lagace M, St-Pierre C, Perreault C. 2015. Sex hormones have pervasive effects on thymic epithelial cells. Sci. Rep. 5:12895
    • (2015) Sci. Rep. , vol.5 , pp. 12895
    • Dumont-Lagace, M.1    St-Pierre, C.2    Perreault, C.3
  • 190
    • 0032738430 scopus 로고    scopus 로고
    • Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility
    • Tibbetts TA, DeMayo F, Rich S, Conneely OM, O'Malley BW. 1999. Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility.PNAS 96(21):12021-26
    • (1999) PNAS , vol.96 , Issue.21 , pp. 12021-12026
    • Tibbetts, T.A.1    DeMayo, F.2    Rich, S.3    Conneely, O.M.4    O'Malley, B.W.5
  • 191
    • 84855862448 scopus 로고    scopus 로고
    • Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth
    • Griffith AV, Fallahi M, Venables T, Petrie HT. 2012. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11(1):169-77
    • (2012) Aging Cell , vol.11 , Issue.1 , pp. 169-177
    • Griffith, A.V.1    Fallahi, M.2    Venables, T.3    Petrie, H.T.4
  • 192
    • 77955661045 scopus 로고    scopus 로고
    • Thymic fatness and approaches to enhance thymopoietic fitness in aging
    • Dixit VD. 2010. Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr. Opin. Immunol. 22(4):521-28
    • (2010) Curr. Opin. Immunol. , vol.22 , Issue.4 , pp. 521-528
    • Dixit, V.D.1
  • 193
    • 65449128145 scopus 로고    scopus 로고
    • Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity
    • Youm Y-H, Yang H, Sun Y, Smith RG, Manley NR, et al. 2009. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J. Biol. Chem. 284(11):7068-77
    • (2009) J. Biol. Chem. , vol.284 , Issue.11 , pp. 7068-7077
    • Youm, Y.-H.1    Yang, H.2    Sun, Y.3    Smith, R.G.4    Manley, N.R.5
  • 194
    • 84901246854 scopus 로고    scopus 로고
    • Cell competition is a tumour suppressor mechanism in the thymus
    • Martins VC, BuschK, Juraeva D, Blum C, Ludwig C, et al. 2014. Cell competition is a tumour suppressor mechanism in the thymus. Nature 509(7501):465-70
    • (2014) Nature , vol.509 , Issue.7501 , pp. 465-470
    • Martins, V.C.1    Busch, K.2    Juraeva, D.3    Blum, C.4    Ludwig, C.5
  • 195
    • 4644304217 scopus 로고    scopus 로고
    • Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death
    • Purton JF, Monk JA, Liddicoat DR, Kyparissoudis K, Sakkal S, et al. 2004. Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death. J. Immunol. 173(6):3816-24
    • (2004) J. Immunol. , vol.173 , Issue.6 , pp. 3816-3824
    • Purton, J.F.1    Monk, J.A.2    Liddicoat, D.R.3    Kyparissoudis, K.4    Sakkal, S.5
  • 196
    • 53949103666 scopus 로고    scopus 로고
    • Cytokines, leptin, and stress-induced thymic atrophy
    • Gruver AL, Sempowski GD. 2008. Cytokines, leptin, and stress-induced thymic atrophy. J. Leukoc. Biol. 84(4):915-23
    • (2008) J. Leukoc. Biol. , vol.84 , Issue.4 , pp. 915-923
    • Gruver, A.L.1    Sempowski, G.D.2
  • 197
    • 70249136199 scopus 로고    scopus 로고
    • Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment
    • Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV, et al. 2009. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J. Immunol. 183(2):823-31
    • (2009) J. Immunol. , vol.183 , Issue.2 , pp. 823-831
    • Fletcher, A.L.1    Lowen, T.E.2    Sakkal, S.3    Reiseger, J.J.4    Hammett, M.V.5
  • 198
    • 77953404948 scopus 로고    scopus 로고
    • Single cell analysis of complex thymus stromal cell populations: Rapid thymic epithelia preparation characterizes radiation injury
    • Williams KM, Mella H, Lucas PJ, Williams JA, Telford W, Gress RE. 2009. Single cell analysis of complex thymus stromal cell populations: Rapid thymic epithelia preparation characterizes radiation injury. Clin. Transl. Sci. 2(4):279-85
    • (2009) Clin. Transl. Sci. , vol.2 , Issue.4 , pp. 279-285
    • Williams, K.M.1    Mella, H.2    Lucas, P.J.3    Williams, J.A.4    Telford, W.5    Gress, R.E.6
  • 199
    • 0036839591 scopus 로고    scopus 로고
    • Regulation of thymic epithelium by keratinocyte growth factor
    • Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, et al. 2002. Regulation of thymic epithelium by keratinocyte growth factor. Blood 100(9):3269-78
    • (2002) Blood , vol.100 , Issue.9 , pp. 3269-3278
    • Erickson, M.1    Morkowski, S.2    Lehar, S.3    Gillard, G.4    Beers, C.5
  • 200
    • 33947192136 scopus 로고    scopus 로고
    • Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging
    • Min D, Panoskaltsis-Mortari A, Kuro-OM Hollander GA, Blazar BR, Weinberg KI. 2007. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109(6):2529-37
    • (2007) Blood , vol.109 , Issue.6 , pp. 2529-2537
    • Min, D.1    Panoskaltsis-Mortari, A.2    Kuro-Om Hollander, G.A.3    Blazar, B.R.4    Weinberg, K.I.5
  • 201
    • 84859497086 scopus 로고    scopus 로고
    • Interleukin-22 drives endogenous thymic regeneration in mice
    • Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, et al. 2012. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91-95
    • (2012) Science , vol.336 , Issue.6077 , pp. 91-95
    • Dudakov, J.A.1    Hanash, A.M.2    Jenq, R.R.3    Young, L.F.4    Ghosh, A.5
  • 202
    • 53449094989 scopus 로고    scopus 로고
    • Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion
    • Chu Y-W, Schmitz S, Choudhury B, Telford W, Kapoor V, et al. 2008. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112(7):2836-46
    • (2008) Blood , vol.112 , Issue.7 , pp. 2836-2846
    • Chu, Y.-W.1    Schmitz, S.2    Choudhury, B.3    Telford, W.4    Kapoor, V.5
  • 203
    • 73349102785 scopus 로고    scopus 로고
    • Generation of thymic epithelial cell progenitors by mouse embryonic stem cells
    • Lai L, Jin J. 2009. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells. 27(12):3012-20
    • (2009) Stem Cells. , vol.27 , Issue.12 , pp. 3012-3020
    • Lai, L.1    Jin, J.2
  • 206
    • 0014431603 scopus 로고
    • Absence of thymus in a mouse mutant
    • Pantelouris EM. 1968. Absence of thymus in a mouse mutant. Nature 217(5126):370-71
    • (1968) Nature , vol.217 , Issue.5126 , pp. 370-371
    • Pantelouris, E.M.1
  • 207
    • 0028000121 scopus 로고
    • New member of the winged-helix protein family disrupted in mouse and rat nude mutations
    • NehlsM, Pfeifer D, SchorppM, Hedrich H, Boehm T. 1994. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372(6501):103-7
    • (1994) Nature , vol.372 , Issue.6501 , pp. 103-107
    • Nehls, M.1    Pfeifer, D.2    Schorpp, M.3    Hedrich, H.4    Boehm, T.5
  • 208
    • 0029959773 scopus 로고    scopus 로고
    • Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs
    • Pignata C, Fiore M, Guzzetta V, Castaldo A, Sebastio G, et al. 1996. Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am. J. Med. Genet. 65(2):167-70
    • (1996) Am. J. Med. Genet. , vol.65 , Issue.2 , pp. 167-170
    • Pignata, C.1    Fiore, M.2    Guzzetta, V.3    Castaldo, A.4    Sebastio, G.5
  • 209
    • 0017733838 scopus 로고
    • DiGeorge syndrome: Congenital thymic hypoplasia. Animal model: Congenitally athymic (nude) mouse
    • Gershwin ME. 1977. DiGeorge syndrome: congenital thymic hypoplasia. Animal model: congenitally athymic (nude) mouse. Am. J. Pathol. 89(3):809-12
    • (1977) Am. J. Pathol. , vol.89 , Issue.3 , pp. 809-812
    • Gershwin, M.E.1
  • 211
    • 84937598338 scopus 로고    scopus 로고
    • Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases
    • Oftedal BE, Hellesen A, Erichsen MM, Bratland E, Vardi A, et al. 2015. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity 42(6):1185-96
    • (2015) Immunity , vol.42 , Issue.6 , pp. 1185-1196
    • Oftedal, B.E.1    Hellesen, A.2    Erichsen, M.M.3    Bratland, E.4    Vardi, A.5
  • 212
    • 77149147477 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines
    • Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, et al. 2010. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207(2):299-308
    • (2010) J. Exp. Med. , vol.207 , Issue.2 , pp. 299-308
    • Kisand, K.1    Boe Wolff, A.S.2    Podkrajsek, K.T.3    Tserel, L.4    Link, M.5
  • 213
    • 77149124612 scopus 로고    scopus 로고
    • Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronicmucocutaneous candidiasis and autoimmune polyendocrine syndrome type i
    • Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, et al. 2010. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronicmucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207(2):291-97
    • (2010) J. Exp. Med. , vol.207 , Issue.2 , pp. 291-297
    • Puel, A.1    Doffinger, R.2    Natividad, A.3    Chrabieh, M.4    Barcenas-Morales, G.5
  • 214
    • 25144432460 scopus 로고    scopus 로고
    • Modifier loci condition autoimmunity provoked by Aire deficiency
    • JiangW, Anderson MS, Bronson R, Mathis D, Benoist C. 2005. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202(6):805-15
    • (2005) J. Exp. Med. , vol.202 , Issue.6 , pp. 805-815
    • Jiang, W.1    Anderson, M.S.2    Bronson, R.3    Mathis, D.4    Benoist, C.5
  • 216
    • 84907481828 scopus 로고    scopus 로고
    • Clinical and serologic parallels to APS-I in patientswith thymomas and autoantigen transcripts in their tumors
    • Wolff ASB, Karner J, Owe JF, Oftedal BEV, Gilhus NE, et al. 2014. Clinical and serologic parallels to APS-I in patientswith thymomas and autoantigen transcripts in their tumors. J. Immunol. 193(8):3880-90
    • (2014) J. Immunol. , vol.193 , Issue.8 , pp. 3880-3890
    • Wolff, A.S.B.1    Karner, J.2    Owe, J.F.3    Oftedal, B.E.V.4    Gilhus, N.E.5
  • 217
    • 0037245674 scopus 로고    scopus 로고
    • What is Good's syndrome? Immunological abnormalities in patients with thymoma
    • Kelleher P, Misbah SA. 2003. What is Good's syndrome? Immunological abnormalities in patients with thymoma. J. Clin. Pathol. 56(1):12-16
    • (2003) J. Clin. Pathol. , vol.56 , Issue.1 , pp. 12-16
    • Kelleher, P.1    Misbah, S.A.2
  • 218
    • 77349099732 scopus 로고    scopus 로고
    • Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect
    • Cheng MH, Fan U, Grewal N, Barnes M, Mehta A, et al. 2010. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N. Engl. J. Med. 362(8):764-66
    • (2010) N. Engl. J. Med. , vol.362 , Issue.8 , pp. 764-766
    • Cheng, M.H.1    Fan, U.2    Grewal, N.3    Barnes, M.4    Mehta, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.