-
1
-
-
84926258887
-
Disturbed mitochondrial dynamics and neurodegenerative disorders
-
Burte F, Carelli V, Chinnery PF, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.
-
(2015)
Nat Rev Neurol
, vol.11
, Issue.1
, pp. 11-24
-
-
Burte, F.1
Carelli, V.2
Chinnery, P.F.3
-
2
-
-
84922495960
-
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets?
-
Corona JC, Duchen MR., Impaired mitochondrial homeostasis and neurodegeneration:towards new therapeutic targets? J Bioenerg Biomembr. 2015;47(1–2):89–99.
-
(2015)
J Bioenerg Biomembr
, vol.47
, Issue.1-2
, pp. 89-99
-
-
Corona, J.C.1
Duchen, M.R.2
-
3
-
-
84958850926
-
Mitochondrial dynamics and metabolic regulation
-
Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27(2):105–117.
-
(2016)
Trends Endocrinol Metab
, vol.27
, Issue.2
, pp. 105-117
-
-
Wai, T.1
Langer, T.2
-
4
-
-
84857030799
-
Neurodegeneration as a consequence of failed mitochondrial maintenance
-
Karbowski M, Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol. 2012;123(2):157–171.
-
(2012)
Acta Neuropathol
, vol.123
, Issue.2
, pp. 157-171
-
-
Karbowski, M.1
Neutzner, A.2
-
5
-
-
11144353586
-
ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease
-
Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304(5669):448–452.
-
(2004)
Science
, vol.304
, Issue.5669
, pp. 448-452
-
-
Lustbader, J.W.1
Cirilli, M.2
Lin, C.3
-
6
-
-
84878623135
-
Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease
-
Correia SC, Santos RX, Santos MS, et al. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr Alzheimer Res. 2013;10(4):406–419.
-
(2013)
Curr Alzheimer Res
, vol.10
, Issue.4
, pp. 406-419
-
-
Correia, S.C.1
Santos, R.X.2
Santos, M.S.3
-
7
-
-
84929430489
-
Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers
-
Carvalho C, Santos MS, Oliveira CR, et al. Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta. 2015;1852(8):1665–1675.
-
(2015)
Biochim Biophys Acta
, vol.1852
, Issue.8
, pp. 1665-1675
-
-
Carvalho, C.1
Santos, M.S.2
Oliveira, C.R.3
-
8
-
-
84937019697
-
Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease
-
Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, et al. Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2015;2015:509654.
-
(2015)
Oxid Med Cell Longev
, vol.2015
, pp. 509654
-
-
Cabezas-Opazo, F.A.1
Vergara-Pulgar, K.2
Perez, M.J.3
-
10
-
-
84886600387
-
Therapeutics of Alzheimer’s disease: Past, present and future
-
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease:Past, present and future. Neuropharmacology. 2014;76 Pt A:27–50.
-
(2014)
Neuropharmacology
, vol.76 Pt A
, pp. 27-50
-
-
Anand, R.1
Gill, K.D.2
Mahdi, A.A.3
-
11
-
-
84903304968
-
The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives
-
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis:progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219–1231.
-
(2014)
Biochim Biophys Acta
, vol.1842
, Issue.8
, pp. 1219-1231
-
-
Swerdlow, R.H.1
Burns, J.M.2
Khan, S.M.3
-
13
-
-
85001882183
-
Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies
-
Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7:201–214.
-
(2016)
Aging Dis
, vol.7
, pp. 201-214
-
-
Onyango, I.G.1
Dennis, J.2
Khan, S.M.3
-
14
-
-
57649171115
-
Mitochondrial approaches for neuroprotection
-
Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395–412.
-
(2008)
Ann N Y Acad Sci
, vol.1147
, pp. 395-412
-
-
Chaturvedi, R.K.1
Beal, M.F.2
-
15
-
-
78651126508
-
A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study
-
Luft R, Ikkos D, Palmieri G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control:a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41:1776–1804.
-
(1962)
J Clin Invest
, vol.41
, pp. 1776-1804
-
-
Luft, R.1
Ikkos, D.2
Palmieri, G.3
-
16
-
-
77956224679
-
The Alzheimer’s disease mitochondrial cascade hypothesis
-
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis. 2010;20(Suppl 2):S265–279.
-
(2010)
J Alzheimers Dis
, vol.20
, pp. S265-S279
-
-
Swerdlow, R.H.1
Burns, J.M.2
Khan, S.M.3
-
17
-
-
84920840714
-
Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants
-
Di Domenico F, Barone E, Perluigi M, et al. Strategy to reduce free radical species in Alzheimer’s disease:an update of selected antioxidants. Expert Rev Neurother. 2015;15(1):19–40.
-
(2015)
Expert Rev Neurother
, vol.15
, Issue.1
, pp. 19-40
-
-
Di Domenico, F.1
Barone, E.2
Perluigi, M.3
-
18
-
-
82755161992
-
The future of Alzheimer’s disease: the next 10 years
-
Hampel H, Prvulovic D, Teipel S, et al. The future of Alzheimer’s disease:the next 10 years. Prog Neurobiol. 2011;95(4):718–728.
-
(2011)
Prog Neurobiol
, vol.95
, Issue.4
, pp. 718-728
-
-
Hampel, H.1
Prvulovic, D.2
Teipel, S.3
-
20
-
-
84859514171
-
Mitochondrial importance in Alzheimer’s, Huntington’s and Parkinson’s diseases
-
Correia SC, Santos RX, Perry G, et al. Mitochondrial importance in Alzheimer’s, Huntington’s and Parkinson’s diseases. Adv Exp Med Biol. 2012;724:205–221.
-
(2012)
Adv Exp Med Biol
, vol.724
, pp. 205-221
-
-
Correia, S.C.1
Santos, R.X.2
Perry, G.3
-
21
-
-
84860210262
-
Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease
-
Swerdlow RH. Mitochondria and cell bioenergetics:increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal. 2012;16(12):1434–1455.• This important paper clarifies the involvement of mitochondria bioenergetics, one of the most important features of mitochondria, as the neurons are highly dependent on mitochondria for energy provision, in the context of Alzheimer´s disease. Further, a complete discussion of the mitochondrial cascade hypothesis and the latest contributions for this field is provided.
-
(2012)
Antioxid Redox Signal
, vol.16
, Issue.12
, pp. 1434-1455
-
-
Swerdlow, R.H.1
-
22
-
-
77956026971
-
Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning
-
Santos RX, Correia SC, Wang X, et al. Alzheimer’s disease:diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol. 2010;3(6):570–581.
-
(2010)
Int J Clin Exp Pathol
, vol.3
, Issue.6
, pp. 570-581
-
-
Santos, R.X.1
Correia, S.C.2
Wang, X.3
-
23
-
-
33846051882
-
Mitochondrial dysfunction and Alzheimer’s disease
-
Chen X, Stern D, Yan SD. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res. 2006;3(5):515–520.
-
(2006)
Curr Alzheimer Res
, vol.3
, Issue.5
, pp. 515-520
-
-
Chen, X.1
Stern, D.2
Yan, S.D.3
-
24
-
-
84862861561
-
Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood
-
Lunnon K, Ibrahim Z, Proitsi P, et al. Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood. J Alzheimers Dis. 2012;30(3):685–710.
-
(2012)
J Alzheimers Dis
, vol.30
, Issue.3
, pp. 685-710
-
-
Lunnon, K.1
Ibrahim, Z.2
Proitsi, P.3
-
25
-
-
80052538857
-
Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics
-
Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease:implications for early intervention and therapeutics. Biochim Biophys Acta. 2011;1812(11):1359–1370.
-
(2011)
Biochim Biophys Acta
, vol.1812
, Issue.11
, pp. 1359-1370
-
-
Mao, P.1
Reddy, P.H.2
-
26
-
-
18244390483
-
Mitochondrial abnormalities in Alzheimer brain: mechanistic implications
-
Bubber P, Haroutunian V, Fisch G, et al. Mitochondrial abnormalities in Alzheimer brain:mechanistic implications. Ann Neurol. 2005;57(5):695–703.
-
(2005)
Ann Neurol
, vol.57
, Issue.5
, pp. 695-703
-
-
Bubber, P.1
Haroutunian, V.2
Fisch, G.3
-
27
-
-
0027253399
-
Early detection of Alzheimer’s disease: a statistical approach using positron emission tomographic data
-
Azari NP, Pettigrew KD, Schapiro MB, et al. Early detection of Alzheimer’s disease:a statistical approach using positron emission tomographic data. J Cereb Blood Flow Metab. 1993;13(3):438–447.••This review manuscript provides a complete update regarding the studies and clinical trials in which the use of antioxidants were considered as therapeutics in Alzheimer´s disease.
-
(1993)
J Cereb Blood Flow Metab
, vol.13
, Issue.3
, pp. 438-447
-
-
Azari, N.P.1
Pettigrew, K.D.2
Schapiro, M.B.3
-
28
-
-
8044246570
-
Early detection of Alzheimer’s disease by combining apolipoprotein E and neuroimaging
-
Small GW, Komo S, La Rue A, et al. Early detection of Alzheimer’s disease by combining apolipoprotein E and neuroimaging. Ann N Y Acad Sci. 1996;802:70–78.
-
(1996)
Ann N Y Acad Sci
, vol.802
, pp. 70-78
-
-
Small, G.W.1
Komo, S.2
La Rue, A.3
-
29
-
-
81455157378
-
Mitochondrial dysfunction - the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-beta toxicity
-
Eckert A, Schmitt K, Gotz J. Mitochondrial dysfunction - the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-beta toxicity. Alzheimers Res Ther. 2011;3(2):15.
-
(2011)
Alzheimers Res Ther
, vol.3
, Issue.2
, pp. 15
-
-
Eckert, A.1
Schmitt, K.2
Gotz, J.3
-
30
-
-
77956206298
-
A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments
-
Gibson GE, Shi Q. A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimers Dis. 2010;20(Suppl 2):S591–607.
-
(2010)
J Alzheimers Dis
, vol.20
, pp. S591-S607
-
-
Gibson, G.E.1
Shi, Q.2
-
31
-
-
3042806534
-
A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease
-
Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63(1):8–20.
-
(2004)
Med Hypotheses
, vol.63
, Issue.1
, pp. 8-20
-
-
Swerdlow, R.H.1
Khan, S.M.2
-
32
-
-
79959305691
-
Mitochondria: the next (neurode)generation
-
Schon EA, Przedborski S. Mitochondria:the next (neurode)generation. Neuron. 2011;70(6):1033–1053.
-
(2011)
Neuron
, vol.70
, Issue.6
, pp. 1033-1053
-
-
Schon, E.A.1
Przedborski, S.2
-
33
-
-
84903215603
-
March separate, strike together–role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease
-
Eckert A, Nisbet R, Grimm A, et al. March separate, strike together–role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842(8):1258–1266.
-
(2014)
Biochim Biophys Acta
, vol.1842
, Issue.8
, pp. 1258-1266
-
-
Eckert, A.1
Nisbet, R.2
Grimm, A.3
-
34
-
-
84946123860
-
Mechanisms of mitochondrial dysfunction in Alzheimer’s disease
-
Epub ahead of print
-
Cadonic C, Sabbir MG, Albensi BC. Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol. 2015.doi:10.1007/s12035-015-9515-5. Epub ahead of print.
-
(2015)
Mol Neurobiol
-
-
Cadonic, C.1
Sabbir, M.G.2
Albensi, B.C.3
-
35
-
-
2342628596
-
Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage
-
Manczak M, Park BS, Jung Y, et al. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease:implications for early mitochondrial dysfunction and oxidative damage. Neuromol Med. 2004;5(2):147–162.
-
(2004)
Neuromol Med
, vol.5
, Issue.2
, pp. 147-162
-
-
Manczak, M.1
Park, B.S.2
Jung, Y.3
-
36
-
-
33747036919
-
Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics
-
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain:new insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50.
-
(2006)
Eur J Pharmacol
, vol.545
, Issue.1
, pp. 39-50
-
-
Butterfield, D.A.1
Perluigi, M.2
Sultana, R.3
-
37
-
-
0032971621
-
The expression of several mitochondrial and nuclear genes encoding the subunits of electron transport chain enzyme complexes, cytochrome c oxidase, and NADH dehydrogenase, in different brain regions in Alzheimer’s disease
-
Aksenov MY, Tucker HM, Nair P, et al. The expression of several mitochondrial and nuclear genes encoding the subunits of electron transport chain enzyme complexes, cytochrome c oxidase, and NADH dehydrogenase, in different brain regions in Alzheimer’s disease. Neurochem Res. 1999;24(6):767–774.
-
(1999)
Neurochem Res
, vol.24
, Issue.6
, pp. 767-774
-
-
Aksenov, M.Y.1
Tucker, H.M.2
Nair, P.3
-
38
-
-
78649983748
-
Alzheimer’s disease: effects of beta-amyloid on mitochondria
-
Tillement L, Lecanu L, Papadopoulos V. Alzheimer’s disease:effects of beta-amyloid on mitochondria. Mitochondrion. 2011;11(1):13–21.
-
(2011)
Mitochondrion
, vol.11
, Issue.1
, pp. 13-21
-
-
Tillement, L.1
Lecanu, L.2
Papadopoulos, V.3
-
39
-
-
0035943058
-
Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD
-
Cottrell DA, Blakely EL, Johnson MA, et al. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology. 2001;57(2):260–264.
-
(2001)
Neurology
, vol.57
, Issue.2
, pp. 260-264
-
-
Cottrell, D.A.1
Blakely, E.L.2
Johnson, M.A.3
-
41
-
-
80053892506
-
Brain aging, Alzheimer’s disease, and mitochondria
-
Swerdlow RH. Brain aging, Alzheimer’s disease, and mitochondria. BBA. 2011;1812(12):1630–1639.
-
(2011)
BBA
, vol.1812
, Issue.12
, pp. 1630-1639
-
-
Swerdlow, R.H.1
-
42
-
-
79951548587
-
Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease
-
Yao J, Du H, Yan S, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(6):2313–2320.
-
(2011)
J Neurosci
, vol.31
, Issue.6
, pp. 2313-2320
-
-
Yao, J.1
Du, H.2
Yan, S.3
-
43
-
-
51349110166
-
The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae
-
Hansson Petersen CA, Alikhani N, Wiehager B, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. PNAS. 2008;105(35):13145–13150.
-
(2008)
PNAS
, vol.105
, Issue.35
, pp. 13145-13150
-
-
Hansson Petersen, C.A.1
Alikhani, N.2
Wiehager, B.3
-
45
-
-
34548451974
-
Reactive oxygen species in mitochondria-mediated cell death
-
Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev. 2007;39(2–3):443–455.
-
(2007)
Drug Metab Rev
, vol.39
, Issue.2-3
, pp. 443-455
-
-
Orrenius, S.1
-
46
-
-
0034923434
-
Oxidative damage is the earliest event in Alzheimer disease
-
Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(8):759–767.
-
(2001)
J Neuropathol Exp Neurol
, vol.60
, Issue.8
, pp. 759-767
-
-
Nunomura, A.1
Perry, G.2
Aliev, G.3
-
47
-
-
79959926983
-
Mitochondria: the common upstream driver of amyloid-beta and tau pathology in Alzheimer’s disease
-
Silva DF, Esteves AR, Oliveira CR, et al. Mitochondria:the common upstream driver of amyloid-beta and tau pathology in Alzheimer’s disease. Curr Alzheimer Res. 2011;8(5):563–572.
-
(2011)
Curr Alzheimer Res
, vol.8
, Issue.5
, pp. 563-572
-
-
Silva, D.F.1
Esteves, A.R.2
Oliveira, C.R.3
-
48
-
-
0036284936
-
Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease
-
Pratico D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment:a possible predictor of Alzheimer disease. Arch Neurol. 2002;59(6):972–976.
-
(2002)
Arch Neurol
, vol.59
, Issue.6
, pp. 972-976
-
-
Pratico, D.1
Clark, C.M.2
Liun, F.3
-
49
-
-
79951560784
-
Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease: insights into memory loss in MCI
-
Aluise CD, Robinson RA, Cai J, et al. Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease:insights into memory loss in MCI. J Alzheimers Dis. 2011;23(2):257–269.
-
(2011)
J Alzheimers Dis
, vol.23
, Issue.2
, pp. 257-269
-
-
Aluise, C.D.1
Robinson, R.A.2
Cai, J.3
-
50
-
-
75949121583
-
Oxidative stress in the progression of Alzheimer disease in the frontal cortex
-
Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155–167.
-
(2010)
J Neuropathol Exp Neurol
, vol.69
, Issue.2
, pp. 155-167
-
-
Ansari, M.A.1
Scheff, S.W.2
-
51
-
-
0035875690
-
Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis
-
Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001;21(12):4183–4187.
-
(2001)
J Neurosci
, vol.21
, Issue.12
, pp. 4183-4187
-
-
Pratico, D.1
Uryu, K.2
Leight, S.3
-
52
-
-
13244292394
-
Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging
-
Manczak M, Jung Y, Park BS, et al. Time-course of mitochondrial gene expressions in mice brains:implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem. 2005;92(3):494–504.
-
(2005)
J Neurochem
, vol.92
, Issue.3
, pp. 494-504
-
-
Manczak, M.1
Jung, Y.2
Park, B.S.3
-
53
-
-
20144388830
-
ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction
-
Takuma K, Yao J, Huang J, et al. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. Faseb J. 2005;19(6):597–598.
-
(2005)
Faseb J
, vol.19
, Issue.6
, pp. 597-598
-
-
Takuma, K.1
Yao, J.2
Huang, J.3
-
54
-
-
0031585485
-
Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients
-
Curti D, Rognoni F, Gasparini L, et al. Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients. Neurosci Let. 1997;236(1):13–16.
-
(1997)
Neurosci Let
, vol.236
, Issue.1
, pp. 13-16
-
-
Curti, D.1
Rognoni, F.2
Gasparini, L.3
-
55
-
-
0023732664
-
Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease
-
Gibson GE, Sheu KF, Blass JP, et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol. 1988;45(8):836–840.
-
(1988)
Arch Neurol
, vol.45
, Issue.8
, pp. 836-840
-
-
Gibson, G.E.1
Sheu, K.F.2
Blass, J.P.3
-
56
-
-
0036753272
-
Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death
-
Butterfield DA, Castegna A, Lauderback CM, et al. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 2002;23(5):655–664.
-
(2002)
Neurobiol Aging
, vol.23
, Issue.5
, pp. 655-664
-
-
Butterfield, D.A.1
Castegna, A.2
Lauderback, C.M.3
-
57
-
-
0032031780
-
Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease
-
Marcus DL, Thomas C, Rodriguez C, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150(1):40–44.
-
(1998)
Exp Neurol
, vol.150
, Issue.1
, pp. 40-44
-
-
Marcus, D.L.1
Thomas, C.2
Rodriguez, C.3
-
58
-
-
84860198618
-
Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation
-
Leuner K, Schutt T, Kurz C, et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal. 2012;16(12):1421–1433.
-
(2012)
Antioxid Redox Signal
, vol.16
, Issue.12
, pp. 1421-1433
-
-
Leuner, K.1
Schutt, T.2
Kurz, C.3
-
59
-
-
84880196052
-
Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies
-
Carvalho C, Machado N, Mota PC, et al. Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis. 2013;35(3):623–635.
-
(2013)
J Alzheimers Dis
, vol.35
, Issue.3
, pp. 623-635
-
-
Carvalho, C.1
Machado, N.2
Mota, P.C.3
-
60
-
-
43849096294
-
Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease
-
Resende R, Moreira PI, Proenca T, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med. 2008;44(12):2051–2057.
-
(2008)
Free Radic Biol Med
, vol.44
, Issue.12
, pp. 2051-2057
-
-
Resende, R.1
Moreira, P.I.2
Proenca, T.3
-
61
-
-
84860599622
-
Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities
-
Carvalho C, Cardoso S, Correia SC, et al. Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes. 2012;61(5):1234–1242.
-
(2012)
Diabetes
, vol.61
, Issue.5
, pp. 1234-1242
-
-
Carvalho, C.1
Cardoso, S.2
Correia, S.C.3
-
62
-
-
70149093436
-
Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease
-
Yao J, Irwin RW, Zhao L, et al. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2009;106(34):14670–14675.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.34
, pp. 14670-14675
-
-
Yao, J.1
Irwin, R.W.2
Zhao, L.3
-
63
-
-
84903304059
-
Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease
-
Wang X, Wang W, Li L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. BBA. 2014;1842(8):1240–1247.
-
(2014)
BBA
, vol.1842
, Issue.8
, pp. 1240-1247
-
-
Wang, X.1
Wang, W.2
Li, L.3
-
64
-
-
84887387419
-
After the banquet: mitochondrial biogenesis, mitophagy, and cell survival
-
Zhu J, Wang KZ, Chu CT. After the banquet:mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9(11):1663–1676.
-
(2013)
Autophagy
, vol.9
, Issue.11
, pp. 1663-1676
-
-
Zhu, J.1
Wang, K.Z.2
Chu, C.T.3
-
66
-
-
71849092123
-
Regulation of neuron mitochondrial biogenesis and relevance to brain health
-
Onyango IG, Lu J, Rodova M, et al. Regulation of neuron mitochondrial biogenesis and relevance to brain health. BBA. 2010;1802(1):228–234.
-
(2010)
BBA
, vol.1802
, Issue.1
, pp. 228-234
-
-
Onyango, I.G.1
Lu, J.2
Rodova, M.3
-
67
-
-
84940718644
-
Mitochondrial quality control: easy come, easy go
-
Stotland A, Gottlieb RA. Mitochondrial quality control:easy come, easy go. BBA. 2015;1853(10 Pt B):2802–2811.
-
(2015)
BBA
, vol.1853
, Issue.10
, pp. 2802-2811
-
-
Stotland, A.1
Gottlieb, R.A.2
-
68
-
-
84926636149
-
Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu
-
Correia SC, Resende R, Moreira PI, et al. Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell Biol. 2015;34(4):261–273.
-
(2015)
DNA Cell Biol
, vol.34
, Issue.4
, pp. 261-273
-
-
Correia, S.C.1
Resende, R.2
Moreira, P.I.3
-
69
-
-
48249103491
-
Neurodegenerative lysosomal disorders: a continuum from development to late age
-
Nixon RA, Yang DS, Lee JH. Neurodegenerative lysosomal disorders:a continuum from development to late age. Autophagy. 2008;4(5):590–599.
-
(2008)
Autophagy
, vol.4
, Issue.5
, pp. 590-599
-
-
Nixon, R.A.1
Yang, D.S.2
Lee, J.H.3
-
70
-
-
34548087852
-
A novel role for autophagy in neurodevelopment
-
Cecconi F, Di Bartolomeo S, Nardacci R, et al. A novel role for autophagy in neurodevelopment. Autophagy. 2007;3(5):506–508.
-
(2007)
Autophagy
, vol.3
, Issue.5
, pp. 506-508
-
-
Cecconi, F.1
Di Bartolomeo, S.2
Nardacci, R.3
-
71
-
-
77951096150
-
Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases
-
Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Gen. 2009;18(R2):R169–R176.
-
(2009)
Hum Mol Gen
, vol.18
, Issue.R2
, pp. R169-R176
-
-
Chen, H.1
Chan, D.C.2
-
73
-
-
84958748059
-
Alterations in mitochondrial quality control in Alzheimer’s disease
-
Cai Q, Tammineni P. Alterations in mitochondrial quality control in Alzheimer’s disease. Front Cell Neurosci. 2016;10:24.• This paper provides a complete survey in the role of mitochondrial quality control in the context of Alzheimer´s disease.
-
(2016)
Front Cell Neurosci
, vol.10
, pp. 24
-
-
Cai, Q.1
Tammineni, P.2
-
74
-
-
8644270474
-
OPA1 requires mitofusin 1 to promote mitochondrial fusion
-
Cipolat S, Martins De Brito O, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA. 2004;101(45):15927–15932.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.45
, pp. 15927-15932
-
-
Cipolat, S.1
Martins De Brito, O.2
Dal Zilio, B.3
-
75
-
-
77749326636
-
Mitochondrial dynamics in Alzheimer’s disease: opportunities for future treatment strategies
-
Bonda DJ, Wang X, Perry G, et al. Mitochondrial dynamics in Alzheimer’s disease:opportunities for future treatment strategies. Drugs Aging. 2010;27(3):181–192.
-
(2010)
Drugs Aging
, vol.27
, Issue.3
, pp. 181-192
-
-
Bonda, D.J.1
Wang, X.2
Perry, G.3
-
76
-
-
49349102894
-
Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view
-
Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis:the bioenergetic view. Biochim Biophys Acta. 2008;1777(9):1092–1097.
-
(2008)
Biochim Biophys Acta
, vol.1777
, Issue.9
, pp. 1092-1097
-
-
Twig, G.1
Hyde, B.2
Shirihai, O.S.3
-
77
-
-
0035487808
-
The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis
-
Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–525.
-
(2001)
Dev Cell
, vol.1
, Issue.4
, pp. 515-525
-
-
Frank, S.1
Gaume, B.2
Bergmann-Leitner, E.S.3
-
78
-
-
33751518572
-
Mitochondrial morphology and distribution in mammalian cells
-
Frazier AE, Kiu C, Stojanovski D, et al. Mitochondrial morphology and distribution in mammalian cells. J Biol Chem. 2006;387(12):1551–1558.
-
(2006)
J Biol Chem
, vol.387
, Issue.12
, pp. 1551-1558
-
-
Frazier, A.E.1
Kiu, C.2
Stojanovski, D.3
-
79
-
-
84869231972
-
Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease
-
Calkins MJ, Manczak M, Reddy PH. Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals. 2012;5(10):1103–1119.
-
(2012)
Pharmaceuticals
, vol.5
, Issue.10
, pp. 1103-1119
-
-
Calkins, M.J.1
Manczak, M.2
Reddy, P.H.3
-
80
-
-
30544452263
-
The axonal transport of mitochondria
-
Hollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci. 2005;118(Pt 23):5411–5419.
-
(2005)
J Cell Sci
, vol.118
, pp. 5411-5419
-
-
Hollenbeck, P.J.1
Saxton, W.M.2
-
81
-
-
77951938881
-
Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks
-
Koutsopoulos OS, Laine D, Osellame L, et al. Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochim Biophys Acta. 2010;1803(5):564–574.
-
(2010)
Biochim Biophys Acta
, vol.1803
, Issue.5
, pp. 564-574
-
-
Koutsopoulos, O.S.1
Laine, D.2
Osellame, L.3
-
82
-
-
58549119743
-
Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase
-
Saotome M, Safiulina D, Szabadkai G, et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A. 2008;105(52):20728–20733.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.52
, pp. 20728-20733
-
-
Saotome, M.1
Safiulina, D.2
Szabadkai, G.3
-
83
-
-
33646117742
-
The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking
-
Fransson S, Ruusala A, Aspenstrom P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006;344(2):500–510.
-
(2006)
Biochem Biophys Res Commun
, vol.344
, Issue.2
, pp. 500-510
-
-
Fransson, S.1
Ruusala, A.2
Aspenstrom, P.3
-
84
-
-
0033231549
-
C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane
-
Labrousse AM, Zappaterra MD, Rube DA, et al. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell. 1999;4(5):815–826.
-
(1999)
Mol Cell
, vol.4
, Issue.5
, pp. 815-826
-
-
Labrousse, A.M.1
Zappaterra, M.D.2
Rube, D.A.3
-
85
-
-
23044506102
-
Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
-
Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron. 2005;47(3):365–378.
-
(2005)
Neuron
, vol.47
, Issue.3
, pp. 365-378
-
-
Verstreken, P.1
Ly, C.V.2
Venken, K.J.3
-
86
-
-
5444236916
-
Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1
-
Varadi A, Johnson-Cadwell LI, Cirulli V, et al. Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J Cell Sci. 2004;117(Pt 19):4389–4400.
-
(2004)
J Cell Sci
, vol.117
, pp. 4389-4400
-
-
Varadi, A.1
Johnson-Cadwell, L.I.2
Cirulli, V.3
-
87
-
-
77949801029
-
Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex
-
Misko A, Jiang S, Wegorzewska I, et al. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30(12):4232–4240.
-
(2010)
J Neurosci
, vol.30
, Issue.12
, pp. 4232-4240
-
-
Misko, A.1
Jiang, S.2
Wegorzewska, I.3
-
88
-
-
84862870271
-
The axonal transport of mitochondria
-
Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(Pt 9):2095–2104.
-
(2012)
J Cell Sci
, vol.125
, pp. 2095-2104
-
-
Saxton, W.M.1
Hollenbeck, P.J.2
-
89
-
-
34249941195
-
A fundamental system of cellular energy homeostasis regulated by PGC-1alpha
-
Rohas LM, St-Pierre J, Uldry M, et al. A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(19):7933–7938.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.19
, pp. 7933-7938
-
-
Rohas, L.M.1
St-Pierre, J.2
Uldry, M.3
-
90
-
-
62449166389
-
PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia
-
Qin W, Haroutunian V, Katsel P, et al. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol. 2009;66(3):352–361.
-
(2009)
Arch Neurol
, vol.66
, Issue.3
, pp. 352-361
-
-
Qin, W.1
Haroutunian, V.2
Katsel, P.3
-
91
-
-
84855687153
-
Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease
-
Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem. 2012;120(3):419–429.
-
(2012)
J Neurochem
, vol.120
, Issue.3
, pp. 419-429
-
-
Sheng, B.1
Wang, X.2
Su, B.3
-
92
-
-
77956207531
-
Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons
-
Calkins M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis. 2010;20(Suppl 2):S609–S631.
-
(2010)
J Alzheimers Dis
, vol.20
, pp. S609-S631
-
-
Calkins, M.1
Mao, P.2
Calkins, M.J.3
-
93
-
-
84923581409
-
Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology
-
Zhang W, Gu GJ, Shen X, et al. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol Aging. 2015;36(3):1282–1292.
-
(2015)
Neurobiol Aging
, vol.36
, Issue.3
, pp. 1282-1292
-
-
Zhang, W.1
Gu, G.J.2
Shen, X.3
-
94
-
-
67650655697
-
Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells
-
Xu S, Zhong M, Zhang L, et al. Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells. Febs J. 2009;276(14):3800–3809.
-
(2009)
Febs J
, vol.276
, Issue.14
, pp. 3800-3809
-
-
Xu, S.1
Zhong, M.2
Zhang, L.3
-
95
-
-
79959634508
-
PPARgamma co-activator-1alpha (PGC-1alpha) reduces amyloid-beta generation through a PPARgamma-dependent mechanism
-
Katsouri L, Parr C, Bogdanovic N, et al. PPARgamma co-activator-1alpha (PGC-1alpha) reduces amyloid-beta generation through a PPARgamma-dependent mechanism. J Alzheimers Dis. 2011;25(1):151–162.
-
(2011)
J Alzheimers Dis
, vol.25
, Issue.1
, pp. 151-162
-
-
Katsouri, L.1
Parr, C.2
Bogdanovic, N.3
-
96
-
-
84901049784
-
PGC-1alpha overexpression exacerbates beta-amyloid and tau deposition in a transgenic mouse model of Alzheimer’s disease
-
Dumont M, Stack C, Elipenahli C, et al. PGC-1alpha overexpression exacerbates beta-amyloid and tau deposition in a transgenic mouse model of Alzheimer’s disease. Faseb J. 2014;28(4):1745–1755.
-
(2014)
Faseb J
, vol.28
, Issue.4
, pp. 1745-1755
-
-
Dumont, M.1
Stack, C.2
Elipenahli, C.3
-
97
-
-
79955585040
-
Mitophagy in neurodegeneration: an opportunity for therapy?
-
Santos RX, Correia SC, Carvalho C, et al. Mitophagy in neurodegeneration:an opportunity for therapy? Curr Drug Targets. 2011;12(6):790–799.
-
(2011)
Curr Drug Targets
, vol.12
, Issue.6
, pp. 790-799
-
-
Santos, R.X.1
Correia, S.C.2
Carvalho, C.3
-
98
-
-
77954116814
-
Autophagy gone awry in neurodegenerative diseases
-
Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nature Neurosci. 2010;13(7):805–811.
-
(2010)
Nature Neurosci
, vol.13
, Issue.7
, pp. 805-811
-
-
Wong, E.1
Cuervo, A.M.2
-
99
-
-
79955969705
-
Autophagy failure in Alzheimer’s disease–locating the primary defect
-
Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis. 2011;43(1):38–45.
-
(2011)
Neurobiol Dis
, vol.43
, Issue.1
, pp. 38-45
-
-
Nixon, R.A.1
Yang, D.S.2
-
100
-
-
0035341254
-
Mitochondrial abnormalities in Alzheimer’s disease
-
Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–3023.
-
(2001)
J Neurosci
, vol.21
, Issue.9
, pp. 3017-3023
-
-
Hirai, K.1
Aliev, G.2
Nunomura, A.3
-
101
-
-
34249881080
-
Autophagocytosis of mitochondria is prominent in Alzheimer disease
-
Moreira PI, Siedlak SL, Wang X, et al. Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol. 2007;66(6):525–532.
-
(2007)
J Neuropathol Exp Neurol
, vol.66
, Issue.6
, pp. 525-532
-
-
Moreira, P.I.1
Siedlak, S.L.2
Wang, X.3
-
102
-
-
14844303381
-
Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study
-
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease:an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–122.
-
(2005)
J Neuropathol Exp Neurol
, vol.64
, Issue.2
, pp. 113-122
-
-
Nixon, R.A.1
Wegiel, J.2
Kumar, A.3
-
103
-
-
38349046973
-
Autophagy, amyloidogenesis and Alzheimer disease
-
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120(Pt 23):4081–4091.
-
(2007)
J Cell Sci
, vol.120
, pp. 4081-4091
-
-
Nixon, R.A.1
-
104
-
-
26444515364
-
Autophagy and its possible roles in nervous system diseases, damage and repair
-
Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22.
-
(2005)
Autophagy
, vol.1
, Issue.1
, pp. 11-22
-
-
Rubinsztein, D.C.1
DiFiglia, M.2
Heintz, N.3
-
105
-
-
84964313038
-
Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease
-
Kamat PK, Kalani A, Kyles P, et al. Autophagy of mitochondria:a promising therapeutic target for neurodegenerative disease. Cell Biochem Biophys. 2014;70(2):707–719.
-
(2014)
Cell Biochem Biophys
, vol.70
, Issue.2
, pp. 707-719
-
-
Kamat, P.K.1
Kalani, A.2
Kyles, P.3
-
106
-
-
84912047990
-
Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer’s disease
-
Shaerzadeh F, Motamedi F, Khodagholi F. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer’s disease. Cell Mol Neurobiol. 2014;34(8):1223–1233.
-
(2014)
Cell Mol Neurobiol
, vol.34
, Issue.8
, pp. 1223-1233
-
-
Shaerzadeh, F.1
Motamedi, F.2
Khodagholi, F.3
-
107
-
-
66349120877
-
Autophagy protects neuron from Abeta-induced cytotoxicity
-
Hung SY, Huang WP, Liou HC, et al. Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy. 2009;5(4):502–510.
-
(2009)
Autophagy
, vol.5
, Issue.4
, pp. 502-510
-
-
Hung, S.Y.1
Huang, W.P.2
Liou, H.C.3
-
108
-
-
0028947294
-
Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system
-
Cataldo AM, Barnett JL, Berman SA, et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain:evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14(3):671–680.
-
(1995)
Neuron
, vol.14
, Issue.3
, pp. 671-680
-
-
Cataldo, A.M.1
Barnett, J.L.2
Berman, S.A.3
-
110
-
-
84864954362
-
Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases
-
Corrado M, Scorrano L, Campello S. Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int J Biochem Cell Biol. 2012;2012:729290.
-
(2012)
Int J Biochem Cell Biol
, vol.2012
, pp. 729290
-
-
Corrado, M.1
Scorrano, L.2
Campello, S.3
-
111
-
-
64349099993
-
The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease
-
Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem. 2009;109(Suppl 1):153–159.
-
(2009)
J Neurochem
, vol.109
, pp. 153-159
-
-
Wang, X.1
Su, B.2
Zheng, L.3
-
112
-
-
58049218922
-
Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
-
Wang X, Su B, Siedlak SL, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A. 2008;105(49):19318–19323.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.49
, pp. 19318-19323
-
-
Wang, X.1
Su, B.2
Siedlak, S.L.3
-
113
-
-
79958721260
-
Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage
-
Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease:implications for neuronal damage. Hum Mol Gen. 2011;20(13):2495–2509.
-
(2011)
Hum Mol Gen
, vol.20
, Issue.13
, pp. 2495-2509
-
-
Manczak, M.1
Calkins, M.J.2
Reddy, P.H.3
-
114
-
-
67650732998
-
Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease
-
Wang X, Su B, Lee HG, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090–9103.
-
(2009)
J Neurosci
, vol.29
, Issue.28
, pp. 9090-9103
-
-
Wang, X.1
Su, B.2
Lee, H.G.3
-
115
-
-
33750452725
-
Dissecting mitochondrial fusion
-
Chan DC. Dissecting mitochondrial fusion. Dev Cell. 2006;11(5):592–594.
-
(2006)
Dev Cell
, vol.11
, Issue.5
, pp. 592-594
-
-
Chan, D.C.1
-
116
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N, Ishihara N, Jofuku A, et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–11529.
-
(2007)
J Biol Chem
, vol.282
, Issue.15
, pp. 11521-11529
-
-
Taguchi, N.1
Ishihara, N.2
Jofuku, A.3
-
117
-
-
64249133725
-
S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury
-
Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324(5923):102–105.
-
(2009)
Science
, vol.324
, Issue.5923
, pp. 102-105
-
-
Cho, D.H.1
Nakamura, T.2
Fang, J.3
-
118
-
-
84878586555
-
Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease
-
DuBoff B, Feany M, Gotz J. Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci. 2013;36(6):325–335.
-
(2013)
Trends Neurosci
, vol.36
, Issue.6
, pp. 325-335
-
-
DuBoff, B.1
Feany, M.2
Gotz, J.3
-
119
-
-
48749085779
-
Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients
-
Wang X, Su B, Fujioka H, et al. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol. 2008;173(2):470–482.
-
(2008)
Am J Pathol
, vol.173
, Issue.2
, pp. 470-482
-
-
Wang, X.1
Su, B.2
Fujioka, H.3
-
120
-
-
84888799219
-
Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines
-
Silva DF, Selfridge JE, Lu J, et al. Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum Mol Gen. 2013;22(19):3931–3946.
-
(2013)
Hum Mol Gen
, vol.22
, Issue.19
, pp. 3931-3946
-
-
Silva, D.F.1
Selfridge, J.E.2
Lu, J.3
-
121
-
-
84890247564
-
Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell
-
Gan X, Huang S, Wu L, et al. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Bba. 2014;1842(2):220–231.
-
(2014)
Bba
, vol.1842
, Issue.2
, pp. 220-231
-
-
Gan, X.1
Huang, S.2
Wu, L.3
-
122
-
-
81255190781
-
Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease
-
Wang MJ, Manczak M, Mao P, et al. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Gen. 2011;20(23):4515–4529.
-
(2011)
Hum Mol Gen
, vol.20
, Issue.23
, pp. 4515-4529
-
-
Wang, M.J.1
Manczak, M.2
Mao, P.3
-
123
-
-
84924571507
-
Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells
-
Park J, Choi H, Min JS, et al. Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem. 2015;132(6):687–702.
-
(2015)
J Neurochem
, vol.132
, Issue.6
, pp. 687-702
-
-
Park, J.1
Choi, H.2
Min, J.S.3
-
124
-
-
84858281225
-
Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics
-
Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease:implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta. 2012;1822(5):639–649.
-
(2012)
Biochim Biophys Acta
, vol.1822
, Issue.5
, pp. 639-649
-
-
Reddy, P.H.1
Tripathi, R.2
Troung, Q.3
-
125
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–171.
-
(2013)
Cell
, vol.155
, Issue.1
, pp. 160-171
-
-
Cogliati, S.1
Frezza, C.2
Soriano, M.E.3
-
126
-
-
77249098331
-
Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden
-
Rabinovici GD, Furst AJ, Alkalay A, et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133(Pt 2):512–528.
-
(2010)
Brain
, vol.133
, pp. 512-528
-
-
Rabinovici, G.D.1
Furst, A.J.2
Alkalay, A.3
-
127
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–1065.
-
(2012)
Science
, vol.337
, Issue.6098
, pp. 1062-1065
-
-
Youle, R.J.1
Van Der Bliek, A.M.2
-
128
-
-
84953303557
-
Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease
-
Zhang L, Trushin S, Christensen TA, et al. Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep. 2016;6:18725.
-
(2016)
Sci Rep
, vol.6
, pp. 18725
-
-
Zhang, L.1
Trushin, S.2
Christensen, T.A.3
-
129
-
-
84871417031
-
Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease
-
Selfridge JE, Lezi E, Lu J, et al. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol Dis. 2013;51:3–12.
-
(2013)
Neurobiol Dis
, vol.51
, pp. 3-12
-
-
Selfridge, J.E.1
Lezi, E.2
Lu, J.3
-
130
-
-
57049143140
-
Mitochondria in neuroplasticity and neurological disorders
-
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60(5):748–766.
-
(2008)
Neuron
, vol.60
, Issue.5
, pp. 748-766
-
-
Mattson, M.P.1
Gleichmann, M.2
Cheng, A.3
-
131
-
-
0036047004
-
Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease
-
Terwel D, Dewachter I, Van Leuven F. Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. NeuroMolecular Med. 2002;2(2):151–165.
-
(2002)
NeuroMolecular Med
, vol.2
, Issue.2
, pp. 151-165
-
-
Terwel, D.1
Dewachter, I.2
Van Leuven, F.3
-
132
-
-
20044385920
-
Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease
-
Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307(5713):1282–1288.
-
(2005)
Science
, vol.307
, Issue.5713
, pp. 1282-1288
-
-
Stokin, G.B.1
Lillo, C.2
Falzone, T.L.3
-
133
-
-
0037032099
-
Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes
-
Dai J, Buijs RM, Kamphorst W, et al. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res. 2002;948(1–2):138–144.
-
(2002)
Brain Res
, vol.948
, Issue.1-2
, pp. 138-144
-
-
Dai, J.1
Buijs, R.M.2
Kamphorst, W.3
-
134
-
-
24144438228
-
Differentiated Alzheimer’s disease transmitochondrial cybrid cell lines exhibit reduced organelle movement
-
Trimmer PA, Borland MK. Differentiated Alzheimer’s disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxid Redox Signal. 2005;7(9–10):1101–1109.
-
(2005)
Antioxid Redox Signal
, vol.7
, Issue.9-10
, pp. 1101-1109
-
-
Trimmer, P.A.1
Borland, M.K.2
-
135
-
-
0038118207
-
Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport
-
Pigino G, Morfini G, Pelsman A, et al. Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci. 2003;23(11):4499–4508.
-
(2003)
J Neurosci
, vol.23
, Issue.11
, pp. 4499-4508
-
-
Pigino, G.1
Morfini, G.2
Pelsman, A.3
-
136
-
-
77956553917
-
Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease
-
Massaad CA, Amin SK, Hu L, et al. Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease. Plos One. 2010;5(5):e10561.
-
(2010)
Plos One
, vol.5
, Issue.5
, pp. e10561
-
-
Massaad, C.A.1
Amin, S.K.2
Hu, L.3
-
137
-
-
79751537405
-
Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons
-
Calkins MJ, Reddy PH. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta. 2011;1812(4):507–513.
-
(2011)
Biochim Biophys Acta
, vol.1812
, Issue.4
, pp. 507-513
-
-
Calkins, M.J.1
Reddy, P.H.2
-
138
-
-
34347353311
-
Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1
-
Lazarov O, Morfini GA, Pigino G, et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci. 2007;27(26):7011–7020.
-
(2007)
J Neurosci
, vol.27
, Issue.26
, pp. 7011-7020
-
-
Lazarov, O.1
Morfini, G.A.2
Pigino, G.3
-
139
-
-
33749854516
-
Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons
-
Rui Y, Tiwari P, Xie Z, et al. Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci. 2006;26(41):10480–10487.
-
(2006)
J Neurosci
, vol.26
, Issue.41
, pp. 10480-10487
-
-
Rui, Y.1
Tiwari, P.2
Xie, Z.3
-
140
-
-
65249161745
-
Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta
-
Pigino G, Morfini G, Atagi Y, et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A. 2009;106(14):5907–5912.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.14
, pp. 5907-5912
-
-
Pigino, G.1
Morfini, G.2
Atagi, Y.3
-
141
-
-
75349092711
-
Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila
-
Zhao XL, Wang WA, Tan JX, et al. Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci. 2010;30(4):1512–1522.
-
(2010)
J Neurosci
, vol.30
, Issue.4
, pp. 1512-1522
-
-
Zhao, X.L.1
Wang, W.A.2
Tan, J.X.3
-
142
-
-
78649815388
-
Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model
-
Du H, Guo L, Yan S, et al. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A. 2010;107(43):18670–18675.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.43
, pp. 18670-18675
-
-
Du, H.1
Guo, L.2
Yan, S.3
-
144
-
-
84920765407
-
Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future
-
Hampel H, Schneider LS, Giacobini E, et al. Advances in the therapy of Alzheimer’s disease:targeting amyloid beta and tau and perspectives for the future. Expert Rev Neurother. 2015;15(1):83–105.
-
(2015)
Expert Rev Neurother
, vol.15
, Issue.1
, pp. 83-105
-
-
Hampel, H.1
Schneider, L.S.2
Giacobini, E.3
-
145
-
-
31144450053
-
Current pharmacotherapy for Alzheimer’s disease
-
Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med. 2006;57:513–533.
-
(2006)
Annu Rev Med
, vol.57
, pp. 513-533
-
-
Lleo, A.1
Greenberg, S.M.2
Growdon, J.H.3
-
146
-
-
80054096801
-
Cholinesterases, a target of pharmacology and toxicology
-
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ. 2011;155(3):219–229.
-
(2011)
Biomed Pap Med Fac Univ
, vol.155
, Issue.3
, pp. 219-229
-
-
Pohanka, M.1
-
147
-
-
84959010623
-
Alzheimer’s disease: an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products
-
Awasthi M, Singh S, Pandey VP, et al. Alzheimer’s disease:an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci. 2016;361:256–271.• In this important manuscript, authors provide a complete survey regarding the available evidence concerning various therapeutic approaches targeting Aβ, focusing specifically on pharmaceutical compounds under various stages of clinical trials.
-
(2016)
J Neurol Sci
, vol.361
, pp. 256-271
-
-
Awasthi, M.1
Singh, S.2
Pandey, V.P.3
-
148
-
-
77955089623
-
Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease–therapeutic aspects
-
Muller WE, Eckert A, Kurz C, et al. Mitochondrial dysfunction:common final pathway in brain aging and Alzheimer’s disease–therapeutic aspects. Mol Neurobiol. 2010;41(2–3):159–171.
-
(2010)
Mol Neurobiol
, vol.41
, Issue.2-3
, pp. 159-171
-
-
Muller, W.E.1
Eckert, A.2
Kurz, C.3
-
149
-
-
33847071146
-
Targeting antioxidants to mitochondria by conjugation to lipophilic cations
-
Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol. 2007;47:629–656.
-
(2007)
Annu Rev Pharmacol
, vol.47
, pp. 629-656
-
-
Murphy, M.P.1
Smith, R.A.2
-
150
-
-
84930952984
-
Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders
-
Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int. 2015;88:66–72.
-
(2015)
Neurochem Int
, vol.88
, pp. 66-72
-
-
Ruszkiewicz, J.1
Albrecht, J.2
-
151
-
-
84944743466
-
A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions
-
Kumar A, Singh A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol. 2015;6:206.
-
(2015)
Front Pharmacol
, vol.6
, pp. 206
-
-
Kumar, A.1
Singh, A.2
-
152
-
-
84858148877
-
Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease
-
Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta. 2012;1822(5):631–638.•• In this review manuscript, is provided an update regarding the promising clinical trials performed using antioxidants in Alzheimer´s disease and is discussed the not so promising results that occurred.
-
(2012)
Biochim Biophys Acta
, vol.1822
, Issue.5
, pp. 631-638
-
-
Mecocci, P.1
Polidori, M.C.2
-
153
-
-
0343986284
-
Drug delivery to mitochondria: the key to mitochondrial medicine
-
Murphy MP, Smith RA. Drug delivery to mitochondria:the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41(2):235–250.
-
(2000)
Adv Drug Deliv Rev
, vol.41
, Issue.2
, pp. 235-250
-
-
Murphy, M.P.1
Smith, R.A.2
-
154
-
-
84918588166
-
Mitochondria-targeting particles
-
Wongrakpanich A, Geary SM, Joiner ML, et al. Mitochondria-targeting particles. Nanomedicine. 2014;9(16):2531–2543.•• In this important manuscript, authors provide a complete information concerning the latest discoveries applied to the development of mitochondria-targeting particles and its applications to the medicine field.
-
(2014)
Nanomedicine
, vol.9
, Issue.16
, pp. 2531-2543
-
-
Wongrakpanich, A.1
Geary, S.M.2
Joiner, M.L.3
-
155
-
-
77955283395
-
Animal and human studies with the mitochondria-targeted antioxidant MitoQ
-
Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.
-
(2010)
Ann N Y Acad Sci
, vol.1201
, pp. 96-103
-
-
Smith, R.A.1
Murphy, M.P.2
-
156
-
-
74149087396
-
Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice
-
Rodriguez-Cuenca S, Cocheme HM, Logan A, et al. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med. 2010;48(1):161–172.
-
(2010)
Free Radic Biol Med
, vol.48
, Issue.1
, pp. 161-172
-
-
Rodriguez-Cuenca, S.1
Cocheme, H.M.2
Logan, A.3
-
157
-
-
84897006654
-
Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis
-
Miquel E, Cassina A, Martinez-Palma L, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic Biol Med. 2014;70:204–213.
-
(2014)
Free Radic Biol Med
, vol.70
, pp. 204-213
-
-
Miquel, E.1
Cassina, A.2
Martinez-Palma, L.3
-
158
-
-
78049357951
-
Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model
-
Ghosh A, Chandran K, Kalivendi SV, et al. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radic Biol Med. 2010;49(11):1674–1684.
-
(2010)
Free Radic Biol Med
, vol.49
, Issue.11
, pp. 1674-1684
-
-
Ghosh, A.1
Chandran, K.2
Kalivendi, S.V.3
-
159
-
-
0035895888
-
Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties
-
Kelso GF, Porteous CM, Coulter CV, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells:antioxidant and antiapoptotic properties. J Biol Chem. 2001;276(7):4588–4596.
-
(2001)
J Biol Chem
, vol.276
, Issue.7
, pp. 4588-4596
-
-
Kelso, G.F.1
Porteous, C.M.2
Coulter, C.V.3
-
160
-
-
80155148269
-
The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease
-
McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2011;31(44):15703–15715.
-
(2011)
J Neurosci
, vol.31
, Issue.44
, pp. 15703-15715
-
-
McManus, M.J.1
Murphy, M.P.2
Franklin, J.L.3
-
161
-
-
84899869133
-
The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease
-
Ng LF, Gruber J, Cheah IK, et al. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic Biol Med. 2014;71:390–401.
-
(2014)
Free Radic Biol Med
, vol.71
, pp. 390-401
-
-
Ng, L.F.1
Gruber, J.2
Cheah, I.K.3
-
162
-
-
77955792985
-
A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease
-
Snow BJ, Rolfe FL, Lockhart MM, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disorders. 2010;25(11):1670–1674.
-
(2010)
Mov Disorders
, vol.25
, Issue.11
, pp. 1670-1674
-
-
Snow, B.J.1
Rolfe, F.L.2
Lockhart, M.M.3
-
163
-
-
77956496245
-
The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients
-
Gane EJ, Weilert F, Orr DW, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30(7):1019–1026.
-
(2010)
Liver Int
, vol.30
, Issue.7
, pp. 1019-1026
-
-
Gane, E.J.1
Weilert, F.2
Orr, D.W.3
-
164
-
-
84887249119
-
Increased susceptibility to amyloid-beta toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions
-
Carvalho C, Katz PS, Dutta S, et al. Increased susceptibility to amyloid-beta toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J Alzheimers Dis. 2014;38(1):75–83.
-
(2014)
J Alzheimers Dis
, vol.38
, Issue.1
, pp. 75-83
-
-
Carvalho, C.1
Katz, P.S.2
Dutta, S.3
-
165
-
-
84955490680
-
Transient cerebral ischemia promotes brain mitochondrial dysfunction and exacerbates cognitive impairments in young 5xFAD mice
-
Lu L, Guo L, Gauba E, et al. Transient cerebral ischemia promotes brain mitochondrial dysfunction and exacerbates cognitive impairments in young 5xFAD mice. Plos One. 2015;10(12):e0144068.
-
(2015)
Plos One
, vol.10
, Issue.12
, pp. e0144068
-
-
Lu, L.1
Guo, L.2
Gauba, E.3
-
166
-
-
84958234169
-
Neuroprotective role of nanoparticles against Alzheimer’s disease
-
Obulesu M, Jhansilakshmi M. Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr Drug Metab. 2016;17(2):142–149.
-
(2016)
Curr Drug Metab
, vol.17
, Issue.2
, pp. 142-149
-
-
Obulesu, M.1
Jhansilakshmi, M.2
-
167
-
-
84867089289
-
Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics
-
Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A. 2012;109(40):16288–16293.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.40
, pp. 16288-16293
-
-
Marrache, S.1
Dhar, S.2
-
168
-
-
57649187112
-
Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases
-
Szeto HH. Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann N Y Acad Sci. 2008;1147:112–121.
-
(2008)
Ann N Y Acad Sci
, vol.1147
, pp. 112-121
-
-
Szeto, H.H.1
-
169
-
-
4544370680
-
Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury
-
Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–34690.
-
(2004)
J Biol Chem
, vol.279
, Issue.33
, pp. 34682-34690
-
-
Zhao, K.1
Zhao, G.M.2
Wu, D.3
-
170
-
-
84864471069
-
Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease
-
Lai AY, McLaurin J. Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease. Biochim Biophys Acta. 2012;1822(10):1629–1637.
-
(2012)
Biochim Biophys Acta
, vol.1822
, Issue.10
, pp. 1629-1637
-
-
Lai, A.Y.1
McLaurin, J.2
-
171
-
-
84877333097
-
Latrepirdine (Dimebon(R)), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model
-
Steele JW, Gandy S. Latrepirdine (Dimebon(R)), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy. 2013;9(4):617–618.
-
(2013)
Autophagy
, vol.9
, Issue.4
, pp. 617-618
-
-
Steele, J.W.1
Gandy, S.2
-
172
-
-
79959979604
-
Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis
-
Yang DS, Stavrides P, Mohan PS, et al. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy. 2011;7(7):788–789.
-
(2011)
Autophagy
, vol.7
, Issue.7
, pp. 788-789
-
-
Yang, D.S.1
Stavrides, P.2
Mohan, P.S.3
-
173
-
-
80053243942
-
Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits
-
Majumder S, Richardson A, Strong R, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. Plos One. 2011;6(9):e25416.
-
(2011)
Plos One
, vol.6
, Issue.9
, pp. e25416
-
-
Majumder, S.1
Richardson, A.2
Strong, R.3
-
174
-
-
84877109118
-
Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice
-
Ozcelik S, Fraser G, Castets P, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. Plos One. 2013;8(5):e62459.
-
(2013)
Plos One
, vol.8
, Issue.5
, pp. e62459
-
-
Ozcelik, S.1
Fraser, G.2
Castets, P.3
-
175
-
-
79251556232
-
Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation
-
Vingtdeux V, Chandakkar P, Zhao H, et al. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. Faseb J. 2011;25(1):219–231.
-
(2011)
Faseb J
, vol.25
, Issue.1
, pp. 219-231
-
-
Vingtdeux, V.1
Chandakkar, P.2
Zhao, H.3
-
176
-
-
84885058094
-
A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 x Tg-AD mouse model of Alzheimer disease
-
Hensley K, Gabbita SP, Venkova K, et al. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 x Tg-AD mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2013;72(10):955–969.
-
(2013)
J Neuropathol Exp Neurol
, vol.72
, Issue.10
, pp. 955-969
-
-
Hensley, K.1
Gabbita, S.P.2
Venkova, K.3
-
177
-
-
84925251308
-
Redox regulation of autophagy in healthy brain and neurodegeneration
-
Hensley K, Harris-White ME. Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis. 2015;84:50–59.• In this manuscript, authors discuss the regulation of autophagy in the context of health and neurodegeneration.
-
(2015)
Neurobiol Dis
, vol.84
, pp. 50-59
-
-
Hensley, K.1
Harris-White, M.E.2
-
178
-
-
84862281225
-
Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo
-
Congdon EE, Wu JW, Myeku N, et al. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy. 2012;8(4):609–622.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 609-622
-
-
Congdon, E.E.1
Wu, J.W.2
Myeku, N.3
-
179
-
-
0029742937
-
Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines
-
Wischik CM, Edwards PC, Lai RY, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A. 1996;93(20):11213–11218.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.20
, pp. 11213-11218
-
-
Wischik, C.M.1
Edwards, P.C.2
Lai, R.Y.3
-
180
-
-
34547672881
-
Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization
-
Necula M, Breydo L, Milton S, et al. Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization. Biochemistry. 2007;46(30):8850–8860.
-
(2007)
Biochemistry
, vol.46
, Issue.30
, pp. 8850-8860
-
-
Necula, M.1
Breydo, L.2
Milton, S.3
-
181
-
-
79251555689
-
Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity
-
Medina DX, Caccamo A, Oddo S. Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 2011;21(2):140–149.
-
(2011)
Brain Pathol
, vol.21
, Issue.2
, pp. 140-149
-
-
Medina, D.X.1
Caccamo, A.2
Oddo, S.3
-
182
-
-
40449086359
-
Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways
-
Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. Faseb J. 2008;22(3):703–712.
-
(2008)
Faseb J
, vol.22
, Issue.3
, pp. 703-712
-
-
Atamna, H.1
Nguyen, A.2
Schultz, C.3
-
183
-
-
70449449751
-
Amino acids variations in amyloid-beta peptides, mitochondrial dysfunction, and new therapies for Alzheimer’s disease
-
Atamna H. Amino acids variations in amyloid-beta peptides, mitochondrial dysfunction, and new therapies for Alzheimer’s disease. J Bioenerg Biomembr. 2009;41(5):457–464.
-
(2009)
J Bioenerg Biomembr
, vol.41
, Issue.5
, pp. 457-464
-
-
Atamna, H.1
-
184
-
-
77956211109
-
Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase
-
Atamna H, Kumar R. Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J Alzheimers Dis. 2010;20(Suppl 2):S439–S452.
-
(2010)
J Alzheimers Dis
, vol.20
, pp. S439-S452
-
-
Atamna, H.1
Kumar, R.2
-
185
-
-
79955528923
-
Alternative mitochondrial electron transfer as a novel strategy for neuroprotection
-
Wen Y, Li W, Poteet EC, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem. 2011;286(18):16504–16515.
-
(2011)
J Biol Chem
, vol.286
, Issue.18
, pp. 16504-16515
-
-
Wen, Y.1
Li, W.2
Poteet, E.C.3
-
186
-
-
84941899665
-
Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue
-
Atamna H, Atamna W, Al-Eyd G, et al. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Biol. 2015;6:426–435.
-
(2015)
Redox Biol
, vol.6
, pp. 426-435
-
-
Atamna, H.1
Atamna, W.2
Al-Eyd, G.3
-
187
-
-
78650071220
-
Mitochondria and neuroplasticity
-
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro. 2010;2(5):e00045.
-
(2010)
ASN Neuro
, vol.2
, Issue.5
, pp. e00045
-
-
Cheng, A.1
Hou, Y.2
Mattson, M.P.3
-
188
-
-
84911007828
-
Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease
-
Zhang W, Wang PJ, Sha HY, et al. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol Neurobiol. 2014;50(2):423–437.
-
(2014)
Mol Neurobiol
, vol.50
, Issue.2
, pp. 423-437
-
-
Zhang, W.1
Wang, P.J.2
Sha, H.Y.3
-
189
-
-
69449091994
-
Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease
-
Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 2009;106(32):13594–13599.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.32
, pp. 13594-13599
-
-
Blurton-Jones, M.1
Kitazawa, M.2
Martinez-Coria, H.3
-
190
-
-
84876312885
-
A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity
-
Qi X, Qvit N, Su YC, et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci. 2013;126(Pt 3):789–802.
-
(2013)
J Cell Sci
, vol.126
, pp. 789-802
-
-
Qi, X.1
Qvit, N.2
Su, Y.C.3
-
191
-
-
84887004639
-
Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation
-
Su YC, Qi X. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Gen. 2013;22(22):4545–4561.
-
(2013)
Hum Mol Gen
, vol.22
, Issue.22
, pp. 4545-4561
-
-
Su, Y.C.1
Qi, X.2
-
192
-
-
84890096545
-
Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration
-
Guo X, Disatnik MH, Monbureau M, et al. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest. 2013;123(12):5371–5388.
-
(2013)
J Clin Invest
, vol.123
, Issue.12
, pp. 5371-5388
-
-
Guo, X.1
Disatnik, M.H.2
Monbureau, M.3
-
193
-
-
79957937433
-
Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases
-
Reddy PH, Reddy TP, Manczak M, et al. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011;67(1–2):103–118.
-
(2011)
Brain Res Rev
, vol.67
, Issue.1-2
, pp. 103-118
-
-
Reddy, P.H.1
Reddy, T.P.2
Manczak, M.3
-
194
-
-
38849099158
-
Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization
-
Cassidy-Stone A, Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.
-
(2008)
Dev Cell
, vol.14
, Issue.2
, pp. 193-204
-
-
Cassidy-Stone, A.1
Chipuk, J.E.2
Ingerman, E.3
-
195
-
-
84887536862
-
Inhibition of mitochondrial fission attenuates Abeta-induced microglia apoptosis
-
Xie N, Wang C, Lian Y, et al. Inhibition of mitochondrial fission attenuates Abeta-induced microglia apoptosis. Neuroscience. 2014;256:36–42.
-
(2014)
Neuroscience
, vol.256
, pp. 36-42
-
-
Xie, N.1
Wang, C.2
Lian, Y.3
-
196
-
-
84868515517
-
Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer’s disease?
-
Reddy PH. Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer’s disease? Biochim Biophys Acta. 2013;1832(1):67–75.
-
(2013)
Biochim Biophys Acta
, vol.1832
, Issue.1
, pp. 67-75
-
-
Reddy, P.H.1
-
197
-
-
84892710629
-
Reduced VDAC1 protects against Alzheimer’s disease, mitochondria, and synaptic deficiencies
-
Manczak M, Sheiko T, Craigen WJ, et al. Reduced VDAC1 protects against Alzheimer’s disease, mitochondria, and synaptic deficiencies. J Alzheimers Dis. 2013;37(4):679–690.
-
(2013)
J Alzheimers Dis
, vol.37
, Issue.4
, pp. 679-690
-
-
Manczak, M.1
Sheiko, T.2
Craigen, W.J.3
-
198
-
-
84930465723
-
Masitinib for the treatment of mild to moderate Alzheimer’s disease
-
Folch J, Petrov D, Ettcheto M, et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev Neurother. 2015;15(6):587–596.
-
(2015)
Expert Rev Neurother
, vol.15
, Issue.6
, pp. 587-596
-
-
Folch, J.1
Petrov, D.2
Ettcheto, M.3
-
199
-
-
84865187620
-
Mitochondrial dysfunction in neurodegenerative diseases
-
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342(3):619–630.
-
(2012)
J Pharmacol Exp Ther
, vol.342
, Issue.3
, pp. 619-630
-
-
Johri, A.1
Beal, M.F.2
|