-
1
-
-
78650316134
-
P53 research: The past thirty years and the next thirty years
-
Lane D, Levine A. 2010. p53 research: The past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2:a000893
-
(2010)
Cold Spring Harb. Perspect. Biol.
, vol.2
, pp. a000893
-
-
Lane, D.1
Levine, A.2
-
2
-
-
65349103899
-
Blinded by the light: The growing complexity of p53
-
Vousden KH, Prives C. 2009. Blinded by the light: The growing complexity of p53. Cell 137:413-31
-
(2009)
Cell
, vol.137
, pp. 413-431
-
-
Vousden, K.H.1
Prives, C.2
-
3
-
-
84899622427
-
Unravellingmechanisms of p53-mediated tumour suppression
-
BiegingKT, Mello SS, Attardi LD. 2014. Unravellingmechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14:359-70
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 359-370
-
-
Bieging, K.T.1
Mello, S.S.2
Attardi, L.D.3
-
4
-
-
84873055344
-
MDM2, MDMX and p53 in oncogenesis and cancer therapy
-
Wade M, Li YC, Wahl GM. 2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13:83-96
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 83-96
-
-
Wade, M.1
Li, Y.C.2
Wahl, G.M.3
-
5
-
-
42149105590
-
Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans
-
Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. 2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15:841-48
-
(2008)
Cell Death Differ.
, vol.15
, pp. 841-848
-
-
Linke, K.1
Mace, P.D.2
Smith, C.A.3
Vaux, D.L.4
Silke, J.5
Day, C.L.6
-
6
-
-
48849117864
-
Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain
-
Popowicz GM, Czarna A, Holak TA. 2008. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441-43
-
(2008)
Cell Cycle
, vol.7
, pp. 2441-2443
-
-
Popowicz, G.M.1
Czarna, A.2
Holak, T.A.3
-
7
-
-
47649096991
-
Structural biology of the tumor suppressor p53
-
Joerger AC, Fersht AR. 2008. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77:557-82
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 557-582
-
-
Joerger, A.C.1
Fersht, A.R.2
-
8
-
-
84903957093
-
Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases
-
Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ, et al. 2014. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem. Rev. 114:6844-79
-
(2014)
Chem. Rev.
, vol.114
, pp. 6844-6879
-
-
Uversky, V.N.1
Dave, V.2
Iakoucheva, L.M.3
Malaney, P.4
Metallo, S.J.5
-
9
-
-
78650873252
-
P63 and p73, the ancestors of p53
-
Dötsch V, Bernassola F, Coutandin D, Candi E, Melino G. 2010. p63 and p73, the ancestors of p53. Cold Spring Harb. Perspect. Biol. 2:a004887
-
(2010)
Cold Spring Harb. Perspect. Biol.
, vol.2
, pp. a004887
-
-
Dötsch, V.1
Bernassola, F.2
Coutandin, D.3
Candi, E.4
Melino, G.5
-
10
-
-
80053015725
-
P53 isoforms: An intracellular microprocessor?
-
Khoury MP, Bourdon JC. 2011. p53 isoforms: An intracellular microprocessor? Genes Cancer 2:453-65
-
(2011)
Genes Cancer
, vol.2
, pp. 453-465
-
-
Khoury, M.P.1
Bourdon, J.C.2
-
11
-
-
0028952841
-
Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1
-
Jeffrey PD, Gorina S, Pavletich NP. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1. 7 angstroms. Science 267:1498-502
-
(1995)
7 Angstroms. Science
, vol.267
, pp. 1498-1502
-
-
Jeffrey, P.D.1
Gorina, S.2
Pavletich, N.P.3
-
12
-
-
79953723488
-
Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53
-
Rajagopalan S, Huang F, Fersht AR. 2011. Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res. 39:2294-303
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 2294-2303
-
-
Rajagopalan, S.1
Huang, F.2
Fersht, A.R.3
-
13
-
-
0033559256
-
A leucine-rich nuclear export signal in the p53 tetramerization domain: Regulation of subcellular localization and p53 activity by NES masking
-
Stommel JM, MarchenkoND, JimenezGS, Moll UM, Hope TJ, WahlGM. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18:1660-72
-
(1999)
EMBO J.
, vol.18
, pp. 1660-1672
-
-
Stommel, J.M.1
Marchenko, N.D.2
Jimenez, G.S.3
Moll, U.M.4
Hope, T.J.5
Wahl, G.M.6
-
14
-
-
84884296614
-
Activation and control of p53 tetramerization in individual living cells
-
Gaglia G, Guan Y, Shah JV, Lahav G. 2013. Activation and control of p53 tetramerization in individual living cells. PNAS 110:15497-501
-
(2013)
PNAS
, vol.110
, pp. 15497-15501
-
-
Gaglia, G.1
Guan, Y.2
Shah, J.V.3
Lahav, G.4
-
15
-
-
79951687016
-
DNA damage in oocytes induces a switch of the quality control factor TAp63?from dimer to tetramer
-
Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B, et al. 2011. DNA damage in oocytes induces a switch of the quality control factor TAp63?from dimer to tetramer. Cell 144:566-76
-
(2011)
Cell
, vol.144
, pp. 566-576
-
-
Deutsch, G.B.1
Zielonka, E.M.2
Coutandin, D.3
Weber, T.A.4
Schäfer, B.5
-
16
-
-
0026849821
-
Definition of a consensus binding site for p53
-
el-Deiry WS, Kern SE, Pietenpol JA, KinzlerKW, Vogelstein B. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45-49
-
(1992)
Nat. Genet.
, vol.1
, pp. 45-49
-
-
El-Deiry, W.S.1
Kern, S.E.2
Pietenpol, J.A.3
Kinzler, K.W.4
Vogelstein, B.5
-
17
-
-
30344478870
-
A global map of p53 transcription-factor binding sites in the human genome
-
Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, et al. 2006. A global map of p53 transcription-factor binding sites in the human genomE. Cell 124:207-19
-
(2006)
Cell
, vol.124
, pp. 207-219
-
-
Wei, C.L.1
Wu, Q.2
Vega, V.B.3
Chiu, K.P.4
Ng, P.5
-
18
-
-
0027983669
-
Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations
-
Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346-55
-
(1994)
Science
, vol.265
, pp. 346-355
-
-
Cho, Y.1
Gorina, S.2
Jeffrey, P.D.3
Pavletich, N.P.4
-
20
-
-
75849126765
-
Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer
-
Chen Y, Dey R, Chen L. 2010. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure 18:246-56
-
(2010)
Structure
, vol.18
, pp. 246-256
-
-
Chen, Y.1
Dey, R.2
Chen, L.3
-
21
-
-
77950484709
-
Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs
-
Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, et al. 2010. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat. Struct. Mol. Biol. 17:423-29
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 423-429
-
-
Kitayner, M.1
Rozenberg, H.2
Rohs, R.3
Suad, O.4
Rabinovich, D.5
-
22
-
-
79957894792
-
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity
-
Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, et al. 2011. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 30:2167-76
-
(2011)
EMBO J.
, vol.30
, pp. 2167-2176
-
-
Petty, T.J.1
Emamzadah, S.2
Costantino, L.3
Petkova, I.4
Stavridi, E.S.5
-
23
-
-
33745209412
-
Structural basis of DNA recognition by p53 tetramers
-
Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, et al. 2006. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22:741-53
-
(2006)
Mol. Cell
, vol.22
, pp. 741-753
-
-
Kitayner, M.1
Rozenberg, H.2
Kessler, N.3
Rabinovich, D.4
Shaulov, L.5
-
24
-
-
79957726594
-
Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration
-
Arbely E, Natan E, Brandt T, Allen MD, Veprintsev DB, et al. 2011. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. PNAS 108:8251-56
-
(2011)
PNAS
, vol.108
, pp. 8251-8256
-
-
Arbely, E.1
Natan, E.2
Brandt, T.3
Allen, M.D.4
Veprintsev, D.B.5
-
25
-
-
33845668241
-
Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis
-
Tang Y, Luo J, Zhang W, Gu W. 2006. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24:827-39
-
(2006)
Mol. Cell
, vol.24
, pp. 827-839
-
-
Tang, Y.1
Luo, J.2
Zhang, W.3
Gu, W.4
-
26
-
-
33845656738
-
Acetylation of the p53 DNAbinding domain regulates apoptosis induction
-
Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, et al. 2006. Acetylation of the p53 DNAbinding domain regulates apoptosis induction. Mol. Cell 24:841-51
-
(2006)
Mol. Cell
, vol.24
, pp. 841-851
-
-
Sykes, S.M.1
Mellert, H.S.2
Holbert, M.A.3
Li, K.4
Marmorstein, R.5
-
27
-
-
44449116120
-
Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
-
Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, et al. 2008. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. PNAS 105:5762-67
-
(2008)
PNAS
, vol.105
, pp. 5762-5767
-
-
Wells, M.1
Tidow, H.2
Rutherford, T.J.3
Markwick, P.4
Jensen, M.R.5
-
28
-
-
0033535602
-
Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains
-
Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L. 1999. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18:2405-10
-
(1999)
Oncogene
, vol.18
, pp. 2405-2410
-
-
Venot, C.1
Maratrat, M.2
Sierra, V.3
Conseiller, E.4
Debussche, L.5
-
29
-
-
0030575937
-
Structure of theMDM2oncoprotein bound to the p53 tumor suppressor transactivation domain
-
KussiePH, Gorina S, Marechal V, Elenbaas B, Moreau J, et al. 1996. Structure of theMDM2oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948-53
-
(1996)
Science
, vol.274
, pp. 948-953
-
-
Kussie, P.H.1
Gorina, S.2
Marechal, V.3
Elenbaas, B.4
Moreau, J.5
-
30
-
-
59649109756
-
Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation
-
Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, et al. 2009. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17:202-10
-
(2009)
Structure
, vol.17
, pp. 202-210
-
-
Feng, H.1
Jenkins, L.M.2
Durell, S.R.3
Hayashi, R.4
Mazur, S.J.5
-
31
-
-
27344449049
-
Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A
-
Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, et al. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. PNAS 102:15412-17
-
(2005)
PNAS
, vol.102
, pp. 15412-15417
-
-
Bochkareva, E.1
Kaustov, L.2
Ayed, A.3
Yi, G.S.4
Lu, Y.5
-
32
-
-
33745214419
-
Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53
-
Di Lello P, Jenkins LM, JonesTN, Nguyen BD, HaraT, et al. 2006. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22:731-40
-
(2006)
Mol. Cell
, vol.22
, pp. 731-740
-
-
Di Lello, P.1
Jenkins, L.M.2
Jones, T.N.3
Nguyen, B.D.4
Hara, T.5
-
33
-
-
84925446111
-
Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex
-
Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, et al. 2015. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 54:2001-10
-
(2015)
Biochemistry
, vol.54
, pp. 2001-2010
-
-
Miller Jenkins, L.M.1
Feng, H.2
Durell, S.R.3
Tagad, H.D.4
Mazur, S.J.5
-
34
-
-
78649284498
-
Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein
-
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. 2010. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49:9964-71
-
(2010)
Biochemistry
, vol.49
, pp. 9964-9971
-
-
Lee, C.W.1
Martinez-Yamout, M.A.2
Dyson, H.J.3
Wright, P.E.4
-
35
-
-
0036407644
-
Molecular mechanism of the interaction between MDM2 and p53
-
Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. 2002. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323:491-501
-
(2002)
J. Mol. Biol.
, vol.323
, pp. 491-501
-
-
Schon, O.1
Friedler, A.2
Bycroft, M.3
Freund, S.M.4
Fersht, A.R.5
-
36
-
-
84935516915
-
Structural basis of how stress-induced MDMX phosphorylation activates p53
-
Chen X, Gohain N, Zhan C, Lu WY, Pazgier M, Lu W. 2015. Structural basis of how stress-induced MDMX phosphorylation activates p53. Oncogene 35:1919-25
-
(2015)
Oncogene
, vol.35
, pp. 1919-1925
-
-
Chen, X.1
Gohain, N.2
Zhan, C.3
Lu, W.Y.4
Pazgier, M.5
Lu, W.6
-
37
-
-
67349284323
-
Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2
-
Teufel DP, Bycroft M, Fersht AR. 2009. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28:2112-18
-
(2009)
Oncogene
, vol.28
, pp. 2112-2118
-
-
Teufel, D.P.1
Bycroft, M.2
Fersht, A.R.3
-
38
-
-
78650590282
-
Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation
-
Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE. 2010. Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. PNAS 107:19290-95
-
(2010)
PNAS
, vol.107
, pp. 19290-19295
-
-
Lee, C.W.1
Ferreon, J.C.2
Ferreon, A.C.3
Arai, M.4
Wright, P.E.5
-
39
-
-
79952259642
-
A single-molecule characterization of p53 search on DNA
-
Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen AM. 2011. A single-molecule characterization of p53 search on DNA. PNAS 108:563-68
-
(2011)
PNAS
, vol.108
, pp. 563-568
-
-
Tafvizi, A.1
Huang, F.2
Fersht, A.R.3
Mirny, L.A.4
Van Oijen, A.M.5
-
40
-
-
77955858336
-
Posttranslational modification of p53: Cooperative integrators of function
-
Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol. 1:a000950
-
(2009)
Cold Spring Harb. Perspect. Biol.
, vol.1
, pp. a000950
-
-
Meek, D.W.1
Anderson, C.W.2
-
41
-
-
0033945124
-
Structure of the negative regulatory domain of p53 bound to S100B
-
Rustandi RR, Baldisseri DM, Weber DJ. 2000. Structure of the negative regulatory domain of p53 bound to S100B. Nat. Struct. Biol. 7:570-74
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 570-574
-
-
Rustandi, R.R.1
Baldisseri, D.M.2
Weber, D.J.3
-
42
-
-
0036753953
-
Structure of a Sir2 enzyme bound to an acetylated p53 peptide
-
Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. 2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10:523-35
-
(2002)
Mol. Cell
, vol.10
, pp. 523-535
-
-
Avalos, J.L.1
Celic, I.2
Muhammad, S.3
Cosgrove, M.S.4
Boeke, J.D.5
Wolberger, C.6
-
43
-
-
0347520938
-
Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A
-
Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, et al. 2002. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41:15625-34
-
(2002)
Biochemistry
, vol.41
, pp. 15625-15634
-
-
Lowe, E.D.1
Tews, I.2
Cheng, K.Y.3
Brown, N.R.4
Gul, S.5
-
44
-
-
84930189594
-
An acetyl-methyl switch drives a conformational change in p53
-
Tong Q, Mazur SJ, Rincon-Arano H, Rothbart SB, Kuznetsov DM, et al. 2015. An acetyl-methyl switch drives a conformational change in p53. Structure 23:322-31
-
(2015)
Structure
, vol.23
, pp. 322-331
-
-
Tong, Q.1
Mazur, S.J.2
Rincon-Arano, H.3
Rothbart, S.B.4
Kuznetsov, D.M.5
-
45
-
-
77955490196
-
The Amphimedon queenslandica genome and the evolution of animal complexity
-
Srivastava M, SimakovO, Chapman J, Fahey B, GauthierME, et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720-26
-
(2010)
Nature
, vol.466
, pp. 720-726
-
-
Srivastava, M.1
Simakov, O.2
Chapman, J.3
Fahey, B.4
Gauthier, M.E.5
-
46
-
-
41149140262
-
The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis
-
Pankow S, Bamberger C. 2007. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLOS ONE 2:e782
-
(2007)
PLOS ONE
, vol.2
, pp. e782
-
-
Pankow, S.1
Bamberger, C.2
-
47
-
-
77951882016
-
Mdm2 and p53 are highly conserved from placozoans to man
-
Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C. 2010. Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9:540-47
-
(2010)
Cell Cycle
, vol.9
, pp. 540-547
-
-
Lane, D.P.1
Cheok, C.F.2
Brown, C.3
Madhumalar, A.4
Ghadessy, F.J.5
Verma, C.6
-
48
-
-
39149110563
-
The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans
-
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783-88
-
(2008)
Nature
, vol.451
, pp. 783-788
-
-
King, N.1
Westbrook, M.J.2
Young, S.L.3
Kuo, A.4
Abedin, M.5
-
49
-
-
77955827519
-
The origins and evolution of the p53 family of genes
-
Belyi VA, Ak P, Markert E, Wang H, HuW, et al. 2010. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2:a001198
-
(2010)
Cold Spring Harb. Perspect. Biol.
, vol.2
, pp. a001198
-
-
Belyi, V.A.1
Ak, P.2
Markert, E.3
Wang, H.4
Hu, W.5
-
51
-
-
84055199760
-
Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish
-
Lane DP, Madhumalar A, Lee AP, Tay BH, Verma C, et al. 2011. Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish. Cell Cycle 10:4272-79
-
(2011)
Cell Cycle
, vol.10
, pp. 4272-4279
-
-
Lane, D.P.1
Madhumalar, A.2
Lee, A.P.3
Tay, B.H.4
Verma, C.5
-
52
-
-
84957800533
-
The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans
-
Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, et al. 2016. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev. 30:281-92
-
(2016)
Genes Dev.
, vol.30
, pp. 281-292
-
-
Coffill, C.R.1
Lee, A.P.2
Siau, J.W.3
Chee, S.M.4
Joseph, T.L.5
-
53
-
-
37049036363
-
Early diversification and complex evolutionary history of the p53 tumor suppressor gene family
-
Nedelcu AM, Tan C. 2007. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev. Genes Evol. 217:801-6
-
(2007)
Dev. Genes Evol.
, vol.217
, pp. 801-806
-
-
Nedelcu, A.M.1
Tan, C.2
-
55
-
-
48449085240
-
Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences
-
Fernandes AD, AtchleyWR. 2008. Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences. J. Mol. Evol. 67:51-67
-
(2008)
J. Mol. Evol.
, vol.67
, pp. 51-67
-
-
Fernandes, A.D.1
Atchley, W.R.2
-
56
-
-
34547220908
-
Structural evolution of C-terminal domains in the p53 family
-
Ou HD, Löhr F, Vogel V, ManteleW, Dötsch V. 2007. Structural evolution of C-terminal domains in the p53 family. EMBO J. 3463-73
-
(2007)
EMBO J.
, pp. 3463-3473
-
-
Ou, H.D.1
Löhr, F.2
Vogel, V.3
Mantele, W.4
Dötsch, V.5
-
57
-
-
84874071407
-
Intrinsically disordered regions of p53 family are highly diversified in evolution
-
Xue B, Brown CJ, Dunker AK, Uversky VN. 2013. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834:725-38
-
(2013)
Biochim. Biophys. Acta
, vol.1834
, pp. 725-738
-
-
Xue, B.1
Brown, C.J.2
Dunker, A.K.3
Uversky, V.N.4
-
58
-
-
74549130412
-
Conservation of DNA-binding specificity and oligomerisation properties within the p53 family
-
Brandt T, Petrovich M, Joerger AC, Veprintsev DB. 2009. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 10:628
-
(2009)
BMC Genomics
, vol.10
, pp. 628
-
-
Brandt, T.1
Petrovich, M.2
Joerger, A.C.3
Veprintsev, D.B.4
-
59
-
-
70349240216
-
Adaptive evolution of p53 thermodynamic stability
-
Khoo KH, Andreeva A, Fersht AR. 2009. Adaptive evolution of p53 thermodynamic stability. J. Mol. Biol. 393:161-75
-
(2009)
J. Mol. Biol.
, vol.393
, pp. 161-175
-
-
Khoo, K.H.1
Andreeva, A.2
Fersht, A.R.3
-
61
-
-
70449588702
-
Structural evolution of p53, p63, and p73: Implication for heterotetramer formation
-
Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR. 2009. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. PNAS 106:17705-10
-
(2009)
PNAS
, vol.106
, pp. 17705-17710
-
-
Joerger, A.C.1
Rajagopalan, S.2
Natan, E.3
Veprintsev, D.B.4
Robinson, C.V.5
Fersht, A.R.6
-
62
-
-
70449713323
-
Conformational stability and activity of p73 require a second helix in the tetramerization domain
-
CoutandinD, Löhr F, Niesen FH, Ikeya T, Weber TA, et al. 2009. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death Differ. 16:1582-89
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1582-1589
-
-
Coutandin, D.1
Löhr, F.2
Niesen, F.H.3
Ikeya, T.4
Weber, T.A.5
-
63
-
-
84855823856
-
Structure and kinetic stability of the p63 tetramerization domain
-
Natan E, Joerger AC. 2012. Structure and kinetic stability of the p63 tetramerization domain. J. Mol. Biol. 415:503-13
-
(2012)
J. Mol. Biol.
, vol.415
, pp. 503-513
-
-
Natan, E.1
Joerger, A.C.2
-
64
-
-
84930190647
-
Tracing the evolution of the p53 tetramerization domain
-
Joerger AC, Wilcken R, Andreeva A. 2014. Tracing the evolution of the p53 tetramerization domain. Structure 22:1301-10
-
(2014)
Structure
, vol.22
, pp. 1301-1310
-
-
Joerger, A.C.1
Wilcken, R.2
Andreeva, A.3
-
65
-
-
84978069713
-
Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain
-
Heering J, Jonker HR, Löhr F, Schwalbe H, Dötsch V. 2016. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci. 25:410-22
-
(2016)
Protein Sci.
, vol.25
, pp. 410-422
-
-
Heering, J.1
Jonker, H.R.2
Löhr, F.3
Schwalbe, H.4
Dötsch, V.5
-
66
-
-
33646789152
-
Lessons from p53 in non-mammalian models
-
Lu WJ, Abrams JM. 2006. Lessons from p53 in non-mammalian models. Cell Death Differ. 13:909-12
-
(2006)
Cell Death Differ.
, vol.13
, pp. 909-912
-
-
Lu, W.J.1
Abrams, J.M.2
-
67
-
-
84860390380
-
The evolution of MDM2 family genes
-
Momand J, Villegas A, Belyi VA. 2011. The evolution of MDM2 family genes. Gene 486:23-30
-
(2011)
Gene
, vol.486
, pp. 23-30
-
-
Momand, J.1
Villegas, A.2
Belyi, V.A.3
-
68
-
-
77953141743
-
The Mdm2 and p53 genes are conserved in the Arachnids
-
Lane DP, Cheok CF, Brown CJ, Madhumalar A, Ghadessy FJ, Verma C. 2010. The Mdm2 and p53 genes are conserved in the Arachnids. Cell Cycle 9:748-54
-
(2010)
Cell Cycle
, vol.9
, pp. 748-754
-
-
Lane, D.P.1
Cheok, C.F.2
Brown, C.J.3
Madhumalar, A.4
Ghadessy, F.J.5
Verma, C.6
-
69
-
-
77954865637
-
An invertebratemdmhomolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes
-
Muttray AF, O'TooleTF, MorrillW, Van BenedenRJ, Baldwin SA. 2010. An invertebratemdmhomolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp. Biochem. Physiol. B 156:298-308
-
(2010)
Comp. Biochem. Physiol. B
, vol.156
, pp. 298-308
-
-
Muttray, A.F.1
O'Toole, T.F.2
Morrill, W.3
Van Beneden, R.J.4
Baldwin, S.A.5
-
71
-
-
84898038459
-
Inhibitors of the p53-Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoon Trichoplax adhaerens (FE Schulze)
-
von der Chevallerie K, Rolfes S, Schierwater B. 2014. Inhibitors of the p53-Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoon Trichoplax adhaerens (FE Schulze). Dev. Genes Evol. 224:79-85
-
(2014)
Dev. Genes Evol.
, vol.224
, pp. 79-85
-
-
Von Der Chevallerie, K.1
Rolfes, S.2
Schierwater, B.3
-
72
-
-
67650886073
-
TRIMming p53 for ubiquitination
-
Tai E, Benchimol S. 2009. TRIMming p53 for ubiquitination. PNAS 106:11431-32
-
(2009)
PNAS
, vol.106
, pp. 11431-11432
-
-
Tai, E.1
Benchimol, S.2
-
73
-
-
67650895889
-
Trim24 targets endogenous p53 for degradation
-
Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, et al. 2009. Trim24 targets endogenous p53 for degradation. PNAS 106:11612-16
-
(2009)
PNAS
, vol.106
, pp. 11612-11616
-
-
Allton, K.1
Jain, A.K.2
Herz, H.M.3
Tsai, W.W.4
Jung, S.Y.5
-
75
-
-
70449758781
-
Regulation of p53: TRIM24 enters the RING
-
Jain AK, Barton MC. 2009. Regulation of p53: TRIM24 enters the RING. Cell Cycle 8:3668-74
-
(2009)
Cell Cycle
, vol.8
, pp. 3668-3674
-
-
Jain, A.K.1
Barton, M.C.2
-
76
-
-
84901054744
-
TP53 mutations in human cancer: Database reassessment and prospects for the next decade
-
Leroy B, Anderson M, Soussi T. 2014. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 35:672-88
-
(2014)
Hum. Mutat.
, vol.35
, pp. 672-688
-
-
Leroy, B.1
Anderson, M.2
Soussi, T.3
-
77
-
-
34248379012
-
Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database
-
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, et al. 2007. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28:622-29
-
(2007)
Hum. Mutat.
, vol.28
, pp. 622-629
-
-
Petitjean, A.1
Mathe, E.2
Kato, S.3
Ishioka, C.4
Tavtigian, S.V.5
-
78
-
-
75149183689
-
Detailed haplotype analysis at the TP53 locus in p. R337H mutation carriers in the population of Southern Brazil: Evidence for a founder effect
-
Garritano S, Gemignani F, Palmero EI, Olivier M, Martel-Planche G, et al. 2010. Detailed haplotype analysis at the TP53 locus in p. R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum. Mutat. 31:143-50
-
(2010)
Hum. Mutat.
, vol.31
, pp. 143-150
-
-
Garritano, S.1
Gemignani, F.2
Palmero, E.I.3
Olivier, M.4
Martel-Planche, G.5
-
80
-
-
0034594995
-
Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Definition of mutant states for rescue in cancer therapy
-
Bullock AN, Henckel J, Fersht AR. 2000. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19:1245-56
-
(2000)
Oncogene
, vol.19
, pp. 1245-1256
-
-
Bullock, A.N.1
Henckel, J.2
Fersht, A.R.3
-
81
-
-
34047224955
-
Structure-function-rescue: The diverse nature of common p53 cancer mutants
-
Joerger AC, Fersht AR. 2007. Structure-function-rescue: The diverse nature of common p53 cancer mutants. Oncogene 26:2226-42
-
(2007)
Oncogene
, vol.26
, pp. 2226-2242
-
-
Joerger, A.C.1
Fersht, A.R.2
-
82
-
-
0037591875
-
Kinetic instability of p53 core domain mutants: Implications for rescue by small molecules
-
Friedler A, Veprintsev DB, Hansson LO, Fersht AR. 2003. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J. Biol. Chem. 278:24108-12
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 24108-24112
-
-
Friedler, A.1
Veprintsev, D.B.2
Hansson, L.O.3
Fersht, A.R.4
-
83
-
-
21744437903
-
Kinetic partitioning during folding of the p53 DNA binding domain
-
Butler JS, Loh SN. 2005. Kinetic partitioning during folding of the p53 DNA binding domain. J. Mol. Biol. 350:906-18
-
(2005)
J. Mol. Biol.
, vol.350
, pp. 906-918
-
-
Butler, J.S.1
Loh, S.N.2
-
84
-
-
33847326819
-
Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers
-
Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, et al. 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28:289-98
-
(2007)
Carcinogenesis
, vol.28
, pp. 289-298
-
-
Dearth, L.R.1
Qian, H.2
Wang, T.3
Baroni, T.E.4
Zeng, J.5
-
85
-
-
18144387188
-
Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations
-
Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR. 2005. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J. Biol. Chem. 280:16030-37
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16030-16037
-
-
Joerger, A.C.1
Ang, H.C.2
Veprintsev, D.B.3
Blair, C.M.4
Fersht, A.R.5
-
86
-
-
33750036093
-
Structural basis for understanding oncogenic p53 mutations and designing rescue drugs
-
Joerger AC, Ang HC, Fersht AR. 2006. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. PNAS 103:15056-61
-
(2006)
PNAS
, vol.103
, pp. 15056-15061
-
-
Joerger, A.C.1
Ang, H.C.2
Fersht, A.R.3
-
87
-
-
84885907778
-
Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions
-
Eldar A, Rozenberg H, Diskin-Posner Y, Rohs R, Shakked Z. 2013. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Res. 41:8748-59
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 8748-8759
-
-
Eldar, A.1
Rozenberg, H.2
Diskin-Posner, Y.3
Rohs, R.4
Shakked, Z.5
-
88
-
-
33746790624
-
Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains
-
Ang HC, Joerger AC, Mayer S, Fersht AR. 2006. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J. Biol. Chem. 281:21934-41
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21934-21941
-
-
Ang, H.C.1
Joerger, A.C.2
Mayer, S.3
Fersht, A.R.4
-
89
-
-
0031447171
-
Thermodynamic stability of wild-type and mutant p53 core domain
-
Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, et al. 1997. Thermodynamic stability of wild-type and mutant p53 core domain. PNAS 94:14338-42
-
(1997)
PNAS
, vol.94
, pp. 14338-14342
-
-
Bullock, A.N.1
Henckel, J.2
DeDecker, B.S.3
Johnson, C.M.4
Nikolova, P.V.5
-
90
-
-
84885443985
-
Structures of oncogenic, suppressor and rescued p53 core-domain variants: Mechanisms of mutant p53 rescue
-
Wallentine BD, Wang Y, Tretyachenko-Ladokhina V, TanM, Senear DF, Luecke H. 2013. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. Acta Crystallogr. Sect. D 69:2146-56
-
(2013)
Acta Crystallogr. Sect. D
, vol.69
, pp. 2146-2156
-
-
Wallentine, B.D.1
Wang, Y.2
Tretyachenko-Ladokhina, V.3
Tan, M.4
Senear, D.F.5
Luecke, H.6
-
91
-
-
9144273328
-
Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library
-
Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, et al. 2004. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J. Biol. Chem. 279:348-55
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 348-355
-
-
Shiraishi, K.1
Kato, S.2
Han, S.Y.3
Liu, W.4
Otsuka, K.5
-
92
-
-
57749178613
-
Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations
-
Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, et al. 2009. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J. Mol. Biol. 385:249-65
-
(2009)
J. Mol. Biol.
, vol.385
, pp. 249-265
-
-
Suad, O.1
Rozenberg, H.2
Brosh, R.3
Diskin-Posner, Y.4
Kessler, N.5
-
93
-
-
70349937002
-
The aflatoxin-induced TP53 mutation at codon 249 (R249S): Biomarker of exposure, early detection and target for therapy
-
Gouas D, Shi H, Hainaut P. 2009. The aflatoxin-induced TP53 mutation at codon 249 (R249S): biomarker of exposure, early detection and target for therapy. Cancer Lett. 286:29-37
-
(2009)
Cancer Lett.
, vol.286
, pp. 29-37
-
-
Gouas, D.1
Shi, H.2
Hainaut, P.3
-
94
-
-
79955702054
-
Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level
-
Palecek E, Ostatna V, Cernocka H, Joerger AC, Fersht AR. 2011. Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J. Am. Chem. Soc. 133:7190-96
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7190-7196
-
-
Palecek, E.1
Ostatna, V.2
Cernocka, H.3
Joerger, A.C.4
Fersht, A.R.5
-
95
-
-
84910072506
-
Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism
-
Yu X, Blanden AR, Narayanan S, Jayakumar L, Lubin D, et al. 2014. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget 5:8879-92
-
(2014)
Oncotarget
, vol.5
, pp. 8879-8892
-
-
Yu, X.1
Blanden, A.R.2
Narayanan, S.3
Jayakumar, L.4
Lubin, D.5
-
96
-
-
0031806708
-
Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest
-
Ryan KM, Vousden KH. 1998. Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol. Cell. Biol. 18:3692-98
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 3692-3698
-
-
Ryan, K.M.1
Vousden, K.H.2
-
98
-
-
0026084956
-
Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation
-
Kraiss S, Spiess S, Reihsaus E, Montenarh M. 1991. Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Exp. Cell Res. 192:157-64
-
(1991)
Exp. Cell Res.
, vol.192
, pp. 157-164
-
-
Kraiss, S.1
Spiess, S.2
Reihsaus, E.3
Montenarh, M.4
-
99
-
-
0037418548
-
Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain
-
Butler JS, Loh SN. 2003. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 42:2396-403
-
(2003)
Biochemistry
, vol.42
, pp. 2396-2403
-
-
Butler, J.S.1
Loh, S.N.2
-
100
-
-
0042666825
-
Fibrillar aggregates of the tumor suppressor p53 core domain
-
Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, et al. 2003. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022-27
-
(2003)
Biochemistry
, vol.42
, pp. 9022-9027
-
-
Ishimaru, D.1
Andrade, L.R.2
Teixeira, L.S.3
Quesado, P.A.4
Maiolino, L.M.5
-
101
-
-
84864999268
-
Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer
-
Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, et al. 2012. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287:28152-62
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 28152-28162
-
-
Ano Bom, A.P.1
Rangel, L.P.2
Costa, D.C.3
De Oliveira, G.A.4
Sanches, D.5
-
102
-
-
0025731379
-
Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation
-
Milner J, Medcalf EA. 1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765-74
-
(1991)
Cell
, vol.65
, pp. 765-774
-
-
Milner, J.1
Medcalf, E.A.2
-
104
-
-
79955054710
-
Gain of function of mutant p53 by coaggregation with multiple tumor suppressors
-
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, et al. 2011. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7:285-95
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 285-295
-
-
Xu, J.1
Reumers, J.2
Couceiro, J.R.3
De Smet, F.4
Gallardo, R.5
-
105
-
-
84923666755
-
Propagation of aggregated p53: Cross-reaction and coaggregation versus seeding
-
Wang G, Fersht AR. 2015. Propagation of aggregated p53: cross-reaction and coaggregation versus seeding. PNAS 112:2443-48
-
(2015)
PNAS
, vol.112
, pp. 2443-2448
-
-
Wang, G.1
Fersht, A.R.2
-
106
-
-
84923693827
-
Mechanism of initiation of aggregation of p53 revealed by -value analysis
-
Wang G, Fersht AR. 2015. Mechanism of initiation of aggregation of p53 revealed by -value analysis. PNAS 112:2437-42
-
(2015)
PNAS
, vol.112
, pp. 2437-2442
-
-
Wang, G.1
Fersht, A.R.2
-
107
-
-
84865281347
-
Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition
-
Wilcken R, Wang G, Boeckler FM, Fersht AR. 2012. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. PNAS 109:13584-89
-
(2012)
PNAS
, vol.109
, pp. 13584-13589
-
-
Wilcken, R.1
Wang, G.2
Boeckler, F.M.3
Fersht, A.R.4
-
108
-
-
84957910884
-
A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas
-
Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A, et al. 2016. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29:90-103
-
(2016)
Cancer Cell
, vol.29
, pp. 90-103
-
-
Soragni, A.1
Janzen, D.M.2
Johnson, L.M.3
Lindgren, A.G.4
Thai-Quynh Nguyen, A.5
-
109
-
-
0037154149
-
A peptide that binds and stabilizes p53 core domain: Chaperone strategy for rescue of oncogenic mutants
-
Friedler A, Hansson LO, Veprintsev DB, Freund SMV, Rippin TM, et al. 2002. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. PNAS 99:937-42
-
(2002)
PNAS
, vol.99
, pp. 937-942
-
-
Friedler, A.1
Hansson, L.O.2
Veprintsev, D.B.3
Freund, S.M.V.4
Rippin, T.M.5
-
110
-
-
0345255605
-
Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide
-
Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G. 2003. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. PNAS 100:13303-7
-
(2003)
PNAS
, vol.100
, pp. 13303-13307
-
-
Issaeva, N.1
Friedler, A.2
Bozko, P.3
Wiman, K.G.4
Fersht, A.R.5
Selivanova, G.6
-
111
-
-
84879147794
-
Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53
-
WassmanCD, Baronio R, Demir O, Wallentine BD, Chen CK, et al. 2013. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Commun. 4:1407
-
(2013)
Nat. Commun.
, vol.4
, pp. 1407
-
-
Wassman, C.D.1
Baronio, R.2
Demir, O.3
Wallentine, B.D.4
Chen, C.K.5
-
112
-
-
0032055501
-
Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations
-
Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD. 1998. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17:1847-59
-
(1998)
EMBO J.
, vol.17
, pp. 1847-1859
-
-
Brachmann, R.K.1
Yu, K.2
Eby, Y.3
Pavletich, N.P.4
Boeke, J.D.5
-
113
-
-
84885946062
-
Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code
-
Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS, et al. 2013. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Res. 41:8637-53
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 8637-8653
-
-
Ciribilli, Y.1
Monti, P.2
Bisio, A.3
Nguyen, H.T.4
Ethayathulla, A.S.5
-
114
-
-
77952755475
-
Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: Structural and biochemical insights
-
Merabet A, Houlleberghs H, Maclagan K, Akanho E, Bui TT, et al. 2010. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem. J. 427:225-36
-
(2010)
Biochem. J.
, vol.427
, pp. 225-236
-
-
Merabet, A.1
Houlleberghs, H.2
Maclagan, K.3
Akanho, E.4
Bui, T.T.5
-
115
-
-
48749103325
-
Targeted rescue of a destabilized mutant of p53 by an in silico screened drug
-
Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. 2008. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. PNAS 105:10360-65
-
(2008)
PNAS
, vol.105
, pp. 10360-10365
-
-
Boeckler, F.M.1
Joerger, A.C.2
Jaggi, G.3
Rutherford, T.J.4
Veprintsev, D.B.5
Fersht, A.R.6
-
116
-
-
75149134332
-
Toward the rational design of p53-stabilizing drugs: Probing the surface of the oncogenic Y220C mutant
-
Basse N, Kaar JL, Settanni G, Joerger AC, Rutherford TJ, Fersht AR. 2010. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17:46-56
-
(2010)
Chem. Biol.
, vol.17
, pp. 46-56
-
-
Basse, N.1
Kaar, J.L.2
Settanni, G.3
Joerger, A.C.4
Rutherford, T.J.5
Fersht, A.R.6
-
117
-
-
84859993146
-
Halogen-enriched fragment libraries as leads for drug rescue of mutant p53
-
Wilcken R, LiuX, ZimmermannMO, Rutherford TJ, FershtAR, et al. 2012. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J. Am. Chem. Soc. 134:6810-18
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 6810-6818
-
-
Wilcken, R.1
Liu, X.2
Zimmermann, M.O.3
Rutherford, T.J.4
Fersht, A.R.5
-
118
-
-
84880234835
-
Small molecule induced reactivation of mutant p53 in cancer cells
-
Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, et al. 2013. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41:6034-44
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6034-6044
-
-
Liu, X.1
Wilcken, R.2
Joerger, A.C.3
Chuckowree, I.S.4
Amin, J.5
-
119
-
-
84949224551
-
Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53
-
Joerger AC, Bauer MR, Wilcken R, Baud MGJ, Harbrecht H, et al. 2015. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure 23:2246-55
-
(2015)
Structure
, vol.23
, pp. 2246-2255
-
-
Joerger, A.C.1
Bauer, M.R.2
Wilcken, R.3
Baud, M.G.J.4
Harbrecht, H.5
-
120
-
-
33947241339
-
Zn2+-dependent misfolding of the p53 DNA binding domain
-
Butler JS, Loh SN. 2007. Zn2+-dependent misfolding of the p53 DNA binding domain. Biochemistry 46:2630-39
-
(2007)
Biochemistry
, vol.46
, pp. 2630-2639
-
-
Butler, J.S.1
Loh, S.N.2
-
122
-
-
84939815338
-
Synthetic metallochaperone ZMC1 rescuesmutant p53 conformation by transporting zinc into cells as an ionophore
-
Blanden AR, Yu X, Wolfe AJ, Gilleran JA, Augeri DJ, et al. 2015. Synthetic metallochaperone ZMC1 rescuesmutant p53 conformation by transporting zinc into cells as an ionophore. Mol. Pharmacol. 87:825-31
-
(2015)
Mol. Pharmacol.
, vol.87
, pp. 825-831
-
-
Blanden, A.R.1
Yu, X.2
Wolfe, A.J.3
Gilleran, J.A.4
Augeri, D.J.5
-
123
-
-
84885002384
-
A fluorescent curcuminbased Zn (II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells
-
Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, et al. 2013. A fluorescent curcuminbased Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J. Exp. Clin. Cancer Res. 32:72
-
(2013)
J. Exp. Clin. Cancer Res.
, vol.32
, pp. 72
-
-
Garufi, A.1
Trisciuoglio, D.2
Porru, M.3
Leonetti, C.4
Stoppacciaro, A.5
-
124
-
-
84859388515
-
DNA binding and cytotoxicity of fluorescent curcumin-based Zn (II) complexes
-
Pucci D, Bellini T, Crispini A, D'Agnano I, Liguori PF, et al. 2012. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. MedChemComm 3:462-68
-
(2012)
MedChemComm
, vol.3
, pp. 462-468
-
-
Pucci, D.1
Bellini, T.2
Crispini, A.3
D'Agnano, I.4
Liguori, P.F.5
-
125
-
-
84905124070
-
Mutant p53 reactivation by small molecules makes its way to the clinic
-
Bykov VJ, Wiman KG. 2014. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 588:2622-27
-
(2014)
FEBS Lett.
, vol.588
, pp. 2622-2627
-
-
Bykov, V.J.1
Wiman, K.G.2
-
126
-
-
0033601370
-
Pharmacological rescue of mutant p53 conformation and function
-
Foster BA, Coffey HA, Morin MJ, Rastinejad F. 1999. Pharmacological rescue of mutant p53 conformation and function. Science 286:2507-10
-
(1999)
Science
, vol.286
, pp. 2507-2510
-
-
Foster, B.A.1
Coffey, H.A.2
Morin, M.J.3
Rastinejad, F.4
-
127
-
-
0037192628
-
Characterization of the p53-rescue drug CP-31398 in vitro and in living cells
-
Rippin TM, Bykov VJN, Freund SMV, Selivanova G, Wiman KG, Fersht AR. 2002. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21:2119-29
-
(2002)
Oncogene
, vol.21
, pp. 2119-2129
-
-
Rippin, T.M.1
Bykov, V.J.N.2
Freund, S.M.V.3
Selivanova, G.4
Wiman, K.G.5
Fersht, A.R.6
-
128
-
-
12244260150
-
CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity
-
Tanner S, Barberis A. 2004. CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity. J. Negat. Results Biomed. 3:5
-
(2004)
J. Negat. Results Biomed.
, vol.3
, pp. 5
-
-
Tanner, S.1
Barberis, A.2
-
129
-
-
0036128899
-
Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound
-
Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, et al. 2002. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8:282-88
-
(2002)
Nat. Med.
, vol.8
, pp. 282-288
-
-
Bykov, V.J.1
Issaeva, N.2
Shilov, A.3
Hultcrantz, M.4
Pugacheva, E.5
-
130
-
-
65449144050
-
PRIMA-1 reactivates mutant p53 by covalent binding to the core domain
-
Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, et al. 2009. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15:376-88
-
(2009)
Cancer Cell
, vol.15
, pp. 376-388
-
-
Lambert, J.M.1
Gorzov, P.2
Veprintsev, D.B.3
Soderqvist, M.4
Segerback, D.5
-
131
-
-
84867615093
-
Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer
-
Lehmann S, Bykov VJN, AliD, Andren O, CherifH, et al. 2012. Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 30:3633-39
-
(2012)
J. Clin. Oncol.
, vol.30
, pp. 3633-3639
-
-
Lehmann, S.1
Bykov, V.J.N.2
Ali, D.3
Andren, O.4
Cherif, H.5
-
132
-
-
49049096115
-
PRIMA-1 synergizes with Adriamycin to induce cell death in non-small cell lung cancer cells
-
Magrini R, Russo D, Ottaggio L, Fronza G, Inga A, Menichini P. 2008. PRIMA-1 synergizes with Adriamycin to induce cell death in non-small cell lung cancer cells. J. Cell. Biochem. 104:2363-73
-
(2008)
J. Cell. Biochem.
, vol.104
, pp. 2363-2373
-
-
Magrini, R.1
Russo, D.2
Ottaggio, L.3
Fronza, G.4
Inga, A.5
Menichini, P.6
-
133
-
-
84989337893
-
APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells
-
Mohell N, Alfredsson J, Fransson A, Uustalu M, Bystrom S, et al. 2015. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 6:e1794
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1794
-
-
Mohell, N.1
Alfredsson, J.2
Fransson, A.3
Uustalu, M.4
Bystrom, S.5
-
134
-
-
84873426374
-
APR-246/PRIMA-1MET rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations
-
Shen J, van den Bogaard EH, Kouwenhoven EN, Bykov VJ, Rinne T, et al. 2013. APR-246/PRIMA-1MET rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations. PNAS 110:2157-62
-
(2013)
PNAS
, vol.110
, pp. 2157-2162
-
-
Shen, J.1
Van Den Bogaard, E.H.2
Kouwenhoven, E.N.3
Bykov, V.J.4
Rinne, T.5
-
135
-
-
24044466754
-
Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs
-
Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, et al. 2005. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem. 280:30384-91
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 30384-30391
-
-
Bykov, V.J.1
Issaeva, N.2
Zache, N.3
Shilov, A.4
Hultcrantz, M.5
-
136
-
-
43649096147
-
Mutant p53 targeting by the low molecular weight compound STIMA-1
-
Zache N, Lambert JM, Rokaeus N, Shen J, Hainaut P, et al. 2008. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol. 2:70-80
-
(2008)
Mol. Oncol.
, vol.2
, pp. 70-80
-
-
Zache, N.1
Lambert, J.M.2
Rokaeus, N.3
Shen, J.4
Hainaut, P.5
-
137
-
-
79955780678
-
Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry
-
Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR, et al. 2011. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 22:888-97
-
(2011)
J. Am. Soc. Mass Spectrom.
, vol.22
, pp. 888-897
-
-
Scotcher, J.1
Clarke, D.J.2
Weidt, S.K.3
Mackay, C.L.4
Hupp, T.R.5
-
138
-
-
78649658937
-
Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding
-
Kaar JL, Basse N, Joerger AC, Stephens E, Rutherford TJ, Fersht AR. 2010. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Protein Sci. 19:2267-78
-
(2010)
Protein Sci.
, vol.19
, pp. 2267-2278
-
-
Kaar, J.L.1
Basse, N.2
Joerger, A.C.3
Stephens, E.4
Rutherford, T.J.5
Fersht, A.R.6
-
139
-
-
84907007279
-
PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance
-
Tessoulin B, Descamps G, Moreau P, Maiga S, Lode L, et al. 2014. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 124:1626-36
-
(2014)
Blood
, vol.124
, pp. 1626-1636
-
-
Tessoulin, B.1
Descamps, G.2
Moreau, P.3
Maiga, S.4
Lode, L.5
-
140
-
-
84887417425
-
APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase
-
Peng X, Zhang MQ, Conserva F, Hosny G, Selivanova G, et al. 2013. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidasE. Cell Death Dis. 4:e881
-
(2013)
Cell Death Dis.
, vol.4
, pp. e881
-
-
Peng, X.1
Zhang, M.Q.2
Conserva, F.3
Hosny, G.4
Selivanova, G.5
-
141
-
-
84943744672
-
PRIMA-1Met induces apoptosis in Waldenstrom's macroglobulinemia cells independent of p53
-
SobhaniM, Abdi J, Manujendra SN, ChenC, Chang H. 2015. PRIMA-1Met induces apoptosis in Waldenstrom's macroglobulinemia cells independent of p53. Cancer Biol. Ther. 16:799-806
-
(2015)
Cancer Biol. Ther.
, vol.16
, pp. 799-806
-
-
Sobhani, M.1
Abdi, J.2
Manujendra, S.N.3
Chen, C.4
Chang, H.5
-
142
-
-
84901587523
-
15-Deoxy-12, 14-prostaglandin J2 induces PPAR and p53-independent apoptosis in rabbit synovial cells
-
Sakaba Y, Awata H, Morisugi T, Kawakami T, Sakudo A, Tanaka Y. 2014. 15-Deoxy-12, 14-prostaglandin J2 induces PPAR and p53-independent apoptosis in rabbit synovial cells. Prostaglandins Other Lipid Mediat. 109:1-13
-
(2014)
Prostaglandins Other Lipid Mediat.
, vol.109
, pp. 1-13
-
-
Sakaba, Y.1
Awata, H.2
Morisugi, T.3
Kawakami, T.4
Sakudo, A.5
Tanaka, Y.6
-
143
-
-
79960427057
-
Selective killing of cancer cells by a small molecule targeting the stress response to ROS
-
Raj L, Ide T, Gurkar AU, Foley M, Schenone M, et al. 2011. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231-34
-
(2011)
Nature
, vol.475
, pp. 231-234
-
-
Raj, L.1
Ide, T.2
Gurkar, A.U.3
Foley, M.4
Schenone, M.5
-
144
-
-
28644447272
-
The antioxidant function of the p53 tumor suppressor
-
Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11:1306-13
-
(2005)
Nat. Med.
, vol.11
, pp. 1306-1313
-
-
Sablina, A.A.1
Budanov, A.V.2
Ilyinskaya, G.V.3
Agapova, L.S.4
Kravchenko, J.E.5
Chumakov, P.M.6
-
145
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. 2010. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. PNAS 107:7455-60
-
(2010)
PNAS
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
147
-
-
84867328079
-
Pharmaceutical therapies to recode nonsense mutations in inherited diseases
-
Lee HLR, Dougherty JP. 2012. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol. Ther. 136:227-66
-
(2012)
Pharmacol. Ther.
, vol.136
, pp. 227-266
-
-
Lee, H.L.R.1
Dougherty, J.P.2
-
148
-
-
79955588050
-
Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides
-
Floquet C, Deforges J, Rousset JP, Bidou L. 2011. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39:3350-62
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 3350-3362
-
-
Floquet, C.1
Deforges, J.2
Rousset, J.P.3
Bidou, L.4
-
149
-
-
34247588271
-
PTC124 targets genetic disorders caused by nonsense mutations
-
Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, et al. 2007. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87-91
-
(2007)
Nature
, vol.447
, pp. 87-91
-
-
Welch, E.M.1
Barton, E.R.2
Zhuo, J.3
Tomizawa, Y.4
Friesen, W.J.5
-
150
-
-
84902125654
-
Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations
-
Martin L, Grigoryan A, Wang D, Wang J, Breda L, et al. 2014. Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 74:3104-13
-
(2014)
Cancer Res.
, vol.74
, pp. 3104-3113
-
-
Martin, L.1
Grigoryan, A.2
Wang, D.3
Wang, J.4
Breda, L.5
-
151
-
-
0036143771
-
A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer
-
DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, et al. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 9:12-16
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 12-16
-
-
DiGiammarino, E.L.1
Lee, A.S.2
Cadwell, C.3
Zhang, W.4
Bothner, B.5
-
152
-
-
55949123477
-
Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand
-
Gordo S, Martos V, Santos E, Menendez M, Bo C, et al. 2008. Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand. PNAS 105:16426-31
-
(2008)
PNAS
, vol.105
, pp. 16426-16431
-
-
Gordo, S.1
Martos, V.2
Santos, E.3
Menendez, M.4
Bo, C.5
-
153
-
-
77955421938
-
Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives
-
Kamada R, Yoshino W, Nomura T, Chuman Y, Imagawa T, et al. 2010. Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives. Bioorg. Med. Chem. Lett. 20:4412-15
-
(2010)
Bioorg. Med. Chem. Lett.
, vol.20
, pp. 4412-4415
-
-
Kamada, R.1
Yoshino, W.2
Nomura, T.3
Chuman, Y.4
Imagawa, T.5
-
154
-
-
84903955062
-
Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity
-
Okal A, Cornillie S, Matissek SJ, Matissek KJ, Cheatham TE 3rd, Lim CS. 2014. Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity. Mol. Pharmacol. 11:2442-52
-
(2014)
Mol. Pharmacol.
, vol.11
, pp. 2442-2452
-
-
Okal, A.1
Cornillie, S.2
Matissek, S.J.3
Matissek, K.J.4
Cheatham, T.E.5
Lim, C.S.6
-
155
-
-
70450270900
-
Awakening guardian angels: Drugging the p53 pathway
-
Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. 2009. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9:862-73
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 862-873
-
-
Brown, C.J.1
Lain, S.2
Verma, C.S.3
Fersht, A.R.4
Lane, D.P.5
-
156
-
-
11144315535
-
Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors
-
Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, et al. 2004. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10:1321-28
-
(2004)
Nat. Med.
, vol.10
, pp. 1321-1328
-
-
Issaeva, N.1
Bozko, P.2
Enge, M.3
Protopopova, M.4
Verhoef, L.G.5
-
157
-
-
30744449974
-
NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro
-
author reply 1136-37
-
Krajewski M, Ozdowy P, D'Silva L, Rothweiler U, Holak TA. 2005. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat. Med. 11:1135-36; author reply 1136-37
-
(2005)
Nat. Med.
, vol.11
, pp. 1135-1136
-
-
Krajewski, M.1
Ozdowy, P.2
D'Silva, L.3
Rothweiler, U.4
Holak, T.A.5
-
158
-
-
84950336212
-
CRISPR-Cas9-based target validation for p53-reactivating model compounds
-
Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR, et al. 2016. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat. Chem. Biol. 12:22-28
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 22-28
-
-
Wanzel, M.1
Vischedyk, J.B.2
Gittler, M.P.3
Gremke, N.4
Seiz, J.R.5
-
159
-
-
84865149674
-
Discovery ofMdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay
-
Herman AG, Hayano M, Poyurovsky MV, Shimada K, SkoutaR, et al. 2011. Discovery ofMdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 1:312-25
-
(2011)
Cancer Discov.
, vol.1
, pp. 312-325
-
-
Herman, A.G.1
Hayano, M.2
Poyurovsky, M.V.3
Shimada, K.4
Skouta, R.5
-
160
-
-
20444369867
-
Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells
-
Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, et al. 2005. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547-59
-
(2005)
Cancer Cell
, vol.7
, pp. 547-559
-
-
Yang, Y.1
Ludwig, R.L.2
Jensen, J.P.3
Pierre, S.A.4
Medaglia, M.V.5
-
161
-
-
84869093164
-
Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells
-
Wade M, Li YC, Matani AS, Braun SM, Milanesi F, et al. 2012. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene 31:4789-97
-
(2012)
Oncogene
, vol.31
, pp. 4789-4797
-
-
Wade, M.1
Li, Y.C.2
Matani, A.S.3
Braun, S.M.4
Milanesi, F.5
-
162
-
-
10744221485
-
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
-
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844-48
-
(2004)
Science
, vol.303
, pp. 844-848
-
-
Vassilev, L.T.1
Vu, B.T.2
Graves, B.3
Carvajal, D.4
Podlaski, F.5
-
163
-
-
4344610526
-
Small-molecule antagonists of p53-MDM2 binding: Research tools and potential therapeutics
-
Vassilev LT. 2004. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419-21
-
(2004)
Cell Cycle
, vol.3
, pp. 419-421
-
-
Vassilev, L.T.1
-
164
-
-
34250736349
-
Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53
-
Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR, et al. 2007. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol. Cancer Ther. 6:1552-61
-
(2007)
Mol. Cancer Ther.
, vol.6
, pp. 1552-1561
-
-
Graat, H.C.1
Carette, J.E.2
Schagen, F.H.3
Vassilev, L.T.4
Gerritsen, W.R.5
-
165
-
-
84922813362
-
Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment
-
Zhao Y, Aguilar A, Bernard D, Wang S. 2015. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J. Med. Chem. 58:1038-52
-
(2015)
J. Med. Chem.
, vol.58
, pp. 1038-1052
-
-
Zhao, Y.1
Aguilar, A.2
Bernard, D.3
Wang, S.4
-
166
-
-
84895779578
-
Drugging the p53 pathway: Understanding the route to clinical efficacy
-
Khoo KH, Verma CS, Lane DP. 2014. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13:217-36
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 217-236
-
-
Khoo, K.H.1
Verma, C.S.2
Lane, D.P.3
-
167
-
-
84920149444
-
Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2-p53 interaction
-
Rew Y, Sun D, Yan X, Beck HP, Canon J, et al. 2014. Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2-p53 interaction. J. Med. Chem. 57:10499-511
-
(2014)
J. Med. Chem.
, vol.57
, pp. 10499-10511
-
-
Rew, Y.1
Sun, D.2
Yan, X.3
Beck, H.P.4
Canon, J.5
-
168
-
-
43949084048
-
Quantitative lid dynamics ofMDM2reveals differential ligand binding modes of the p53-binding cleft
-
Showalter SA, Bruschweiler-Li L, Johnson E, Zhang F, Bruschweiler R. 2008. Quantitative lid dynamics ofMDM2reveals differential ligand binding modes of the p53-binding cleft. J. Am. Chem. Soc. 130:6472-78
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 6472-6478
-
-
Showalter, S.A.1
Bruschweiler-Li, L.2
Johnson, E.3
Zhang, F.4
Bruschweiler, R.5
-
169
-
-
84889562984
-
Transient protein states in designing inhibitors of the MDM2-p53 interaction
-
Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, et al. 2013. Transient protein states in designing inhibitors of the MDM2-p53 interaction. Structure 21:2143-51
-
(2013)
Structure
, vol.21
, pp. 2143-2151
-
-
Bista, M.1
Wolf, S.2
Khoury, K.3
Kowalska, K.4
Huang, Y.5
-
170
-
-
84908148515
-
SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression
-
Wang S, Sun W, Zhao Y, McEachern D, Meaux I, et al. 2014. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74:5855-65
-
(2014)
Cancer Res.
, vol.74
, pp. 5855-5865
-
-
Wang, S.1
Sun, W.2
Zhao, Y.3
McEachern, D.4
Meaux, I.5
-
171
-
-
84867488138
-
Ordering of the N-terminus of human MDM2 by small molecule inhibitors
-
Michelsen K, Jordan JB, Lewis J, Long AM, Yang E, et al. 2012. Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J. Am. Chem. Soc. 134:17059-67
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 17059-17067
-
-
Michelsen, K.1
Jordan, J.B.2
Lewis, J.3
Long, A.M.4
Yang, E.5
-
172
-
-
84868203735
-
Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: An exploratory proof-of-mechanism study
-
Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, Penel N, et al. 2012. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: An exploratory proof-of-mechanism study. Lancet Oncol. 13:1133-40
-
(2012)
Lancet Oncol.
, vol.13
, pp. 1133-1140
-
-
Ray-Coquard, I.1
Blay, J.Y.2
Italiano, A.3
Le Cesne, A.4
Penel, N.5
-
173
-
-
84950246190
-
How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures
-
Estrada-Ortiz N, Neochoritis CG, Dömling A. 2015. How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures. ChemMedChem 11:757-72
-
(2015)
ChemMedChem
, vol.11
, pp. 757-772
-
-
Estrada-Ortiz, N.1
Neochoritis, C.G.2
Dömling, A.3
-
174
-
-
84863966819
-
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization
-
Graves B, Thompson T, Xia M, Janson C, Lukacs C, et al. 2012. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. PNAS 109:11788-93
-
(2012)
PNAS
, vol.109
, pp. 11788-11793
-
-
Graves, B.1
Thompson, T.2
Xia, M.3
Janson, C.4
Lukacs, C.5
-
175
-
-
84875207784
-
Stapled peptides with improved potency and specificity that activate p53
-
Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC, et al. 2013. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8:506-12
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 506-512
-
-
Brown, C.J.1
Quah, S.T.2
Jong, J.3
Goh, A.M.4
Chiam, P.C.5
-
176
-
-
33847675805
-
Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide
-
Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. 2007. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129:2456-57
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 2456-2457
-
-
Bernal, F.1
Tyler, A.F.2
Korsmeyer, S.J.3
Walensky, L.D.4
Verdine, G.L.5
-
177
-
-
84883432191
-
Stapled helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy
-
Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, et al. 2013. Stapled helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. PNAS 110:E3445-54
-
(2013)
PNAS
, vol.110
, pp. E3445-E3454
-
-
Chang, Y.S.1
Graves, B.2
Guerlavais, V.3
Tovar, C.4
Packman, K.5
-
178
-
-
78249268240
-
A stapled p53 helix overcomes HDMX-mediated suppression of p53
-
Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, et al. 2010. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18:411-22
-
(2010)
Cancer Cell
, vol.18
, pp. 411-422
-
-
Bernal, F.1
Wade, M.2
Godes, M.3
Davis, T.N.4
Whitehead, D.G.5
-
179
-
-
84862908454
-
Structure of the stapled p53 peptide bound to Mdm2
-
Baek S, Kutchukian PS, Verdine GL, Huber R, Holak TA, et al. 2012. Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134:103-6
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 103-106
-
-
Baek, S.1
Kutchukian, P.S.2
Verdine, G.L.3
Huber, R.4
Holak, T.A.5
-
180
-
-
84887074375
-
MDMX contains an autoinhibitory sequence element
-
Bista M, Petrovich M, Fersht AR. 2013. MDMX contains an autoinhibitory sequence element. PNAS 110:17814-19
-
(2013)
PNAS
, vol.110
, pp. 17814-17819
-
-
Bista, M.1
Petrovich, M.2
Fersht, A.R.3
-
181
-
-
84928138159
-
Autoinhibition of MDMX by intramolecular p53 mimicry
-
Chen L, Borcherds W, Wu S, Becker A, Schonbrunn E, et al. 2015. Autoinhibition of MDMX by intramolecular p53 mimicry. PNAS 112:4624-29
-
(2015)
PNAS
, vol.112
, pp. 4624-4629
-
-
Chen, L.1
Borcherds, W.2
Wu, S.3
Becker, A.4
Schonbrunn, E.5
-
182
-
-
42949114938
-
Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
-
Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, et al. 2008. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454-63
-
(2008)
Cancer Cell
, vol.13
, pp. 454-463
-
-
Lain, S.1
Hollick, J.J.2
Campbell, J.3
Staples, O.D.4
Higgins, M.5
-
183
-
-
0035913903
-
HSIR2SIRT1 functions as an NADdependent p53 deacetylase
-
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, et al. 2001. hSIR2SIRT1 functions as an NADdependent p53 deacetylasE. Cell 107:149-59
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng Eaton, E.3
Imai, S.I.4
Frye, R.A.5
-
184
-
-
84863011183
-
Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib
-
Li L, Wang L, Li L, Wang Z, Ho Y, et al. 2012. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21:266-81
-
(2012)
Cancer Cell
, vol.21
, pp. 266-281
-
-
Li, L.1
Wang, L.2
Li, L.3
Wang, Z.4
Ho, Y.5
-
185
-
-
33846551682
-
ASPP: A new family of oncogenes and tumour suppressor genes
-
Sullivan A, Lu X. 2007. ASPP: A new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96:196-200
-
(2007)
Br. J. Cancer
, vol.96
, pp. 196-200
-
-
Sullivan, A.1
Lu, X.2
-
186
-
-
38949123716
-
Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73
-
Robinson RA, Lu X, Jones EY, Siebold C. 2008. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure 16:259-68
-
(2008)
Structure
, vol.16
, pp. 259-268
-
-
Robinson, R.A.1
Lu, X.2
Jones, E.Y.3
Siebold, C.4
-
187
-
-
67649405072
-
Insight into the structural basis of pro-and antiapoptotic p53 modulation by ASPP proteins
-
Ahn J, Byeon IJ, Byeon CH, Gronenborn AM. 2009. Insight into the structural basis of pro-and antiapoptotic p53 modulation by ASPP proteins. J. Biol. Chem. 284:13812-22
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 13812-13822
-
-
Ahn, J.1
Byeon, I.J.2
Byeon, C.H.3
Gronenborn, A.M.4
-
188
-
-
84919495724
-
A small peptide derived from p53 linker region can resume the apoptotic activity of p53 by sequestering iASPP with p53
-
Qiu S, Cai Y, Gao X, Gu SZ, Liu ZJ. 2015. A small peptide derived from p53 linker region can resume the apoptotic activity of p53 by sequestering iASPP with p53. Cancer Lett. 356:910-17
-
(2015)
Cancer Lett.
, vol.356
, pp. 910-917
-
-
Qiu, S.1
Cai, Y.2
Gao, X.3
Gu, S.Z.4
Liu, Z.J.5
-
189
-
-
34147190124
-
A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo
-
Bell HS, Dufes C, O'Prey J, Crighton D, Bergamaschi D, et al. 2007. A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. J. Clin. Investig. 117:1008-18
-
(2007)
J. Clin. Investig.
, vol.117
, pp. 1008-1018
-
-
Bell, H.S.1
Dufes, C.2
O'Prey, J.3
Crighton, D.4
Bergamaschi, D.5
-
190
-
-
35148893194
-
The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop
-
Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. 2007. The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12:342-54
-
(2007)
Cancer Cell
, vol.12
, pp. 342-354
-
-
Lu, X.1
Ma, O.2
Nguyen, T.A.3
Jones, S.N.4
Oren, M.5
Donehower, L.A.6
-
191
-
-
84894080663
-
Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction
-
Gilmartin AG, Faitg TH, Richter M, Groy A, Seefeld MA, et al. 2014. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 10:181-87
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 181-187
-
-
Gilmartin, A.G.1
Faitg, T.H.2
Richter, M.3
Groy, A.4
Seefeld, M.A.5
-
192
-
-
70350565471
-
P53-a Jack of all trades but master of none
-
Junttila MR, Evan GI. 2009. p53-a Jack of all trades but master of none. Nat. Rev. Cancer 9:821-29
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 821-829
-
-
Junttila, M.R.1
Evan, G.I.2
-
193
-
-
79956071405
-
Interaction of the p53 DNA-binding domain with its N-terminal extension modulates the stability of the p53 tetramer
-
Natan E, Baloglu C, Pagel K, Freund SM, Morgner N, et al. 2011. Interaction of the p53 DNA-binding domain with its N-terminal extension modulates the stability of the p53 tetramer. J. Mol. Biol. 409:358-68
-
(2011)
J. Mol. Biol.
, vol.409
, pp. 358-368
-
-
Natan, E.1
Baloglu, C.2
Pagel, K.3
Freund, S.M.4
Morgner, N.5
|