메뉴 건너뛰기




Volumn 80, Issue 1, 2016, Pages 139-160

Bacterial transcription as a target for antibacterial drug development

Author keywords

[No Author keywords available]

Indexed keywords

ANTIBIOTIC AGENT; BICOZAMYCIN; DSHS 00507; FIDAXOMICIN; GE 23077; HELICASE; MICROCIN J25; RIFAMYCIN; RNA POLYMERASE; SALINAMIDE; SORANGICIN; STREPTOLYDIGIN; TAGETITOXIN; TRANSCRIPTION TERMINATION FACTOR RHO; UNCLASSIFIED DRUG; AMINOGLYCOSIDE; ANTIINFECTIVE AGENT; BACTERIAL PROTEIN; CYCLOPEPTIDE; DNA DIRECTED RNA POLYMERASE; TRANSCRIPTION FACTOR;

EID: 84964089322     PISSN: 10922172     EISSN: 10985557     Source Type: Journal    
DOI: 10.1128/MMBR.00055-15     Document Type: Review
Times cited : (103)

References (231)
  • 1
    • 84862767819 scopus 로고    scopus 로고
    • Evolution of virulence in opportunistic pathogens: Generalism, plasticity, and control
    • Brown SP, Cornforth DM, Mideo N. 2012. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336-342. http://dx.doi.org/10.1016/j.tim.2012.04.005.
    • (2012) Trends Microbiol , vol.20 , pp. 336-342
    • Brown, S.P.1    Cornforth, D.M.2    Mideo, N.3
  • 7
    • 79953740494 scopus 로고    scopus 로고
    • Fix the antibiotics pipeline
    • Cooper MA, Shlaes D. 2011. Fix the antibiotics pipeline. Nature 472:32. http://dx.doi.org/10.1038/472032a.
    • (2011) Nature , vol.472 , pp. 32
    • Cooper, M.A.1    Shlaes, D.2
  • 8
    • 77957980707 scopus 로고    scopus 로고
    • Origins and evolution of antibiotic resistance
    • Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417-433. http://dx.doi.org/10.1128/MMBR.00016-10.
    • (2010) Microbiol Mol Biol Rev , vol.74 , pp. 417-433
    • Davies, J.1    Davies, D.2
  • 9
    • 0032769391 scopus 로고    scopus 로고
    • Antibiotic resistance: A current perspective
    • Barker KF. 1999. Antibiotic resistance: a current perspective. Br J Clin Pharmacol 48:109-124.
    • (1999) Br J Clin Pharmacol , vol.48 , pp. 109-124
    • Barker, K.F.1
  • 10
    • 23444456920 scopus 로고
    • Prevention of drug access to bacterial targets: Permeability barriers and active efflux
    • Nikaido H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382-388. http://dx.doi.org/10.1126/science.8153625.
    • (1994) Science , vol.264 , pp. 382-388
    • Nikaido, H.1
  • 11
    • 23444440823 scopus 로고
    • Inactivation of antibiotics and the dissemination of resistance genes
    • Davies J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375-382. http://dx.doi.org/10.1126/science.8153624.
    • (1994) Science , vol.264 , pp. 375-382
    • Davies, J.1
  • 12
    • 68949110351 scopus 로고    scopus 로고
    • Efflux-mediated drug resistance in bacteria: An update
    • Li XZ, Nikaido H. 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555-1623. http://dx.doi.org/10.2165/11317030-000000000-00000.
    • (2009) Drugs , vol.69 , pp. 1555-1623
    • Li, X.Z.1    Nikaido, H.2
  • 13
    • 0028420272 scopus 로고
    • Resistance to antibiotics mediated by target alterations
    • Spratt BG. 1994. Resistance to antibiotics mediated by target alterations. Science 264:388-393. http://dx.doi.org/10.1126/science.8153626.
    • (1994) Science , vol.264 , pp. 388-393
    • Spratt, B.G.1
  • 14
    • 84873581031 scopus 로고    scopus 로고
    • Single-step selection of drug resistant Acinetobacter baylyi ADP1 mutants reveals a functional redundancy in the recruitment of multidrug efflux systems
    • Brzoska AJ, Hassan KA, de Leon EJ, Paulsen IT, Lewis PJ. 2013. Single-step selection of drug resistant Acinetobacter baylyi ADP1 mutants reveals a functional redundancy in the recruitment of multidrug efflux systems. PLoS One 8:e56090. http://dx.doi.org/10.1371/journal.pone.0056090.
    • (2013) PLoS One , vol.8 , pp. e56090
    • Brzoska, A.J.1    Hassan, K.A.2    De Leon, E.J.3    Paulsen, I.T.4    Lewis, P.J.5
  • 15
    • 0036468364 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases
    • Cramer P. 2002. Multisubunit RNA polymerases. Curr Opin Struct Biol 12:89-97. http://dx.doi.org/10.1016/S0959-440X (02) 00294-4.
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 89-97
    • Cramer, P.1
  • 16
    • 0013853271 scopus 로고
    • Effect of rifamycin on protein synthesis
    • Calvori C, Frontali L, Leoni L, Tecce G. 1965. Effect of rifamycin on protein synthesis. Nature 207:417-418. http://dx.doi.org/10.1038/207417a0.
    • (1965) Nature , vol.207 , pp. 417-418
    • Calvori, C.1    Frontali, L.2    Leoni, L.3    Tecce, G.4
  • 17
    • 84887254933 scopus 로고    scopus 로고
    • Fidaxomicin: A review of its use in patients with Clostridium difficile infection
    • Scott LJ. 2013. Fidaxomicin: a review of its use in patients with Clostridium difficile infection. Drugs 73:1733-1747. http://dx.doi.org/10.1007/s40265-013-0134-z.
    • (2013) Drugs , vol.73 , pp. 1733-1747
    • Scott, L.J.1
  • 18
    • 26844545025 scopus 로고    scopus 로고
    • The molecular basis for the mode of action of bicyclomycin
    • Kohn H, Widger W. 2005. The molecular basis for the mode of action of bicyclomycin. Curr Drug Targets Infect Disord 5:273-295. http://dx.doi.org/10.2174/1568005054880136.
    • (2005) Curr Drug Targets Infect Disord , vol.5 , pp. 273-295
    • Kohn, H.1    Widger, W.2
  • 19
    • 67650601963 scopus 로고    scopus 로고
    • Evolution of transcriptional regulatory circuits in bacteria
    • Perez JC, Groisman EA. 2009. Evolution of transcriptional regulatory circuits in bacteria. Cell 138:233-244. http://dx.doi.org/10.1016/j.cell.2009.07.002.
    • (2009) Cell , vol.138 , pp. 233-244
    • Perez, J.C.1    Groisman, E.A.2
  • 20
    • 34547638220 scopus 로고    scopus 로고
    • Bacterial RNA polymerase: A promising target for the discovery of new antimicrobial agents
    • Chopra I. 2007. Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents. Curr Opin Investig Drugs 8:600-607.
    • (2007) Curr Opin Investig Drugs , vol.8 , pp. 600-607
    • Chopra, I.1
  • 21
    • 0037308665 scopus 로고    scopus 로고
    • Bacterial RNA polymerases: The wholo story
    • Murakami KS, Darst SA. 2003. Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol 13:31-39. http://dx.doi.org/10.1016/S0959-440X (02) 00005-2.
    • (2003) Curr Opin Struct Biol , vol.13 , pp. 31-39
    • Murakami, K.S.1    Darst, S.A.2
  • 22
    • 84934880808 scopus 로고    scopus 로고
    • An overview of prokaryotic transcription factors: A summary of function and occurrence in bacterial genomes
    • Seshasayee AS, Sivaraman K, Luscombe NM. 2011. An overview of prokaryotic transcription factors: a summary of function and occurrence in bacterial genomes. Subcell Biochem 52:7-23. http://dx.doi.org/10.1007/978-90-481-9069-0-2.
    • (2011) Subcell Biochem , vol.52 , pp. 7-23
    • Seshasayee, A.S.1    Sivaraman, K.2    Luscombe, N.M.3
  • 23
    • 0035075383 scopus 로고    scopus 로고
    • How sigma docks to RNA polymerase and what sigma does
    • Burgess RR, Anthony L. 2001. How sigma docks to RNA polymerase and what sigma does. Curr Opin Microbiol 4:126-131. http://dx.doi.org/10.1016/S1369-5274 (00) 00177-6.
    • (2001) Curr Opin Microbiol , vol.4 , pp. 126-131
    • Burgess, R.R.1    Anthony, L.2
  • 24
    • 34547113065 scopus 로고    scopus 로고
    • Strand opening-deficient Escherichia coli RNA polymerase facilitates investigation of closed complexes with promoter DNA: Effects of DNA sequence and temperature
    • Cook VM, Dehaseth PL. 2007. Strand opening-deficient Escherichia coli RNA polymerase facilitates investigation of closed complexes with promoter DNA: effects of DNA sequence and temperature. J Biol Chem 282:21319-21326. http://dx.doi.org/10.1074/jbc. M702232200.
    • (2007) J Biol Chem , vol.282 , pp. 21319-21326
    • Cook, V.M.1    Dehaseth, P.L.2
  • 25
    • 33751212468 scopus 로고    scopus 로고
    • Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism
    • Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH. 2006. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314:1144-1147. http://dx.doi.org/10.1126/science.1131399.
    • (2006) Science , vol.314 , pp. 1144-1147
    • Kapanidis, A.N.1    Margeat, E.2    Ho, S.O.3    Kortkhonjia, E.4    Weiss, S.5    Ebright, R.H.6
  • 27
    • 0031801743 scopus 로고    scopus 로고
    • Information processing by RNA polymerase: Recognition of regulatory signals during RNA chain elongation
    • Mooney RA, Artsimovitch I, Landick R. 1998. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol 180:3265-3275.
    • (1998) J Bacteriol , vol.180 , pp. 3265-3275
    • Mooney, R.A.1    Artsimovitch, I.2    Landick, R.3
  • 28
    • 0033597435 scopus 로고    scopus 로고
    • Mechanism of intrinsic transcription termination and antitermination
    • Yarnell WS, Roberts JW. 1999. Mechanism of intrinsic transcription termination and antitermination. Science 284:611-615. http://dx.doi.org/10.1126/science.284.5414.611.
    • (1999) Science , vol.284 , pp. 611-615
    • Yarnell, W.S.1    Roberts, J.W.2
  • 29
    • 0037559627 scopus 로고    scopus 로고
    • Structure of the Rho transcription terminator: Mechanism of mRNA recognition and helicase loading
    • Skordalakes E, Berger JM. 2003. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114:135-146. http://dx.doi.org/10.1016/S0092-8674 (03) 00512-9.
    • (2003) Cell , vol.114 , pp. 135-146
    • Skordalakes, E.1    Berger, J.M.2
  • 30
    • 78651504121 scopus 로고    scopus 로고
    • Evolution of multisubunit RNA polymerases in the three domains of life
    • Werner F, Grohmann D. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9:85-98. http://dx.doi.org/10.1038/nrmicro2507.
    • (2011) Nat Rev Microbiol , vol.9 , pp. 85-98
    • Werner, F.1    Grohmann, D.2
  • 31
    • 0014691239 scopus 로고
    • Separation and characterization of the subunits of ribonucleic acid polymerase
    • Burgess RR. 1969. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 244:6168-6176.
    • (1969) J Biol Chem , vol.244 , pp. 6168-6176
    • Burgess, R.R.1
  • 32
    • 40849113038 scopus 로고    scopus 로고
    • Overproduction and purification of recombinant Bacillus subtilis RNA polymerase
    • Yang X, Lewis PJ. 2008. Overproduction and purification of recombinant Bacillus subtilis RNA polymerase. Protein Expr Purif 59:86-93. http://dx.doi.org/10.1016/j.pep. 2008.01.006.
    • (2008) Protein Expr Purif , vol.59 , pp. 86-93
    • Yang, X.1    Lewis, P.J.2
  • 33
    • 84907088279 scopus 로고    scopus 로고
    • A new subunit of RNA polymerase found in Gram-positive bacteria
    • Keller A, Yang X, Wiedermannova J, Delumeau O, Krasny L, Lewis PJ. 2014: A new subunit of RNA polymerase found in Gram-positive bacteria. J Bacteriol 196:3622-3632. http://dx.doi.org/10.1128/JB.02020-14.
    • (2014) J Bacteriol , vol.196 , pp. 3622-3632
    • Keller, A.1    Yang, X.2    Wiedermannova, J.3    Delumeau, O.4    Krasny, L.5    Lewis, P.J.6
  • 34
    • 0035312415 scopus 로고    scopus 로고
    • Bacterial RNA polymerase
    • Darst SA. 2001. Bacterial RNA polymerase. Curr Opin Struct Biol 11:155-162. http://dx.doi.org/10.1016/S0959-440X (00) 00185-8.
    • (2001) Curr Opin Struct Biol , vol.11 , pp. 155-162
    • Darst, S.A.1
  • 35
    • 85012100279 scopus 로고    scopus 로고
    • Structural biology of bacterial RNA polymerase
    • Murakami KS. 2015. Structural biology of bacterial RNA polymerase. Biomolecules 5:848-864. http://dx.doi.org/10.3390/biom5020848.
    • (2015) Biomolecules , vol.5 , pp. 848-864
    • Murakami, K.S.1
  • 36
    • 0033578701 scopus 로고    scopus 로고
    • Crystal structure of Thermus aquaticus core RNA polymerase at 3. 3 A resolution
    • Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3. 3 A resolution. Cell 98:811-824. http://dx.doi.org/10.1016/S0092-8674 (00) 81515-9.
    • (1999) Cell , vol.98 , pp. 811-824
    • Zhang, G.1    Campbell, E.A.2    Minakhin, L.3    Richter, C.4    Severinov, K.5    Darst, S.A.6
  • 37
    • 84875972911 scopus 로고    scopus 로고
    • X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme
    • Murakami KS. 2013. X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme. J Biol Chem 288:9126-9134. http://dx.doi.org/10.1074/jbc. M112.430900.
    • (2013) J Biol Chem , vol.288 , pp. 9126-9134
    • Murakami, K.S.1
  • 40
    • 84943754074 scopus 로고    scopus 로고
    • Structure of a bacterial RNA polymerase holoenzyme open promoter complex
    • Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. 2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4. http://dx.doi.org/10.7554/eLife.08504.
    • (2015) ELife , pp. 4
    • Bae, B.1    Feklistov, A.2    Lass-Napiorkowska, A.3    Landick, R.4    Darst, S.A.5
  • 41
    • 34447499995 scopus 로고    scopus 로고
    • Structural basis for transcription elongation by bacterial RNA polymerase
    • Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. 2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157-162. http://dx.doi.org/10.1038/nature05932.
    • (2007) Nature , vol.448 , pp. 157-162
    • Vassylyev, D.G.1    Vassylyeva, M.N.2    Perederina, A.3    Tahirov, T.H.4    Artsimovitch, I.5
  • 43
    • 39849097831 scopus 로고    scopus 로고
    • RNA polymerase: The vehicle of transcription
    • Borukhov S, Nudler E. 2008. RNA polymerase: the vehicle of transcription. Trends Microbiol 16:126-134. http://dx.doi.org/10.1016/j.tim.2007.12.006.
    • (2008) Trends Microbiol , vol.16 , pp. 126-134
    • Borukhov, S.1    Nudler, E.2
  • 45
    • 0027306799 scopus 로고
    • Genetics of eukaryotic RNA polymerases I, II, and III
    • Archambault J, Friesen JD. 1993. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol Rev 57:703-724.
    • (1993) Microbiol Rev , vol.57 , pp. 703-724
    • Archambault, J.1    Friesen, J.D.2
  • 46
    • 0034671288 scopus 로고    scopus 로고
    • RNA polymerase: Structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II
    • Ebright RH. 2000. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 304:687-698. http://dx.doi.org/10.1006/jmbi.2000.4309.
    • (2000) J Mol Biol , vol.304 , pp. 687-698
    • Ebright, R.H.1
  • 47
    • 84857423235 scopus 로고    scopus 로고
    • Conservation between the RNA polymerase I, II, and III transcription initiation machineries
    • Vannini A, Cramer P. 2012. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45:439-446. http://dx.doi.org/10.1016/j.molcel.2012.01.023.
    • (2012) Mol Cell , vol.45 , pp. 439-446
    • Vannini, A.1    Cramer, P.2
  • 48
    • 0029816105 scopus 로고    scopus 로고
    • Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes
    • Rudd MD, Luse DS. 1996. Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J Biol Chem 271:21549-21558. http://dx.doi.org/10.1074/jbc.271.35.21549.
    • (1996) J Biol Chem , vol.271 , pp. 21549-21558
    • Rudd, M.D.1    Luse, D.S.2
  • 49
    • 49449102926 scopus 로고    scopus 로고
    • Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation
    • Brueckner F, Cramer P. 2008. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15:811-818. http://dx.doi.org/10.1038/nsmb.1458.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 811-818
    • Brueckner, F.1    Cramer, P.2
  • 50
    • 63449096360 scopus 로고    scopus 로고
    • Bacterial RNA polymerase inhibitors: An organized overview of their structure, derivatives, biological activity and current clinical development status
    • Mariani R, Maffioli SI. 2009. Bacterial RNA polymerase inhibitors: an organized overview of their structure, derivatives, biological activity and current clinical development status. Curr Med Chem 16:430-454. http://dx.doi.org/10.2174/092986709787315559.
    • (2009) Curr Med Chem , vol.16 , pp. 430-454
    • Mariani, R.1    Maffioli, S.I.2
  • 51
    • 84868586462 scopus 로고    scopus 로고
    • Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae
    • Buurman ET, Foulk MA, Gao N, Laganas VA, McKinney DC, Moustakas DT, Rose JA, Shapiro AB, Fleming PR. 2012. Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae. J Bacteriol 194:5504-5512. http://dx.doi.org/10.1128/JB.01103-12.
    • (2012) J Bacteriol , vol.194 , pp. 5504-5512
    • Buurman, E.T.1    Foulk, M.A.2    Gao, N.3    Laganas, V.A.4    McKinney, D.C.5    Moustakas, D.T.6    Rose, J.A.7    Shapiro, A.B.8    Fleming, P.R.9
  • 53
    • 84903130018 scopus 로고    scopus 로고
    • New insights into the bacterial RNA polymerase inhibitor CBR703 as a starting point for optimization as an anti-infective agent
    • Zhu W, Haupenthal J, Groh M, Fountain M, Hartmann RW. 2014. New insights into the bacterial RNA polymerase inhibitor CBR703 as a starting point for optimization as an anti-infective agent. Antimicrob Agents Chemother 58:4242-4245. http://dx.doi.org/10.1128/AAC.02600-14.
    • (2014) Antimicrob Agents Chemother , vol.58 , pp. 4242-4245
    • Zhu, W.1    Haupenthal, J.2    Groh, M.3    Fountain, M.4    Hartmann, R.W.5
  • 55
    • 67650938441 scopus 로고    scopus 로고
    • RNA polymerase active center: The molecular engine of transcription
    • Nudler E. 2009. RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78:335-361. http://dx.doi.org/10.1146/annurev. biochem.76.052705.164655.
    • (2009) Annu Rev Biochem , vol.78 , pp. 335-361
    • Nudler, E.1
  • 56
    • 0027398001 scopus 로고
    • Two open complexes and a requirement for Mg2+ to open the lambda PR transcription start site
    • Suh WC, Ross W, Record MT, Jr. 1993. Two open complexes and a requirement for Mg2+ to open the lambda PR transcription start site. Science 259:358-361. http://dx.doi.org/10.1126/science.8420002.
    • (1993) Science , vol.259 , pp. 358-361
    • Suh, W.C.1    Ross, W.2    Record, M.T.3
  • 57
    • 53849108160 scopus 로고    scopus 로고
    • RNA polymerase elongation factors
    • Roberts JW, Shankar S, Filter JJ. 2008. RNA polymerase elongation factors. Annu Rev Microbiol 62:211-233. http://dx.doi.org/10.1146/annurev. micro.61.080706.093422.
    • (2008) Annu Rev Microbiol , vol.62 , pp. 211-233
    • Roberts, J.W.1    Shankar, S.2    Filter, J.J.3
  • 58
    • 66549126163 scopus 로고    scopus 로고
    • A movie of the RNA polymerase nucleotide addition cycle
    • Brueckner F, Ortiz J, Cramer P. 2009. A movie of the RNA polymerase nucleotide addition cycle. Curr Opin Struct Biol 19:294-299. http://dx.doi.org/10.1016/j.sbi.2009.04.005.
    • (2009) Curr Opin Struct Biol , vol.19 , pp. 294-299
    • Brueckner, F.1    Ortiz, J.2    Cramer, P.3
  • 60
    • 0344397637 scopus 로고
    • Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex
    • Sensi P, Greco AM, Ballotta R. 1959. Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu 7:262-270.
    • (1959) Antibiot Annu , vol.7 , pp. 262-270
    • Sensi, P.1    Greco, A.M.2    Ballotta, R.3
  • 61
    • 0001331161 scopus 로고
    • History of the development of rifampin
    • Sensi P. 1983. History of the development of rifampin. Rev Infect Dis 5(Suppl 3):S402-S406. http://dx.doi.org/10.1093/clinids/5.Supplement-3.S402.
    • (1983) Rev Infect Dis , vol.5 , pp. S402-S406
    • Sensi, P.1
  • 63
    • 77951092627 scopus 로고    scopus 로고
    • New drugs and new regimens for the treatment of tuberculosis: Review of the drug development pipeline and implications for national programmes
    • Lienhardt C, Vernon A, Raviglione MC. 2010. New drugs and new regimens for the treatment of tuberculosis: review of the drug development pipeline and implications for national programmes. Curr Opin Pulm Med 16:186-193. http://dx.doi.org/10.1097/MCP.0b013e328337580c.
    • (2010) Curr Opin Pulm Med , vol.16 , pp. 186-193
    • Lienhardt, C.1    Vernon, A.2    Raviglione, M.C.3
  • 65
    • 18644365788 scopus 로고    scopus 로고
    • Rifaximin: In vitro and in vivo antibacterial activity- A review
    • Jiang ZD, DuPont HL. 2005. Rifaximin: in vitro and in vivo antibacterial activity-a review. Chemotherapy 51(Suppl 1):S67-S72.
    • (2005) Chemotherapy , vol.51 , pp. S67-S72
    • Jiang, Z.D.1    DuPont, H.L.2
  • 66
    • 0035937403 scopus 로고    scopus 로고
    • Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104:901-912. http://dx.doi.org/10.1016/S0092-8674 (01) 00286-0.
    • (2001) Cell , vol.104 , pp. 901-912
    • Campbell, E.A.1    Korzheva, N.2    Mustaev, A.3    Murakami, K.4    Nair, S.5    Goldfarb, A.6    Darst, S.A.7
  • 68
    • 0018239472 scopus 로고
    • On the mechanism of rifampicin inhibition of RNA synthesis
    • McClure WR, Cech CL. 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253:8949-8956.
    • (1978) J Biol Chem , vol.253 , pp. 8949-8956
    • McClure, W.R.1    Cech, C.L.2
  • 70
    • 84555209977 scopus 로고    scopus 로고
    • Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes
    • Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. 2012. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106-110. http://dx.doi.org/10.1038/ng.1038.
    • (2012) Nat Genet , vol.44 , pp. 106-110
    • Comas, I.1    Borrell, S.2    Roetzer, A.3    Rose, G.4    Malla, B.5    Kato-Maeda, M.6    Galagan, J.7    Niemann, S.8    Gagneux, S.9
  • 71
    • 84869210776 scopus 로고    scopus 로고
    • Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus
    • Srivastava A, Degen D, Ebright YW, Ebright RH. 2012. Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus. Antimicrob Agents Chemother 56:6250-6255. http://dx.doi.org/10.1128/AAC.01060-12.
    • (2012) Antimicrob Agents Chemother , vol.56 , pp. 6250-6255
    • Srivastava, A.1    Degen, D.2    Ebright, Y.W.3    Ebright, R.H.4
  • 73
    • 84875418067 scopus 로고    scopus 로고
    • Reactive rifampicin derivative able to damage transcription complex
    • Kozlov M, Nudler E, Nikiforov V, Mustaev A. 2013. Reactive rifampicin derivative able to damage transcription complex. Bioconjug Chem 24:443-447. http://dx.doi.org/10.1021/bc3005667.
    • (2013) Bioconjug Chem , vol.24 , pp. 443-447
    • Kozlov, M.1    Nudler, E.2    Nikiforov, V.3    Mustaev, A.4
  • 75
    • 84860277072 scopus 로고    scopus 로고
    • Structurebased design of novel benzoxazinorifamycins with potent binding affinity to wild-type and rifampin-resistant mutant Mycobacterium tuberculosis RNA polymerases
    • Gill SK, Xu H, Kirchhoff PD, Cierpicki T, Turbiak AJ, Wan B, Zhang N, Peng KW, Franzblau SG, Garcia GA, Showalter HD. 2012. Structurebased design of novel benzoxazinorifamycins with potent binding affinity to wild-type and rifampin-resistant mutant Mycobacterium tuberculosis RNA polymerases. J Med Chem 55:3814-3826. http://dx.doi.org/10.1021/jm201716n.
    • (2012) J Med Chem , vol.55 , pp. 3814-3826
    • Gill, S.K.1    Xu, H.2    Kirchhoff, P.D.3    Cierpicki, T.4    Turbiak, A.J.5    Wan, B.6    Zhang, N.7    Peng, K.W.8    Franzblau, S.G.9    Garcia, G.A.10    Showalter, H.D.11
  • 76
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2. 8 angstrom resolution
    • Cramer P, Bushnell DA, Kornberg RD. 2001. Structural basis of transcription: RNA polymerase II at 2. 8 angstrom resolution. Science 292:1863-1876. http://dx.doi.org/10.1126/science.1059493.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 78
    • 84903130176 scopus 로고    scopus 로고
    • Randomized, double-blind, multicenter safety and efficacy study of rifalazil compared with azithromycin for treatment of uncomplicated genital Chlamydia trachomatis infection in women
    • Geisler WM, Pascual ML, Mathew J, Koltun WD, Morgan F, Batteiger BE, Mayes A, Tao S, Hurwitz SJ, Sayada C, Schinazi RF. 2014. Randomized, double-blind, multicenter safety and efficacy study of rifalazil compared with azithromycin for treatment of uncomplicated genital Chlamydia trachomatis infection in women. Antimicrob Agents Chemother 58:4014-4019. http://dx.doi.org/10.1128/AAC.02521-14.
    • (2014) Antimicrob Agents Chemother , vol.58 , pp. 4014-4019
    • Geisler, W.M.1    Pascual, M.L.2    Mathew, J.3    Koltun, W.D.4    Morgan, F.5    Batteiger, B.E.6    Mayes, A.7    Tao, S.8    Hurwitz, S.J.9    Sayada, C.10    Schinazi, R.F.11
  • 79
    • 0022342979 scopus 로고
    • Antibiotics from gliding bacteria. XXX. Isolation and spectroscopic structure elucidation of sorangicin A, a new type of macrolide-polyether antibiotic from gliding bacteria
    • Jansen R, Wray V, Irschik H, Reichenbach H, Höfle G. 1985. Antibiotics from gliding bacteria. XXX. Isolation and spectroscopic structure elucidation of sorangicin A, a new type of macrolide-polyether antibiotic from gliding bacteria. Tetrahedron Lett 26:6031-6034.
    • (1985) Tetrahedron Lett , vol.26 , pp. 6031-6034
    • Jansen, R.1    Wray, V.2    Irschik, H.3    Reichenbach, H.4    Höfle, G.5
  • 80
    • 15444374664 scopus 로고    scopus 로고
    • Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase
    • Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. 2005. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24:674-682. http://dx.doi.org/10.1038/sj.emboj.7600499.
    • (2005) EMBO J , vol.24 , pp. 674-682
    • Campbell, E.A.1    Pavlova, O.2    Zenkin, N.3    Leon, F.4    Irschik, H.5    Jansen, R.6    Severinov, K.7    Darst, S.A.8
  • 81
    • 0032466234 scopus 로고    scopus 로고
    • Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update
    • Ramaswamy S, Musser JM. 1998. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79:3-29. http://dx.doi.org/10.1054/tuld.1998.0002.
    • (1998) Tuber Lung Dis , vol.79 , pp. 3-29
    • Ramaswamy, S.1    Musser, J.M.2
  • 82
    • 0025134232 scopus 로고
    • Resistance of Escherichia coli to rifampicin and sorangicin A- A comparison
    • Rommele G, Wirz G, Solf R, Vosbeck K, Gruner J, Wehrli W. 1990. Resistance of Escherichia coli to rifampicin and sorangicin A-a comparison. J Antibiot (Tokyo) 43:88-91. http://dx.doi.org/10.7164/antibiotics.43.88.
    • (1990) J Antibiot (Tokyo) , vol.43 , pp. 88-91
    • Rommele, G.1    Wirz, G.2    Solf, R.3    Vosbeck, K.4    Gruner, J.5    Wehrli, W.6
  • 83
    • 50849135173 scopus 로고    scopus 로고
    • Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase
    • Agarwal AK, Johnson AP, Fishwick CWG. 2008. Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase. Tetrahedron 64:10049-10054. http://dx.doi.org/10.1016/j.tet.2008.08.037.
    • (2008) Tetrahedron , vol.64 , pp. 10049-10054
    • Agarwal, A.K.1    Johnson, A.P.2    Fishwick, C.W.G.3
  • 84
    • 84964034088 scopus 로고    scopus 로고
    • Addendum to "Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase" [Tetrahedron 64 (43) (2008) 10049-10054]
    • Agarwal AK, Peter Johnson A, Fishwick CWG. 2009. Addendum to "Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase" [Tetrahedron 64 (43) (2008) 10049-10054]. Tetrahedron 65:1077. http://dx.doi.org/10.1016/j.tet.2008.11.039.
    • (2009) Tetrahedron , vol.65 , pp. 1077
    • Agarwal, A.K.1    Peter Johnson, A.2    Fishwick, C.W.G.3
  • 87
    • 3242881098 scopus 로고    scopus 로고
    • Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase
    • Sarubbi E, Monti F, Corti E, Miele A, Selva E. 2004. Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase. Eur J Biochem 271:3146-3154. http://dx.doi.org/10.1111/j.1432-1033.2004.04244.x.
    • (2004) Eur J Biochem , vol.271 , pp. 3146-3154
    • Sarubbi, E.1    Monti, F.2    Corti, E.3    Miele, A.4    Selva, E.5
  • 91
    • 84862666457 scopus 로고    scopus 로고
    • A movie of RNA polymerase II transcription
    • Cheung AC, Cramer P. 2012. A movie of RNA polymerase II transcription. Cell 149:1431-1437. http://dx.doi.org/10.1016/j.cell.2012.06.006.
    • (2012) Cell , vol.149 , pp. 1431-1437
    • Cheung, A.C.1    Cramer, P.2
  • 92
    • 33751235874 scopus 로고    scopus 로고
    • Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis
    • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. 2006. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941-954. http://dx.doi.org/10.1016/j.cell.2006.11.023.
    • (2006) Cell , vol.127 , pp. 941-954
    • Wang, D.1    Bushnell, D.A.2    Westover, K.D.3    Kaplan, C.D.4    Kornberg, R.D.5
  • 94
    • 33645482589 scopus 로고
    • Streptolydigin, a new antimicrobial antibiotic. I. Biologic studies of streptolydigin
    • Deboer C, Dietz A, Savage GM, Silver WS. 1955. Streptolydigin, a new antimicrobial antibiotic. I. Biologic studies of streptolydigin. Antibiot Annu 3:886-892.
    • (1955) Antibiot Annu , vol.3 , pp. 886-892
    • Deboer, C.1    Dietz, A.2    Savage, G.M.3    Silver, W.S.4
  • 95
    • 33645493366 scopus 로고
    • Streptolydigin, a new antimicrobial antibiotic. II. Isolation and characterization
    • Crum GF, Devries WH, Eble TE, Large CM, Shell JW. 1955. Streptolydigin, a new antimicrobial antibiotic. II. Isolation and characterization. Antibiot Annu 3:893-896.
    • (1955) Antibiot Annu , vol.3 , pp. 893-896
    • Crum, G.F.1    Devries, W.H.2    Eble, T.E.3    Large, C.M.4    Shell, J.W.5
  • 96
    • 33847322187 scopus 로고
    • Streptolydigin, a new antimicrobial antibiotic. III. In vitro and in vivo laboratory studies
    • Lewis C, Nikitas CT, Schwartz DF, Wilkins JR. 1955. Streptolydigin, a new antimicrobial antibiotic. III. In vitro and in vivo laboratory studies. Antibiot Annu 3:897-902.
    • (1955) Antibiot Annu , vol.3 , pp. 897-902
    • Lewis, C.1    Nikitas, C.T.2    Schwartz, D.F.3    Wilkins, J.R.4
  • 97
    • 0018861875 scopus 로고
    • On the mechanism of streptolydigin inhibition of Escherichia coli RNA polymerase
    • McClure WR. 1980. On the mechanism of streptolydigin inhibition of Escherichia coli RNA polymerase. J Biol Chem 255:1610-1616.
    • (1980) J Biol Chem , vol.255 , pp. 1610-1616
    • McClure, W.R.1
  • 100
    • 0017877613 scopus 로고
    • Beta= subunit of bacterial RNA polymerase is responsible for streptolydigin resistance in Bacillus subtilis
    • Halling SM, Burtis KC, Doi RH. 1978. Beta= subunit of bacterial RNA polymerase is responsible for streptolydigin resistance in Bacillus subtilis. Nature 272:837-839. http://dx.doi.org/10.1038/272837a0.
    • (1978) Nature , vol.272 , pp. 837-839
    • Halling, S.M.1    Burtis, K.C.2    Doi, R.H.3
  • 101
    • 0028884222 scopus 로고
    • Streptolydigin resistance can be conferred by alterations to either the beta or beta= subunits of Bacillus subtilis RNA polymerase
    • Yang X, Price CW. 1995. Streptolydigin resistance can be conferred by alterations to either the beta or beta= subunits of Bacillus subtilis RNA polymerase. J Biol Chem 270:23930-23933. http://dx.doi.org/10.1074/jbc.270.41.23930.
    • (1995) J Biol Chem , vol.270 , pp. 23930-23933
    • Yang, X.1    Price, C.W.2
  • 103
    • 0033582772 scopus 로고    scopus 로고
    • Salinamides, antiinflammatory depsipeptides from a marine streptomycete
    • Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W. 1999. Salinamides, antiinflammatory depsipeptides from a marine streptomycete. J Org Chem 64:1145-1150. http://dx.doi.org/10.1021/jo9814391.
    • (1999) J Org Chem , vol.64 , pp. 1145-1150
    • Moore, B.S.1    Trischman, J.A.2    Seng, D.3    Kho, D.4    Jensen, P.R.5    Fenical, W.6
  • 104
    • 0030801839 scopus 로고    scopus 로고
    • Inhibition of bacterial RNA polymerases. Peptide metabolites from the cultures of Streptomyces sp
    • Miao S, Anstee MR, LaMarco K, Matthew J, Huang LHT, Brasseur MM. 1997. Inhibition of bacterial RNA polymerases. Peptide metabolites from the cultures of Streptomyces sp. J Nat Prod 60:858-861.
    • (1997) J Nat Prod , vol.60 , pp. 858-861
    • Miao, S.1    Anstee, M.R.2    LaMarco, K.3    Matthew, J.4    Huang, L.H.T.5    Brasseur, M.M.6
  • 106
    • 0142147268 scopus 로고    scopus 로고
    • A new class of bacterial RNA polymerase inhibitor affects nucleotide addition
    • Artsimovitch I, Chu C, Lynch AS, Landick R. 2003. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 302:650-654. http://dx.doi.org/10.1126/science.1087526.
    • (2003) Science , vol.302 , pp. 650-654
    • Artsimovitch, I.1    Chu, C.2    Lynch, A.S.3    Landick, R.4
  • 108
    • 84938703725 scopus 로고    scopus 로고
    • CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix capmediated effects on nucleotide addition
    • Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. 2015. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix capmediated effects on nucleotide addition. Proc Natl Acad Sci U S A 112:E4178-E4187. http://dx.doi.org/10.1073/pnas.1502368112.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. E4178-E4187
    • Bae, B.1    Nayak, D.2    Ray, A.3    Mustaev, A.4    Landick, R.5    Darst, S.A.6
  • 109
    • 35949002764 scopus 로고    scopus 로고
    • In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm
    • Villain-Guillot P, Gualtieri M, Bastide L, Leonetti JP. 2007. In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 51:3117-3121. http://dx.doi.org/10.1128/AAC.00343-07.
    • (2007) Antimicrob Agents Chemother , vol.51 , pp. 3117-3121
    • Villain-Guillot, P.1    Gualtieri, M.2    Bastide, L.3    Leonetti, J.P.4
  • 111
    • 4043135220 scopus 로고    scopus 로고
    • Regulation of RNA polymerase through the secondary channel
    • Nickels BE, Hochschild A. 2004. Regulation of RNA polymerase through the secondary channel. Cell 118:281-284. http://dx.doi.org/10.1016/j.cell.2004.07.021.
    • (2004) Cell , vol.118 , pp. 281-284
    • Nickels, B.E.1    Hochschild, A.2
  • 112
    • 4043069926 scopus 로고    scopus 로고
    • DksA: A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP
    • Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311-322. http://dx.doi.org/10.1016/j.cell.2004.07.009.
    • (2004) Cell , vol.118 , pp. 311-322
    • Paul, B.J.1    Barker, M.M.2    Ross, W.3    Schneider, D.A.4    Webb, C.5    Foster, J.W.6    Gourse, R.L.7
  • 115
    • 33846604629 scopus 로고    scopus 로고
    • Effects of DksA, GreA, and GreB on transcription initiation: Insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase
    • Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL. 2007. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol 366:1243-1257. http://dx.doi.org/10.1016/j.jmb.2006.12.013.
    • (2007) J Mol Biol , vol.366 , pp. 1243-1257
    • Rutherford, S.T.1    Lemke, J.J.2    Vrentas, C.E.3    Gaal, T.4    Ross, W.5    Gourse, R.L.6
  • 116
    • 35748963229 scopus 로고    scopus 로고
    • The carboxy-terminal coiled-coil of the RNA polymerase beta=-subunit is the main binding site for Gre factors
    • Vassylyeva MN, Svetlov V, Dearborn AD, Klyuyev S, Artsimovitch I, Vassylyev DG. 2007. The carboxy-terminal coiled-coil of the RNA polymerase beta=-subunit is the main binding site for Gre factors. EMBO Rep 8:1038-1043. http://dx.doi.org/10.1038/sj.embor.7401079.
    • (2007) EMBO Rep , vol.8 , pp. 1038-1043
    • Vassylyeva, M.N.1    Svetlov, V.2    Dearborn, A.D.3    Klyuyev, S.4    Artsimovitch, I.5    Vassylyev, D.G.6
  • 117
    • 0001740751 scopus 로고
    • Tagetitoxin, a toxin produced by Pseudomonas syringae pv. Tagetis: Purification and partial characterization
    • Mitchell RE, Durbin RD. 1981. Tagetitoxin, a toxin produced by Pseudomonas syringae pv. tagetis: purification and partial characterization. Physiol Plant Pathol 18:157-168. http://dx.doi.org/10.1016/S0048-4059 (81) 80037-9.
    • (1981) Physiol Plant Pathol , vol.18 , pp. 157-168
    • Mitchell, R.E.1    Durbin, R.D.2
  • 118
    • 0025103263 scopus 로고
    • Tagetitoxin: A new inhibitor of eukaryotic transcription by RNApolymerase III
    • Steinberg TH, Mathews DE, Durbin RD, Burgess RR. 1990. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNApolymerase III. J Biol Chem 265:499-505.
    • (1990) J Biol Chem , vol.265 , pp. 499-505
    • Steinberg, T.H.1    Mathews, D.E.2    Durbin, R.D.3    Burgess, R.R.4
  • 119
    • 0028037016 scopus 로고
    • Mechanistic aspects of tagetitoxin inhibition of RNA polymerase from Escherichia coli
    • Mathews DE, Durbin RD. 1994. Mechanistic aspects of tagetitoxin inhibition of RNA polymerase from Escherichia coli. Biochemistry 33:11987-11992. http://dx.doi.org/10.1021/bi00205a038.
    • (1994) Biochemistry , vol.33 , pp. 11987-11992
    • Mathews, D.E.1    Durbin, R.D.2
  • 121
    • 81155132249 scopus 로고    scopus 로고
    • Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop
    • Artsimovitch I, Svetlov V, Nemetski SM, Epshtein V, Cardozo T, Nudler E. 2011. Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. J Biol Chem 286:40395-40400. http://dx.doi.org/10.1074/jbc. M111.300889.
    • (2011) J Biol Chem , vol.286 , pp. 40395-40400
    • Artsimovitch, I.1    Svetlov, V.2    Nemetski, S.M.3    Epshtein, V.4    Cardozo, T.5    Nudler, E.6
  • 122
    • 84862743181 scopus 로고    scopus 로고
    • Response to Klyuyev and Vassylyev: On the mechanism of tagetitoxin inhibition of transcription
    • Svetlov V, Artsimovitch I, Nudler E. 2012. Response to Klyuyev and Vassylyev: on the mechanism of tagetitoxin inhibition of transcription. Transcription 3:51-55. http://dx.doi.org/10.4161/trns.19749.
    • (2012) Transcription , vol.3 , pp. 51-55
    • Svetlov, V.1    Artsimovitch, I.2    Nudler, E.3
  • 123
    • 84862740861 scopus 로고    scopus 로고
    • The binding site and mechanism of the RNA polymerase inhibitor tagetitoxin: An issue open to debate
    • Klyuyev S, Vassylyev DG. 2012. The binding site and mechanism of the RNA polymerase inhibitor tagetitoxin: an issue open to debate. Transcription 3:46-50. http://dx.doi.org/10.4161/trns.19468.
    • (2012) Transcription , vol.3 , pp. 46-50
    • Klyuyev, S.1    Vassylyev, D.G.2
  • 125
    • 0026526445 scopus 로고
    • Microcin 25, a novel antimicrobial peptide produced by Escherichia coli
    • Salomon RA, Farias RN. 1992. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428-7435.
    • (1992) J Bacteriol , vol.174 , pp. 7428-7435
    • Salomon, R.A.1    Farias, R.N.2
  • 128
    • 0141919822 scopus 로고    scopus 로고
    • Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone
    • Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, Craik DJ. 2003. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125:12464-12474. http://dx.doi.org/10.1021/ja0367703.
    • (2003) J Am Chem Soc , vol.125 , pp. 12464-12474
    • Rosengren, K.J.1    Clark, R.J.2    Daly, N.L.3    Goransson, U.4    Jones, A.5    Craik, D.J.6
  • 130
    • 2942696237 scopus 로고    scopus 로고
    • Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNApolymerase secondary channel
    • Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH. 2004. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNApolymerase secondary channel. Mol Cell 14:739-751. http://dx.doi.org/10.1016/j.molcel.2004.06.010.
    • (2004) Mol Cell , vol.14 , pp. 739-751
    • Mukhopadhyay, J.1    Sineva, E.2    Knight, J.3    Levy, R.M.4    Ebright, R.H.5
  • 133
    • 0021017887 scopus 로고
    • The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales)
    • Irschik H, Gerth K, Hofle G, Kohl W, Reichenbach H. 1983. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J Antibiot (Tokyo) 36:1651-1658. http://dx.doi.org/10.7164/antibiotics.36.1651.
    • (1983) J Antibiot (Tokyo) , vol.36 , pp. 1651-1658
    • Irschik, H.1    Gerth, K.2    Hofle, G.3    Kohl, W.4    Reichenbach, H.5
  • 134
    • 0021028551 scopus 로고
    • Antibiotika aus Gleitenden Bakterien, XVII. Myxopyronin A und B-zwei neue Antibiotika aus Myxococcus fulvus Stamm Mx f50
    • Kohl W, Irschik H, Reichenbach H, Höfle G. 1983. Antibiotika aus Gleitenden Bakterien, XVII. Myxopyronin A und B-zwei neue Antibiotika aus Myxococcus fulvus Stamm Mx f50. Liebigs Annalen der Chemie 1983:1656-1667.
    • (1983) Liebigs Annalen der Chemie , vol.1983 , pp. 1656-1667
    • Kohl, W.1    Irschik, H.2    Reichenbach, H.3    Höfle, G.4
  • 137
    • 0021958873 scopus 로고
    • The corallopyronins, new inhibitors of bacterial RNA synthesis from Myxobacteria
    • Irschik H, Jansen R, Hofle G, Gerth K, Reichenbach H. 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from Myxobacteria. J Antibiot (Tokyo) 38:145-152. http://dx.doi.org/10.7164/antibiotics.38.145.
    • (1985) J Antibiot (Tokyo) , vol.38 , pp. 145-152
    • Irschik, H.1    Jansen, R.2    Hofle, G.3    Gerth, K.4    Reichenbach, H.5
  • 138
    • 0029161954 scopus 로고
    • The ripostatins, novel inhibitors of eubacterial RNA polymerase isolated from myxobacteria
    • Irschik H, Augustiniak H, Gerth K, Hofle G, Reichenbach H. 1995. The ripostatins, novel inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot (Tokyo) 48:787-792. http://dx.doi.org/10.7164/antibiotics.48.787.
    • (1995) J Antibiot (Tokyo) , vol.48 , pp. 787-792
    • Irschik, H.1    Augustiniak, H.2    Gerth, K.3    Hofle, G.4    Reichenbach, H.5
  • 139
    • 78449256152 scopus 로고    scopus 로고
    • Progress and challenges in implementing the research on ESKAPE pathogens
    • Rice LB. 2010. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol 31(Suppl 1):S7-S10. http://dx.doi.org/10.1086/655995.
    • (2010) Infect Control Hosp Epidemiol , vol.31 , pp. S7-S10
    • Rice, L.B.1
  • 140
    • 84927637546 scopus 로고    scopus 로고
    • X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein
    • Molodtsov V, Fleming PR, Eyermann CJ, Ferguson AD, Foulk MA, McKinney DC, Masse CE, Buurman ET, Murakami KS. 2015. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 58:3156-3171. http://dx.doi.org/10.1021/acs.jmedchem.5b00050.
    • (2015) J Med Chem , vol.58 , pp. 3156-3171
    • Molodtsov, V.1    Fleming, P.R.2    Eyermann, C.J.3    Ferguson, A.D.4    Foulk, M.A.5    McKinney, D.C.6    Masse, C.E.7    Buurman, E.T.8    Murakami, K.S.9
  • 141
    • 79953166785 scopus 로고    scopus 로고
    • Fidaxomicin: Difimicin; lipiarmycin; OPT 80; OPT-80; PAR 101; PAR-101
    • Anonymous. 2010. Fidaxomicin: difimicin; lipiarmycin; OPT 80; OPT-80; PAR 101; PAR-101. Drugs R D 10:37-45. http://dx.doi.org/10.2165/11537730-000000000-00000.
    • (2010) Drugs R D , vol.10 , pp. 37-45
    • Anonymous1
  • 142
    • 0016592570 scopus 로고
    • Lipiarmycin, a new antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical characterization
    • Coronelli C, White RJ, Lancini GC, Parenti F. 1975. Lipiarmycin, a new antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical characterization. J Antibiot (Tokyo) 28:253-259.
    • (1975) J Antibiot (Tokyo) , vol.28 , pp. 253-259
    • Coronelli, C.1    White, R.J.2    Lancini, G.C.3    Parenti, F.4
  • 143
    • 84922041506 scopus 로고    scopus 로고
    • Enantioselective synthesis of putative lipiarmycin aglycon related to fidaxomicin/tiacumicin B
    • Erb W, Grassot JM, Linder D, Neuville L, Zhu J. 2015. Enantioselective synthesis of putative lipiarmycin aglycon related to fidaxomicin/tiacumicin B. Angew Chem Int Ed Engl 54:1929-1932. http://dx.doi.org/10.1002/anie.201409475.
    • (2015) Angew Chem Int Ed Engl , vol.54 , pp. 1929-1932
    • Erb, W.1    Grassot, J.M.2    Linder, D.3    Neuville, L.4    Zhu, J.5
  • 145
    • 77955423906 scopus 로고    scopus 로고
    • The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site
    • Tupin A, Gualtieri M, Leonetti JP, Brodolin K. 2010. The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site. EMBOJ 29:2527-2537. http://dx.doi.org/10.1038/emboj.2010.135.
    • (2010) EMBOJ , vol.29 , pp. 2527-2537
    • Tupin, A.1    Gualtieri, M.2    Leonetti, J.P.3    Brodolin, K.4
  • 146
    • 84863676899 scopus 로고    scopus 로고
    • Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis
    • Artsimovitch I, Seddon J, Sears P. 2012. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis 55(Suppl 2):S127-S131. http://dx.doi.org/10.1093/cid/cis358.
    • (2012) Clin Infect Dis , vol.55 , pp. S127-S131
    • Artsimovitch, I.1    Seddon, J.2    Sears, P.3
  • 149
    • 0035141971 scopus 로고    scopus 로고
    • Antimicrobial properties and mode of action of the pyrrothine holomycin
    • Oliva B, O'Neill A, Wilson JM, O'Hanlon PJ, Chopra I. 2001. Antimicrobial properties and mode of action of the pyrrothine holomycin. Antimicrob Agents Chemother 45:532-539. http://dx.doi.org/10.1128/AAC.45.2.532-539.2001.
    • (2001) Antimicrob Agents Chemother , vol.45 , pp. 532-539
    • Oliva, B.1    O'Neill, A.2    Wilson, J.M.3    O'Hanlon, P.J.4    Chopra, I.5
  • 150
    • 0016280909 scopus 로고
    • Inhibition of messenger ribonucleic acid synthesis in Escherichia coli by thiolutin
    • Khachatourians GG, Tipper DJ. 1974. Inhibition of messenger ribonucleic acid synthesis in Escherichia coli by thiolutin. J Bacteriol 119:795-804.
    • (1974) J Bacteriol , vol.119 , pp. 795-804
    • Khachatourians, G.G.1    Tipper, D.J.2
  • 151
    • 0015675617 scopus 로고
    • Inhibition of yeast ribonucleic acid polymerases by thiolutin
    • Tipper DJ. 1973. Inhibition of yeast ribonucleic acid polymerases by thiolutin. J Bacteriol 116:245-256.
    • (1973) J Bacteriol , vol.116 , pp. 245-256
    • Tipper, D.J.1
  • 152
    • 34447344496 scopus 로고    scopus 로고
    • Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases
    • Irschik H, Schummer D, Hofle G, Reichenbach H, Steinmetz H, Jansen R. 2007. Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70:1060-1063. http://dx.doi.org/10.1021/np070115h.
    • (2007) J Nat Prod , vol.70 , pp. 1060-1063
    • Irschik, H.1    Schummer, D.2    Hofle, G.3    Reichenbach, H.4    Steinmetz, H.5    Jansen, R.6
  • 153
    • 0037261948 scopus 로고    scopus 로고
    • The sigma70 family of sigma factors
    • Paget MS, Helmann JD. 2003. The sigma70 family of sigma factors. Genome Biol 4:203. http://dx.doi.org/10.1186/gb-2003-4-1-203.
    • (2003) Genome Biol , vol.4 , pp. 203
    • Paget, M.S.1    Helmann, J.D.2
  • 154
    • 84907504864 scopus 로고    scopus 로고
    • Bacterial sigma factors: A historical, structural, and genomic perspective
    • Feklistov A, Sharon BD, Darst SA, Gross CA. 2014. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 68:357-376. http://dx.doi.org/10.1146/annurev-micro-092412-155737.
    • (2014) Annu Rev Microbiol , vol.68 , pp. 357-376
    • Feklistov, A.1    Sharon, B.D.2    Darst, S.A.3    Gross, C.A.4
  • 155
    • 79952263237 scopus 로고    scopus 로고
    • The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation
    • Yang X, Lewis PJ. 2010. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation. Transcription 1:66-69. http://dx.doi.org/10.4161/trns.1.2.12791.
    • (2010) Transcription , vol.1 , pp. 66-69
    • Yang, X.1    Lewis, P.J.2
  • 156
    • 85012075682 scopus 로고    scopus 로고
    • Regulation of transcription elongation and termination
    • Washburn RS, Gottesman ME. 2015. Regulation of transcription elongation and termination. Biomolecules 5:1063-1078. http://dx.doi.org/10.3390/biom5021063.
    • (2015) Biomolecules , vol.5 , pp. 1063-1078
    • Washburn, R.S.1    Gottesman, M.E.2
  • 157
    • 22144442117 scopus 로고    scopus 로고
    • The NusA: RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis
    • Davies KM, Dedman AJ, van Horck S, Lewis PJ. 2005. The NusA: RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis. Mol Microbiol 57:366-379. http://dx.doi.org/10.1111/j.1365-2958.2005.04669.x.
    • (2005) Mol Microbiol , vol.57 , pp. 366-379
    • Davies, K.M.1    Dedman, A.J.2    Van Horck, S.3    Lewis, P.J.4
  • 158
    • 33744752145 scopus 로고    scopus 로고
    • Subcellular partitioning of transcription factors in Bacillus subtilis
    • Doherty GP, Meredith DH, Lewis PJ. 2006. Subcellular partitioning of transcription factors in Bacillus subtilis. J Bacteriol 188:4101-4110. http://dx.doi.org/10.1128/JB.01934-05.
    • (2006) J Bacteriol , vol.188 , pp. 4101-4110
    • Doherty, G.P.1    Meredith, D.H.2    Lewis, P.J.3
  • 159
    • 51149091188 scopus 로고    scopus 로고
    • Transcription factor dynamics
    • Lewis PJ, Doherty GP, Clarke J. 2008. Transcription factor dynamics. Microbiology 154:1837-1844. http://dx.doi.org/10.1099/mic.0.2008/018549-0.
    • (2008) Microbiology , vol.154 , pp. 1837-1844
    • Lewis, P.J.1    Doherty, G.P.2    Clarke, J.3
  • 160
    • 57449110975 scopus 로고    scopus 로고
    • Stochasticity and traffic jams in the transcription of ribosomal RNA: Intriguing role of termination and antitermination
    • Klumpp S, Hwa T. 2008. Stochasticity and traffic jams in the transcription of ribosomal RNA: intriguing role of termination and antitermination. Proc Natl Acad Sci U S A 105:18159-18164. http://dx.doi.org/10.1073/pnas.0806084105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 18159-18164
    • Klumpp, S.1    Hwa, T.2
  • 161
    • 33750477997 scopus 로고    scopus 로고
    • Structural insights into RNAdependent ring closure and ATPase activation by the Rho termination factor
    • Skordalakes E, Berger JM. 2006. Structural insights into RNAdependent ring closure and ATPase activation by the Rho termination factor. Cell 127:553-564. http://dx.doi.org/10.1016/j.cell.2006.08.051.
    • (2006) Cell , vol.127 , pp. 553-564
    • Skordalakes, E.1    Berger, J.M.2
  • 162
    • 74549191169 scopus 로고    scopus 로고
    • An allosteric mechanism of Rho-dependent transcription termination
    • Epshtein V, Dutta D, Wade J, Nudler E. 2010. An allosteric mechanism of Rho-dependent transcription termination. Nature 463:245-249. http://dx.doi.org/10.1038/nature08669.
    • (2010) Nature , vol.463 , pp. 245-249
    • Epshtein, V.1    Dutta, D.2    Wade, J.3    Nudler, E.4
  • 163
    • 0015408391 scopus 로고
    • Bicyclomycin, a new antibiotic. I. Taxonomy, isolation and characterization
    • Miyoshi T, Miyairi N, Aoki H, Kosaka M, Sakai H. 1972. Bicyclomycin, a new antibiotic. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 25:569-575.
    • (1972) J Antibiot (Tokyo) , vol.25 , pp. 569-575
    • Miyoshi, T.1    Miyairi, N.2    Aoki, H.3    Kosaka, M.4    Sakai, H.5
  • 164
    • 84916913846 scopus 로고    scopus 로고
    • Lethal synergy involving bicyclomycin: An approach for reviving old antibiotics
    • Malik M, Li L, Zhao X, Kerns RJ, Berger JM, Drlica K. 2014. Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics. J Antimicrob Chemother 69:3227-3235. http://dx.doi.org/10.1093/jac/dku285.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 3227-3235
    • Malik, M.1    Li, L.2    Zhao, X.3    Kerns, R.J.4    Berger, J.M.5    Drlica, K.6
  • 166
    • 0030755556 scopus 로고    scopus 로고
    • Transcription termination factor Rho is essential for Micrococcus luteus
    • Nowatzke WL, Keller E, Koch G, Richardson JP. 1997. Transcription termination factor Rho is essential for Micrococcus luteus. J Bacteriol 179:5238-5240.
    • (1997) J Bacteriol , vol.179 , pp. 5238-5240
    • Nowatzke, W.L.1    Keller, E.2    Koch, G.3    Richardson, J.P.4
  • 167
    • 0029816948 scopus 로고    scopus 로고
    • The antibiotic bicyclomycin affects the secondary RNA binding site of Escherichia coli transcription termination factor Rho
    • Magyar A, Zhang X, Kohn H, Widger WR. 1996. The antibiotic bicyclomycin affects the secondary RNA binding site of Escherichia coli transcription termination factor Rho. J Biol Chem 271:25369-25374. http://dx.doi.org/10.1074/jbc.271.41.25369.
    • (1996) J Biol Chem , vol.271 , pp. 25369-25374
    • Magyar, A.1    Zhang, X.2    Kohn, H.3    Widger, W.R.4
  • 169
    • 0027195060 scopus 로고
    • Transcription termination factor rho: The site of bicyclomycin inhibition in Escherichia coli
    • Zwiefka A, Kohn H, Widger WR. 1993. Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli. Biochemistry 32:3564-3570. http://dx.doi.org/10.1021/bi00065a007.
    • (1993) Biochemistry , vol.32 , pp. 3564-3570
    • Zwiefka, A.1    Kohn, H.2    Widger, W.R.3
  • 170
    • 0033548445 scopus 로고    scopus 로고
    • Identifying the bicyclomycin binding domain through biochemical analysis of antibioticresistant rho proteins
    • Magyar A, Zhang X, Abdi F, Kohn H, Widger WR. 1999. Identifying the bicyclomycin binding domain through biochemical analysis of antibioticresistant rho proteins. J Biol Chem 274:7316-7324. http://dx.doi.org/10.1074/jbc.274.11.7316.
    • (1999) J Biol Chem , vol.274 , pp. 7316-7324
    • Magyar, A.1    Zhang, X.2    Abdi, F.3    Kohn, H.4    Widger, W.R.5
  • 171
    • 0034703447 scopus 로고    scopus 로고
    • The bicyclomycin sensitivities of 38 bicyclomycin-resistant mutants of transcription termination protein rho and the location of their mutations support a structural model of rho based on the F (1) ATPase
    • Moyse KA, Knight JS, Richardson JP. 2000. The bicyclomycin sensitivities of 38 bicyclomycin-resistant mutants of transcription termination protein rho and the location of their mutations support a structural model of rho based on the F (1) ATPase. J Mol Biol 302:565-579. http://dx.doi.org/10.1006/jmbi.2000.4090.
    • (2000) J Mol Biol , vol.302 , pp. 565-579
    • Moyse, K.A.1    Knight, J.S.2    Richardson, J.P.3
  • 172
    • 11844255730 scopus 로고    scopus 로고
    • Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin
    • Skordalakes E, Brogan AP, Park BS, Kohn H, Berger JM. 2005. Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin. Structure 13:99-109. http://dx.doi.org/10.1016/j.str.2004.10.013.
    • (2005) Structure , vol.13 , pp. 99-109
    • Skordalakes, E.1    Brogan, A.P.2    Park, B.S.3    Kohn, H.4    Berger, J.M.5
  • 175
    • 0034725649 scopus 로고    scopus 로고
    • Mutational analysis of beta =260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase
    • Arthur TM, Anthony LC, Burgess RR. 2000. Mutational analysis of beta =260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase. J Biol Chem 275:23113-23119. http://dx.doi.org/10.1074/jbc. M002040200.
    • (2000) J Biol Chem , vol.275 , pp. 23113-23119
    • Arthur, T.M.1    Anthony, L.C.2    Burgess, R.R.3
  • 176
    • 70350511432 scopus 로고    scopus 로고
    • The interaction of Bacillus subtilis sigmaA with RNA polymerase
    • Johnston EB, Lewis PJ, Griffith R. 2009. The interaction of Bacillus subtilis sigmaA with RNA polymerase. Protein Sci 18:2287-2297. http://dx.doi.org/10.1002/pro.239.
    • (2009) Protein Sci , vol.18 , pp. 2287-2297
    • Johnston, E.B.1    Lewis, P.J.2    Griffith, R.3
  • 178
    • 84855586204 scopus 로고    scopus 로고
    • Targeting RNA polymerase primary sigma70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide Nucleic acid
    • Bai H, Sang G, You Y, Xue X, Zhou Y, Hou Z, Meng J, Luo X. 2012. Targeting RNA polymerase primary sigma70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide Nucleic acid. PLoS One 7:e29886. http://dx.doi.org/10.1371/journal.pone.0029886.
    • (2012) PLoS One , vol.7 , pp. e29886
    • Bai, H.1    Sang, G.2    You, Y.3    Xue, X.4    Zhou, Y.5    Hou, Z.6    Meng, J.7    Luo, X.8
  • 179
    • 84876566895 scopus 로고    scopus 로고
    • Peptide-based investigation of the Escherichia coli RNA polymerase sigma (70): Core interface as target site
    • Husecken K, Negri M, Fruth M, Boettcher S, Hartmann RW, Haupenthal J. 2013. Peptide-based investigation of the Escherichia coli RNA polymerase sigma (70) :core interface as target site. ACS Chem Biol http://dx.doi.org/10.1021/cb3005758.
    • (2013) ACS Chem Biol
    • Husecken, K.1    Negri, M.2    Fruth, M.3    Boettcher, S.4    Hartmann, R.W.5    Haupenthal, J.6
  • 180
    • 84941734101 scopus 로고    scopus 로고
    • Identification of inhibitors of bacterial RNA polymerase
    • Yang X, Ma C, Lewis PJ. 2015. Identification of inhibitors of bacterial RNA polymerase. Methods http://dx.doi.org/10.1016/j.ymeth.2015.05.005.
    • (2015) Methods
    • Yang, X.1    Ma, C.2    Lewis, P.J.3
  • 181
    • 84896699707 scopus 로고    scopus 로고
    • Synthesis and biological evaluation of 2, 5-di (7-indolyl)-1, 3, 4-oxadiazoles, and 2- and 7-indolyl 2-(1, 3, 4-thiadiazolyl) ketones as antimicrobials
    • Kandemir H, Ma C, Kutty SK, Black DS, Griffith R, Lewis PJ, Kumar N. 2014. Synthesis and biological evaluation of 2, 5-di (7-indolyl)-1, 3, 4-oxadiazoles, and 2- and 7-indolyl 2-(1, 3, 4-thiadiazolyl) ketones as antimicrobials. Bioorg Med Chem 22:1672-1679. http://dx.doi.org/10.1016/j.bmc.2014.01.025.
    • (2014) Bioorg Med Chem , vol.22 , pp. 1672-1679
    • Kandemir, H.1    Ma, C.2    Kutty, S.K.3    Black, D.S.4    Griffith, R.5    Lewis, P.J.6    Kumar, N.7
  • 182
    • 84925634948 scopus 로고    scopus 로고
    • Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation
    • Mielczarek M, Devakaram RV, Ma C, Kandemir H, Yang X, Bhadbhade D, St. Black CR, Griffith R, Lewis PJ, Kumar N. 2015. Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. BMC Bioorg Med Chem 23:1763-1775. http://dx.doi.org/10.1016/j.bmc.2015.02.037.
    • (2015) BMC Bioorg Med Chem , vol.23 , pp. 1763-1775
    • Mielczarek, M.1    Devakaram, R.V.2    Ma, C.3    Kandemir, H.4    Yang, X.5    Bhadbhade, D.6    St Black, C.R.7    Griffith, R.8    Lewis, P.J.9    Kumar, N.10
  • 184
    • 84969136103 scopus 로고    scopus 로고
    • Bacterial transcription inhibitor of RNA polymerase holoenzyme formation by structure-based drug design: From in silico screening to validation
    • Ma C, Yang X, Lewis PJ. 2015. Bacterial transcription inhibitor of RNA polymerase holoenzyme formation by structure-based drug design: from in silico screening to validation. ACS Infect Dis http://dx.doi.org/10.1021/acsinfecdis.5b00058.
    • (2015) ACS Infect Dis
    • Ma, C.1    Yang, X.2    Lewis, P.J.3
  • 185
    • 14644422292 scopus 로고    scopus 로고
    • A multiwell assay to isolate compounds inhibiting the assembly of the prokaryotic RNA polymerase
    • Andre E, Bastide L, Villain-Guillot P, Latouche J, Rouby J, Leonetti JP. 2004. A multiwell assay to isolate compounds inhibiting the assembly of the prokaryotic RNA polymerase. Assay Drug Dev Technol 2:629-635. http://dx.doi.org/10.1089/adt.2004.2.629.
    • (2004) Assay Drug Dev Technol , vol.2 , pp. 629-635
    • Andre, E.1    Bastide, L.2    Villain-Guillot, P.3    Latouche, J.4    Rouby, J.5    Leonetti, J.P.6
  • 187
  • 188
    • 0000882465 scopus 로고    scopus 로고
    • Control of RNA chain elongation and termination
    • Neidhardt FC, Curtiss R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE ed, 2nd ed. American Society for Microbiology, Washington, DC
    • Richardson JP, Greenblatt J. 1996. Control of RNA chain elongation and termination, p 822-848. In Neidhardt FC, Curtiss R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society for Microbiology, Washington, DC.
    • (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 822-848
    • Richardson, J.P.1    Greenblatt, J.2
  • 189
    • 44249091644 scopus 로고    scopus 로고
    • Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. Coli
    • Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. 2008. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. Coli. Science 320:935-938. http://dx.doi.org/10.1126/science.1152763.
    • (2008) Science , vol.320 , pp. 935-938
    • Cardinale, C.J.1    Washburn, R.S.2    Tadigotla, V.R.3    Brown, L.M.4    Gottesman, M.E.5    Nudler, E.6
  • 190
    • 79952271901 scopus 로고    scopus 로고
    • New discoveries linking transcription to DNA repair and damage tolerance pathways
    • Cohen SE, Walker GC. 2011. New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2:37-40. http://dx.doi.org/10.4161/trns.2.1.14228.
    • (2011) Transcription , vol.2 , pp. 37-40
    • Cohen, S.E.1    Walker, G.C.2
  • 192
    • 84937622542 scopus 로고    scopus 로고
    • RNA polymerase-induced remodelling of NusA produces a pause enhancement complex
    • Ma C, Mobli M, Yang X, Keller AN, King GF, Lewis PJ. 2015. RNA polymerase-induced remodelling of NusA produces a pause enhancement complex. Nucleic Acids Res 43:2829-2840. http://dx.doi.org/10.1093/nar/gkv108.
    • (2015) Nucleic Acids Res , vol.43 , pp. 2829-2840
    • Ma, C.1    Mobli, M.2    Yang, X.3    Keller, A.N.4    King, G.F.5    Lewis, P.J.6
  • 193
    • 77955550450 scopus 로고    scopus 로고
    • The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase
    • Ha KS, Toulokhonov I, Vassylyev DG, Landick R. 2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol 401:708-725. http://dx.doi.org/10.1016/j.jmb.2010.06.036.
    • (2010) J Mol Biol , vol.401 , pp. 708-725
    • Ha, K.S.1    Toulokhonov, I.2    Vassylyev, D.G.3    Landick, R.4
  • 196
    • 1342325469 scopus 로고    scopus 로고
    • In vivo effect of NusB and NusG on rRNA transcription antitermination
    • Torres M, Balada JM, Zellars M, Squires C, Squires CL. 2004. In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 186:1304-1310. http://dx.doi.org/10.1128/JB.186.5.1304-1310.2004.
    • (2004) J Bacteriol , vol.186 , pp. 1304-1310
    • Torres, M.1    Balada, J.M.2    Zellars, M.3    Squires, C.4    Squires, C.L.5
  • 197
    • 75649100484 scopus 로고    scopus 로고
    • Fine tuning of the E. Coli NusB: NusE complex affinity to BoxA RNA is required for processive antitermination
    • Burmann BM, Luo X, Rosch P, Wahl MC, Gottesman ME. 2010. Fine tuning of the E. Coli NusB: NusE complex affinity to BoxA RNA is required for processive antitermination. Nucleic Acids Res 38:314-326. http://dx.doi.org/10.1093/nar/gkp736.
    • (2010) Nucleic Acids Res , vol.38 , pp. 314-326
    • Burmann, B.M.1    Luo, X.2    Rosch, P.3    Wahl, M.C.4    Gottesman, M.E.5
  • 198
    • 27744509046 scopus 로고    scopus 로고
    • Assembly of an RNA-protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli
    • Greive SJ, Lins AF, von Hippel PH. 2005. Assembly of an RNA-protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli. J Biol Chem 280:36397-36408.
    • (2005) J Biol Chem , vol.280 , pp. 36397-36408
    • Greive, S.J.1    Lins, A.F.2    Von Hippel, P.H.3
  • 199
    • 80053183509 scopus 로고    scopus 로고
    • Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination
    • Stagno JR, Altieri AS, Bubunenko M, Tarasov SG, Li J, Court DL, Byrd RA, Ji X. 2011. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res 39:7803-7815. http://dx.doi.org/10.1093/nar/gkr418.
    • (2011) Nucleic Acids Res , vol.39 , pp. 7803-7815
    • Stagno, J.R.1    Altieri, A.S.2    Bubunenko, M.3    Tarasov, S.G.4    Li, J.5    Court, D.L.6    Byrd, R.A.7    Ji, X.8
  • 200
    • 0024457861 scopus 로고
    • Ribosomal RNA operon antitermination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms
    • Berg KL, Squires C, Squires CL. 1989. Ribosomal RNA operon antitermination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. J Mol Biol 209:345-358.
    • (1989) J Mol Biol , vol.209 , pp. 345-358
    • Berg, K.L.1    Squires, C.2    Squires, C.L.3
  • 201
    • 57749115164 scopus 로고    scopus 로고
    • Structural and functional analysis of the E. Coli NusB-S10 transcription antitermination complex
    • Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC. 2008. Structural and functional analysis of the E. Coli NusB-S10 transcription antitermination complex. Mol Cell 32:791-802. http://dx.doi.org/10.1016/j.molcel.2008.10.028.
    • (2008) Mol Cell , vol.32 , pp. 791-802
    • Luo, X.1    Hsiao, H.H.2    Bubunenko, M.3    Weber, G.4    Court, D.L.5    Gottesman, M.E.6    Urlaub, H.7    Wahl, M.C.8
  • 204
    • 84857625656 scopus 로고    scopus 로고
    • A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life
    • Werner F. 2012. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 417:13-27. http://dx.doi.org/10.1016/j.jmb.2012.01.031.
    • (2012) J Mol Biol , vol.417 , pp. 13-27
    • Werner, F.1
  • 205
    • 0028988448 scopus 로고
    • Phage HK022 Nun protein arrests transcription on phage lambda DNA in vitro and competes with the phage lambda N antitermination protein
    • Hung SC, Gottesman ME. 1995. Phage HK022 Nun protein arrests transcription on phage lambda DNA in vitro and competes with the phage lambda N antitermination protein. J Mol Biol 247:428-442. http://dx.doi.org/10.1006/jmbi.1994.0151.
    • (1995) J Mol Biol , vol.247 , pp. 428-442
    • Hung, S.C.1    Gottesman, M.E.2
  • 206
    • 0026527997 scopus 로고
    • Requirement for E. Coli NusG protein in factor-dependent transcription termination
    • Sullivan SL, Gottesman ME. 1992. Requirement for E. Coli NusG protein in factor-dependent transcription termination. Cell 68:989-994. http://dx.doi.org/10.1016/0092-8674 (92) 90041-A.
    • (1992) Cell , vol.68 , pp. 989-994
    • Sullivan, S.L.1    Gottesman, M.E.2
  • 207
    • 0028905513 scopus 로고
    • Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro
    • Burova E, Hung SC, Sagitov V, Stitt BL, Gottesman ME. 1995. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J Bacteriol 177:1388-1392.
    • (1995) J Bacteriol , vol.177 , pp. 1388-1392
    • Burova, E.1    Hung, S.C.2    Sagitov, V.3    Stitt, B.L.4    Gottesman, M.E.5
  • 208
    • 0033032384 scopus 로고    scopus 로고
    • Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG
    • Zellars M, Squires CL. 1999. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol Microbiol 32:1296-1304. http://dx.doi.org/10.1046/j.1365-2958.1999.01442.x.
    • (1999) Mol Microbiol , vol.32 , pp. 1296-1304
    • Zellars, M.1    Squires, C.L.2
  • 209
    • 0034691146 scopus 로고    scopus 로고
    • Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals
    • Artsimovitch I, Landick R. 2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 97:7090-7095. http://dx.doi.org/10.1073/pnas.97.13.7090.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 7090-7095
    • Artsimovitch, I.1    Landick, R.2
  • 210
    • 67650676737 scopus 로고    scopus 로고
    • Two structurally independent domains of E. Coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators
    • Mooney RA, Schweimer K, Rosch P, Gottesman M, Landick R. 2009. Two structurally independent domains of E. Coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol 391:341-358. http://dx.doi.org/10.1016/j.jmb.2009.05.078.
    • (2009) J Mol Biol , vol.391 , pp. 341-358
    • Mooney, R.A.1    Schweimer, K.2    Rosch, P.3    Gottesman, M.4    Landick, R.5
  • 211
    • 78649866419 scopus 로고    scopus 로고
    • Functional analysis of Thermus thermophilus transcription factor NusG
    • Sevostyanova A, Artsimovitch I. 2010. Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res 38:7432-7445. http://dx.doi.org/10.1093/nar/gkq623.
    • (2010) Nucleic Acids Res , vol.38 , pp. 7432-7445
    • Sevostyanova, A.1    Artsimovitch, I.2
  • 212
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P. 2011. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J 30:1302-1310. http://dx.doi.org/10.1038/emboj.2011.64.
    • (2011) EMBO J , vol.30 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1    Sainsbury, S.2    Cheung, A.C.3    Cramer, P.4
  • 213
    • 78650418915 scopus 로고    scopus 로고
    • Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG
    • Chalissery J, Muteeb G, Kalarickal NC, Mohan S, Jisha V, Sen R. 2011. Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. J Mol Biol 405:49-64. http://dx.doi.org/10.1016/j.jmb.2010.10.044.
    • (2011) J Mol Biol , vol.405 , pp. 49-64
    • Chalissery, J.1    Muteeb, G.2    Kalarickal, N.C.3    Mohan, S.4    Jisha, V.5    Sen, R.6
  • 214
    • 84864257340 scopus 로고    scopus 로고
    • An alpha helix to beta barrel domain switch transforms the transcription factor RfaH into a translation factor
    • Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P. 2012. An alpha helix to beta barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291-303. http://dx.doi.org/10.1016/j.cell.2012.05.042.
    • (2012) Cell , vol.150 , pp. 291-303
    • Burmann, B.M.1    Knauer, S.H.2    Sevostyanova, A.3    Schweimer, K.4    Mooney, R.A.5    Landick, R.6    Artsimovitch, I.7    Rosch, P.8
  • 215
    • 84925591558 scopus 로고    scopus 로고
    • Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins-shifting shapes and paradigms
    • NandyMazumdar M, Artsimovitch I. 2015. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins-shifting shapes and paradigms. Bioessays 37:324-334. http://dx.doi.org/10.1002/bies.201400177.
    • (2015) Bioessays , vol.37 , pp. 324-334
    • NandyMazumdar, M.1    Artsimovitch, I.2
  • 216
    • 84888984346 scopus 로고    scopus 로고
    • NusG-Spt5 proteins-universal tools for transcription modification and communication
    • Tomar SK, Artsimovitch I. 2013. NusG-Spt5 proteins-universal tools for transcription modification and communication. Chem Rev 113:8604-8619. http://dx.doi.org/10.1021/cr400064k.
    • (2013) Chem Rev , vol.113 , pp. 8604-8619
    • Tomar, S.K.1    Artsimovitch, I.2
  • 217
    • 58749087873 scopus 로고    scopus 로고
    • Functional specialization of transcription elongation factors
    • Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. 2009. Functional specialization of transcription elongation factors. EMBO J 28:112-122. http://dx.doi.org/10.1038/emboj.2008.268.
    • (2009) EMBO J , vol.28 , pp. 112-122
    • Belogurov, G.A.1    Mooney, R.A.2    Svetlov, V.3    Landick, R.4    Artsimovitch, I.5
  • 219
    • 0032143062 scopus 로고    scopus 로고
    • Unraveling the role of helicases in transcription
    • Eisen A, Lucchesi JC. 1998. Unraveling the role of helicases in transcription. Bioessays 20:634-641.
    • (1998) Bioessays , vol.20 , pp. 634-641
    • Eisen, A.1    Lucchesi, J.C.2
  • 221
    • 33644619706 scopus 로고    scopus 로고
    • Prokaryotic nucleotide excision repair: The UvrABC system
    • Truglio JJ, Croteau DL, Van Houten B, Kisker C. 2006. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106:233-252. http://dx.doi.org/10.1021/cr040471u.
    • (2006) Chem Rev , vol.106 , pp. 233-252
    • Truglio, J.J.1    Croteau, D.L.2    Van Houten, B.3    Kisker, C.4
  • 224
    • 84885778726 scopus 로고    scopus 로고
    • The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase
    • Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. 2013. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 8:e78141. http://dx.doi.org/10.1371/journal.pone.0078141.
    • (2013) PLoS One , vol.8 , pp. e78141
    • Gwynn, E.J.1    Smith, A.J.2    Guy, C.P.3    Savery, N.J.4    McGlynn, P.5    Dillingham, M.S.6
  • 225
    • 15644361965 scopus 로고    scopus 로고
    • RapA, a novel RNA polymeraseassociated protein, is a bacterial homolog of SWI2/SNF2
    • Sukhodolets MV, Jin DJ. 1998. RapA, a novel RNA polymeraseassociated protein, is a bacterial homolog of SWI2/SNF2. J Biol Chem 273:7018-7023. http://dx.doi.org/10.1074/jbc.273.12.7018.
    • (1998) J Biol Chem , vol.273 , pp. 7018-7023
    • Sukhodolets, M.V.1    Jin, D.J.2
  • 226
    • 0035893255 scopus 로고    scopus 로고
    • RapA, a bacterial homolog of SWI2/SNF2, stimulatesRNApolymerase recycling in transcription
    • Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. 2001. RapA, a bacterial homolog of SWI2/SNF2, stimulatesRNApolymerase recycling in transcription. Genes Dev 15:3330-3341. http://dx.doi.org/10.1101/gad.936701.
    • (2001) Genes Dev , vol.15 , pp. 3330-3341
    • Sukhodolets, M.V.1    Cabrera, J.E.2    Zhi, H.3    Jin, D.J.4
  • 227
    • 84923281143 scopus 로고    scopus 로고
    • Structural basis for transcription reactivation by RapA
    • Liu B, Zuo Y, Steitz TA. 2015. Structural basis for transcription reactivation by RapA. Proc Natl Acad Sci U S A 112:2006-2010. http://dx.doi.org/10.1073/pnas.1417152112.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 2006-2010
    • Liu, B.1    Zuo, Y.2    Steitz, T.A.3
  • 229
    • 1842713108 scopus 로고    scopus 로고
    • New inhibitors targeting bacterial RNA polymerase
    • Darst SA. 2004. New inhibitors targeting bacterial RNA polymerase. Trends Biochem Sci 29:159-160. http://dx.doi.org/10.1016/j.tibs.2004.02.005.
    • (2004) Trends Biochem Sci , vol.29 , pp. 159-160
    • Darst, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.