메뉴 건너뛰기




Volumn 112, Issue 31, 2015, Pages E4178-E4187

CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition

Author keywords

Cbr inhibitors; Rna polymerase; Transcription inhibition; X ray crystallography

Indexed keywords

ANTIINFECTIVE AGENT; BACTERIAL PROTEIN; CBR COMPOUND; DINUCLEOTIDE; MAGNESIUM ION; NUCLEOTIDE; RNA POLYMERASE; UNCLASSIFIED DRUG; DNA DIRECTED RNA POLYMERASE; ENZYME INHIBITOR; MESSENGER RNA; PYROPHOSPHORIC ACID DERIVATIVE;

EID: 84938703725     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1502368112     Document Type: Article
Times cited : (28)

References (57)
  • 1
    • 0014185013 scopus 로고
    • The specific inhibition of the DNAdirected RNA synthesis by rifamycin
    • Hartmann G, Honikel KO, Knüsel F, Nüesch J (1967) The specific inhibition of the DNAdirected RNA synthesis by rifamycin. Biochim Biophys Acta 145(3):843-844.
    • (1967) Biochim Biophys Acta , vol.145 , Issue.3 , pp. 843-844
    • Hartmann, G.1    Honikel, K.O.2    Knüsel, F.3    Nüesch, J.4
  • 2
    • 0035937403 scopus 로고    scopus 로고
    • Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    • Campbell EA, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104(6):901-912.
    • (2001) Cell , vol.104 , Issue.6 , pp. 901-912
    • Campbell, E.A.1
  • 3
    • 54449091987 scopus 로고    scopus 로고
    • Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center
    • Feklistov A, et al. (2008) Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. Proc Natl Acad Sci USA 105(39):14820-14825.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.39 , pp. 14820-14825
    • Feklistov, A.1
  • 4
    • 14844356959 scopus 로고    scopus 로고
    • Rifamycin-mode of action, resistance, and biosynthesis
    • Floss HG, Yu T-W (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105(2):621-632.
    • (2005) Chem Rev , vol.105 , Issue.2 , pp. 621-632
    • Floss, H.G.1    Yu, T.-W.2
  • 5
    • 81255157431 scopus 로고    scopus 로고
    • Tackling antibiotic resistance
    • Bush K, et al. (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894-896.
    • (2011) Nat Rev Microbiol , vol.9 , Issue.12 , pp. 894-896
    • Bush, K.1
  • 6
    • 0142147268 scopus 로고    scopus 로고
    • A new class of bacterial RNA polymerase inhibitor affects nucleotide addition
    • Artsimovitch I, Chu C, Lynch AS, Landick R (2003) A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 302(5645):650-654.
    • (2003) Science , vol.302 , Issue.5645 , pp. 650-654
    • Artsimovitch, I.1    Chu, C.2    Lynch, A.S.3    Landick, R.4
  • 7
    • 73649093377 scopus 로고    scopus 로고
    • Molecular evolution of multisubunit RNA polymerases: Structural analysis
    • Lane WJ, Darst SA (2010) Molecular evolution of multisubunit RNA polymerases: Structural analysis. J Mol Biol 395(4):686-704.
    • (2010) J Mol Biol , vol.395 , Issue.4 , pp. 686-704
    • Lane, W.J.1    Darst, S.A.2
  • 10
    • 84891821845 scopus 로고    scopus 로고
    • Interplay between the trigger loop and the F loop during RNA polymerase catalysis
    • Miropolskaya N, et al. (2014) Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Nucleic Acids Res 42(1):544-552.
    • (2014) Nucleic Acids Res , vol.42 , Issue.1 , pp. 544-552
    • Miropolskaya, N.1
  • 11
    • 57249108333 scopus 로고    scopus 로고
    • Bridge helix and trigger loop perturbations generate superactive RNA polymerases
    • Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl RO (2008) Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 7(10):40.
    • (2008) J Biol , vol.7 , Issue.10 , pp. 40
    • Tan, L.1    Wiesler, S.2    Trzaska, D.3    Carney, H.C.4    Weinzierl, R.O.5
  • 12
    • 79954595689 scopus 로고    scopus 로고
    • Activity map of the Escherichia coli RNA polymerase bridge helix
    • Jovanovic M, et al. (2011) Activity map of the Escherichia coli RNA polymerase bridge helix. J Biol Chem 286(16):14469-14479.
    • (2011) J Biol Chem , vol.286 , Issue.16 , pp. 14469-14479
    • Jovanovic, M.1
  • 13
    • 78649527702 scopus 로고    scopus 로고
    • The bridge helix coordinates movements of modules in RNA polymerase
    • Hein PP, Landick R (2010) The bridge helix coordinates movements of modules in RNA polymerase. BMC Biol 8:141.
    • (2010) BMC Biol , vol.8 , pp. 141
    • Hein, P.P.1    Landick, R.2
  • 15
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution
    • Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution. Science 292(5523):1876-1882.
    • (2001) Science , vol.292 , Issue.5523 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 16
    • 10944232674 scopus 로고    scopus 로고
    • Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    • Kettenberger H, Armache K-J, Cramer P (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16(6):955-965.
    • (2004) Mol Cell , vol.16 , Issue.6 , pp. 955-965
    • Kettenberger, H.1    Armache, K.-J.2    Cramer, P.3
  • 17
    • 0034725870 scopus 로고    scopus 로고
    • A structural model of transcription elongation
    • Korzheva N, et al. (2000) A structural model of transcription elongation. Science 289(5479):619-625.
    • (2000) Science , vol.289 , Issue.5479 , pp. 619-625
    • Korzheva, N.1
  • 18
    • 39149093390 scopus 로고    scopus 로고
    • Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement
    • Naji S, Bertero MG, Spitalny P, Cramer P, Thomm M (2008) Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res 36(2):676-687.
    • (2008) Nucleic Acids Res , vol.36 , Issue.2 , pp. 676-687
    • Naji, S.1    Bertero, M.G.2    Spitalny, P.3    Cramer, P.4    Thomm, M.5
  • 19
    • 59749087477 scopus 로고    scopus 로고
    • Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases
    • Thomm M, Reich C, Grünberg S, Naji S (2009) Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Biochem Soc Trans 37(Pt 1):18-22.
    • (2009) Biochem Soc Trans , vol.37 , Issue.1 , pp. 18-22
    • Thomm, M.1    Reich, C.2    Grünberg, S.3    Naji, S.4
  • 20
    • 80052255345 scopus 로고    scopus 로고
    • Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation
    • Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M (2011) Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. J Biol Chem 286(35):30898-30910.
    • (2011) J Biol Chem , vol.286 , Issue.35 , pp. 30898-30910
    • Kireeva, M.L.1    Domecq, C.2    Coulombe, B.3    Burton, Z.F.4    Kashlev, M.5
  • 21
    • 84896803701 scopus 로고    scopus 로고
    • CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase
    • Malinen AM, et al. (2014) CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Nat Commun 5:3408.
    • (2014) Nat Commun , vol.5 , pp. 3408
    • Malinen, A.M.1
  • 24
    • 84887143299 scopus 로고    scopus 로고
    • The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex
    • Zuo Y, Wang Y, Steitz TA (2013) The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 50(3):430-436.
    • (2013) Mol Cell , vol.50 , Issue.3 , pp. 430-436
    • Zuo, Y.1    Wang, Y.2    Steitz, T.A.3
  • 25
    • 84875972911 scopus 로고    scopus 로고
    • X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme
    • Murakami KS (2013) X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J Biol Chem 288(13):9126-9134.
    • (2013) J Biol Chem , vol.288 , Issue.13 , pp. 9126-9134
    • Murakami, K.S.1
  • 26
    • 84889685182 scopus 로고    scopus 로고
    • Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1
    • Bae B, et al. (2013) Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc Natl Acad Sci USA 110(49):19772-19777.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.49 , pp. 19772-19777
    • Bae, B.1
  • 27
    • 84867297989 scopus 로고    scopus 로고
    • Active site opening and closure control translocation of multisubunit RNA polymerase
    • Malinen AM, et al. (2012) Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 40(15):7442-7451.
    • (2012) Nucleic Acids Res , vol.40 , Issue.15 , pp. 7442-7451
    • Malinen, A.M.1
  • 28
    • 34447513771 scopus 로고    scopus 로고
    • Structural basis for substrate loading in bacterial RNA polymerase
    • Vassylyev DG, et al. (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448(7150):163-168.
    • (2007) Nature , vol.448 , Issue.7150 , pp. 163-168
    • Vassylyev, D.G.1
  • 29
    • 33751235874 scopus 로고    scopus 로고
    • Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis
    • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell 127(5):941-954.
    • (2006) Cell , vol.127 , Issue.5 , pp. 941-954
    • Wang, D.1    Bushnell, D.A.2    Westover, K.D.3    Kaplan, C.D.4    Kornberg, R.D.5
  • 30
    • 24044497229 scopus 로고    scopus 로고
    • Structural basis of transcription inhibition by antibiotic streptolydigin
    • Temiakov D, et al. (2005) Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 19(5):655-666.
    • (2005) Mol Cell , vol.19 , Issue.5 , pp. 655-666
    • Temiakov, D.1
  • 31
    • 84880839662 scopus 로고    scopus 로고
    • Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase
    • Nayak D, Voss M, Windgassen T, Mooney RA, Landick R (2013) Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell 50(6):882-893.
    • (2013) Mol Cell , vol.50 , Issue.6 , pp. 882-893
    • Nayak, D.1    Voss, M.2    Windgassen, T.3    Mooney, R.A.4    Landick, R.5
  • 32
    • 34547204502 scopus 로고    scopus 로고
    • A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
    • Toulokhonov I, Zhang J, Palangat M, Landick R (2007) A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27(3):406-419.
    • (2007) Mol Cell , vol.27 , Issue.3 , pp. 406-419
    • Toulokhonov, I.1    Zhang, J.2    Palangat, M.3    Landick, R.4
  • 33
    • 77954655593 scopus 로고    scopus 로고
    • Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis
    • Yuzenkova Y, Zenkin N (2010) Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Proc Natl Acad Sci USA 107(24):10878-10883.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.24 , pp. 10878-10883
    • Yuzenkova, Y.1    Zenkin, N.2
  • 34
    • 0347994909 scopus 로고    scopus 로고
    • Donation of catalytic residues to RNA polymerase active center by transcription factor Gre
    • Sosunova E, et al. (2003) Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc Natl Acad Sci USA 100(26):15469-15474.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.26 , pp. 15469-15474
    • Sosunova, E.1
  • 35
    • 84874770177 scopus 로고    scopus 로고
    • Control of transcriptional fidelity by active center tuning as derived from RNA polymerase endonuclease reaction
    • Sosunova E, Sosunov V, Epshtein V, Nikiforov V, Mustaev A (2013) Control of transcriptional fidelity by active center tuning as derived from RNA polymerase endonuclease reaction. J Biol Chem 288(9):6688-6703.
    • (2013) J Biol Chem , vol.288 , Issue.9 , pp. 6688-6703
    • Sosunova, E.1    Sosunov, V.2    Epshtein, V.3    Nikiforov, V.4    Mustaev, A.5
  • 36
    • 77951973031 scopus 로고    scopus 로고
    • Stepwise mechanism for transcription fidelity
    • Yuzenkova Y, et al. (2010) Stepwise mechanism for transcription fidelity. BMC Biol 8(1):54.
    • (2010) BMC Biol , vol.8 , Issue.1 , pp. 54
    • Yuzenkova, Y.1
  • 37
    • 67449116330 scopus 로고    scopus 로고
    • Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA
    • Sydow JF, et al. (2009) Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 34(6):710-721.
    • (2009) Mol Cell , vol.34 , Issue.6 , pp. 710-721
    • Sydow, J.F.1
  • 38
    • 66349138227 scopus 로고    scopus 로고
    • Structural basis of transcription: Backtracked RNA polymerase II at 3.4 angstrom resolution
    • Wang D, et al. (2009) Structural basis of transcription: Backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324(5931):1203-1206.
    • (2009) Science , vol.324 , Issue.5931 , pp. 1203-1206
    • Wang, D.1
  • 39
    • 84924916862 scopus 로고    scopus 로고
    • The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions
    • Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S (2015) The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. Mol Cell 57(3):408-421.
    • (2015) Mol Cell , vol.57 , Issue.3 , pp. 408-421
    • Sekine, S.1    Murayama, Y.2    Svetlov, V.3    Nudler, E.4    Yokoyama, S.5
  • 40
    • 0021748535 scopus 로고
    • The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity
    • Rozovskaya TA, et al. (1984) The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity. Biochem J 224(2):645-650.
    • (1984) Biochem J , vol.224 , Issue.2 , pp. 645-650
    • Rozovskaya, T.A.1
  • 42
    • 0037543997 scopus 로고    scopus 로고
    • Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase
    • Sosunov V, et al. (2003) Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J 22(9):2234-2244.
    • (2003) EMBO J , vol.22 , Issue.9 , pp. 2234-2244
    • Sosunov, V.1
  • 43
    • 0033578701 scopus 로고    scopus 로고
    • Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution
    • Zhang G, et al. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98(6):811-824.
    • (1999) Cell , vol.98 , Issue.6 , pp. 811-824
    • Zhang, G.1
  • 44
    • 0036753435 scopus 로고    scopus 로고
    • Swing-gate model of nucleotide entry into the RNA polymerase active center
    • Epshtein V, et al. (2002) Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol Cell 10(3):623-634.
    • (2002) Mol Cell , vol.10 , Issue.3 , pp. 623-634
    • Epshtein, V.1
  • 45
    • 23944521364 scopus 로고    scopus 로고
    • Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation
    • Tuske S, et al. (2005) Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell 122(4):541-552.
    • (2005) Cell , vol.122 , Issue.4 , pp. 541-552
    • Tuske, S.1
  • 46
    • 53549085430 scopus 로고    scopus 로고
    • The RNA polymerase "switch region" is a target for inhibitors
    • Mukhopadhyay J, et al. (2008) The RNA polymerase "switch region" is a target for inhibitors. Cell 135(2):295-307.
    • (2008) Cell , vol.135 , Issue.2 , pp. 295-307
    • Mukhopadhyay, J.1
  • 47
    • 58249100113 scopus 로고    scopus 로고
    • Transcription inactivation through local refolding of the RNA polymerase structure
    • Belogurov GA, et al. (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457(7227):332-335.
    • (2009) Nature , vol.457 , Issue.7227 , pp. 332-335
    • Belogurov, G.A.1
  • 48
    • 77958579653 scopus 로고    scopus 로고
    • The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain
    • Weinzierl RO (2010) The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain. BMC Biol 8:134.
    • (2010) BMC Biol , vol.8 , pp. 134
    • Weinzierl, R.O.1
  • 49
    • 84899856701 scopus 로고    scopus 로고
    • Transcription inhibition by the depsipeptide antibiotic salinamide A
    • Degen D, et al. (2014) Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 3:e02451.
    • (2014) eLife , vol.3
    • Degen, D.1
  • 51
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data
    • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data. Methods Enzymol 267:307-326.
    • (1997) Methods Enzymol , vol.267 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 52
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams PD, et al. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213-221.
    • (2010) Acta Crystallogr D Biol Crystallogr , vol.66 , Issue.2 , pp. 213-221
    • Adams, P.D.1
  • 53
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Pt 1
    • Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126-2132.
    • (2004) Acta Crystallogr d Biol Crystallogr , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 54
    • 70349597601 scopus 로고    scopus 로고
    • Electronic Ligand Builder and Optimization Workbench (eLBOW): A tool for ligand coordinate and restraint generation
    • Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) Electronic Ligand Builder and Optimization Workbench (eLBOW): A tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 65(Pt 10):1074-1080.
    • (2009) Acta Crystallogr D Biol Crystallogr , vol.65 , Issue.10 , pp. 1074-1080
    • Moriarty, N.W.1    Grosse-Kunstleve, R.W.2    Adams, P.D.3
  • 55
    • 77951623055 scopus 로고    scopus 로고
    • Super-resolution biomolecular crystallography with low-resolution data
    • Schröder GF, Levitt M, Brunger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464(7292):1218-1222.
    • (2010) Nature , vol.464 , Issue.7292 , pp. 1218-1222
    • Schröder, G.F.1    Levitt, M.2    Brunger, A.T.3
  • 56
    • 3543012707 scopus 로고    scopus 로고
    • Crystallography & NMR system: A new software suite for macromolecular structure determination
    • Brünger AT, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905-921.
    • (1998) Acta Crystallogr D Biol Crystallogr , vol.54 , Issue.5 , pp. 905-921
    • Brünger, A.T.1
  • 57
    • 84856697357 scopus 로고    scopus 로고
    • A grid-enabled web service for low-resolution crystal structure refinement
    • O'Donovan DJ, et al. (2012) A grid-enabled web service for low-resolution crystal structure refinement. Acta Crystallogr D Biol Crystallogr 68(Pt 3):261-267.
    • (2012) Acta Crystallogr D Biol Crystallogr , vol.68 , Issue.3 , pp. 261-267
    • O'Donovan, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.