-
2
-
-
34548638261
-
Structure and mechanism of helicases and nucleic acid translocases
-
doi: 10.1146/annurev.biochem.76.052305.115300
-
Singleton MR, Dillingham MS, Wigley DB, (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76: 23-50. doi:10.1146/annurev.biochem.76.052305.115300. PubMed: 17506634.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 23-50
-
-
Singleton, M.R.1
Dillingham, M.S.2
Wigley, D.B.3
-
3
-
-
42449141601
-
Non-hexameric DNA helicases and translocases: mechanisms and regulation
-
doi: 10.1038/nrm2394
-
Lohman TM, Tomko EJ, Wu CG, (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9: 391-401. doi:10.1038/nrm2394. PubMed: 18414490.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 391-401
-
-
Lohman, T.M.1
Tomko, E.J.2
Wu, C.G.3
-
4
-
-
77952906090
-
Lessons learned from UvrD helicase: mechanism for directional movement
-
doi: 10.1146/annurev.biophys.093008.131415
-
Yang W, (2010) Lessons learned from UvrD helicase: mechanism for directional movement. Annu Rev Biophys 39: 367-385. doi:10.1146/annurev.biophys.093008.131415. PubMed: 20192763.
-
(2010)
Annu Rev Biophys
, vol.39
, pp. 367-385
-
-
Yang, W.1
-
6
-
-
79953187302
-
Superfamily I helicases as modular components of DNA-processing machines
-
doi: 10.1042/BST0390413
-
Dillingham MS, (2011) Superfamily I helicases as modular components of DNA-processing machines. Biochem Soc Trans 39: 413-423. doi:10.1042/BST0390413. PubMed: 21428912.
-
(2011)
Biochem Soc Trans
, vol.39
, pp. 413-423
-
-
Dillingham, M.S.1
-
7
-
-
23944526907
-
Nucleotide excision repair
-
doi: 10.1016/S0079-6603(04)79004-2
-
Reardon JT, Sancar A, (2005) Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 79: 183-235. doi:10.1016/S0079-6603(04)79004-2. PubMed: 16096029.
-
(2005)
Prog Nucleic Acid Res Mol Biol
, vol.79
, pp. 183-235
-
-
Reardon, J.T.1
Sancar, A.2
-
8
-
-
33644626371
-
DNA mismatch repair: functions and mechanisms
-
doi: 10.1021/cr0404794
-
Iyer RR, Pluciennik A, Burdett V, Modrich PL, (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106: 302-323. doi:10.1021/cr0404794. PubMed: 16464007.
-
(2006)
Chem Rev
, vol.106
, pp. 302-323
-
-
Iyer, R.R.1
Pluciennik, A.2
Burdett, V.3
Modrich, P.L.4
-
9
-
-
0019122884
-
Hyper-recombination in uvrD mutants of Escherichia coli K-12
-
doi: 10.1007/BF00267368
-
Arthur HM, Lloyd RG, (1980) Hyper-recombination in uvrD mutants of Escherichia coli K-12. Mol Gen Genet 180: 185-191. doi:10.1007/BF00267368. PubMed: 7003307.
-
(1980)
Mol Gen Genet
, vol.180
, pp. 185-191
-
-
Arthur, H.M.1
Lloyd, R.G.2
-
10
-
-
13244252309
-
UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
-
doi: 10.1038/sj.emboj.7600485
-
Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, et al. (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180-189. doi:10.1038/sj.emboj.7600485. PubMed: 15565170.
-
(2005)
EMBO J
, vol.24
, pp. 180-189
-
-
Veaute, X.1
Delmas, S.2
Selva, M.3
Jeusset, J.4
Le Cam, E.5
-
11
-
-
0033958431
-
UvrD-dependent replication of rolling-circle plasmids in Escherichia coli
-
doi: 10.1046/j.1365-2958.2000.01700.x
-
Bruand C, Ehrlich SD, (2000) UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol Microbiol 35: 204-210. doi:10.1046/j.1365-2958.2000.01700.x. PubMed: 10632890.
-
(2000)
Mol Microbiol
, vol.35
, pp. 204-210
-
-
Bruand, C.1
Ehrlich, S.D.2
-
12
-
-
75649142564
-
The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
-
doi: 10.1038/emboj.2009.308
-
Boubakri H, de Septenville AL, Viguera E, Michel B, (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29: 145-157. doi:10.1038/emboj.2009.308. PubMed: 19851282.
-
(2010)
EMBO J
, vol.29
, pp. 145-157
-
-
Boubakri, H.1
de Septenville, A.L.2
Viguera, E.3
Michel, B.4
-
13
-
-
70449633073
-
Rep provides a second motor at the replisome to promote duplication of protein-bound DNA
-
doi: 10.1016/j.molcel.2009.11.009
-
Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, et al. (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 36: 654-666. doi:10.1016/j.molcel.2009.11.009. PubMed: 19941825.
-
(2009)
Mol Cell
, vol.36
, pp. 654-666
-
-
Guy, C.P.1
Atkinson, J.2
Gupta, M.K.3
Mahdi, A.A.4
Gwynn, E.J.5
-
14
-
-
62649115591
-
UvrD303, a hyperhelicase mutant that antagonizes RecA-dependent SOS expression by a mechanism that depends on its C terminus
-
doi: 10.1128/JB.01415-08
-
Centore RC, Leeson MC, Sandler SJ, (2009) UvrD303, a hyperhelicase mutant that antagonizes RecA-dependent SOS expression by a mechanism that depends on its C terminus. J Bacteriol 191: 1429-1438. doi:10.1128/JB.01415-08. PubMed: 19074381.
-
(2009)
J Bacteriol
, vol.191
, pp. 1429-1438
-
-
Centore, R.C.1
Leeson, M.C.2
Sandler, S.J.3
-
15
-
-
0032473429
-
Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD
-
doi: 10.1093/emboj/17.5.1535
-
Hall MC, Jordan JR, Matson SW, (1998) Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J 17: 1535-1541. doi:10.1093/emboj/17.5.1535. PubMed: 9482750.
-
(1998)
EMBO J
, vol.17
, pp. 1535-1541
-
-
Hall, M.C.1
Jordan, J.R.2
Matson, S.W.3
-
16
-
-
70349881783
-
The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair
-
doi: 10.1016/j.dnarep.2009.08.005
-
Manelyte L, Guy CP, Smith RM, Dillingham MS, McGlynn P, et al. (2009) The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair. DNA Repair (Amst) 8: 1300-1310. doi:10.1016/j.dnarep.2009.08.005. PubMed: 19762288.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 1300-1310
-
-
Manelyte, L.1
Guy, C.P.2
Smith, R.M.3
Dillingham, M.S.4
McGlynn, P.5
-
17
-
-
0032907367
-
A region near the C-terminal end of Escherichia coli DNA helicase II is required for single-stranded DNA binding
-
10198018
-
Mechanic LE, Latta ME, Matson SW, (1999) A region near the C-terminal end of Escherichia coli DNA helicase II is required for single-stranded DNA binding. J Bacteriol 181: 2519-2526. PubMed: 10198018.
-
(1999)
J Bacteriol
, vol.181
, pp. 2519-2526
-
-
Mechanic, L.E.1
Latta, M.E.2
Matson, S.W.3
-
18
-
-
84862763199
-
The conflict between DNA replication and transcription
-
doi: 10.1111/j.1365-2958.2012.08102.x
-
McGlynn P, Savery NJ, Dillingham MS, (2012) The conflict between DNA replication and transcription. Mol Microbiol 85: 12-20. doi:10.1111/j.1365-2958.2012.08102.x. PubMed: 22607628.
-
(2012)
Mol Microbiol
, vol.85
, pp. 12-20
-
-
McGlynn, P.1
Savery, N.J.2
Dillingham, M.S.3
-
19
-
-
80052008241
-
Linking RNA polymerase backtracking to genome instability in E. coli
-
doi: 10.1016/j.cell.2011.07.034
-
Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E, (2011) Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146: 533-543. doi:10.1016/j.cell.2011.07.034. PubMed: 21854980.
-
(2011)
Cell
, vol.146
, pp. 533-543
-
-
Dutta, D.1
Shatalin, K.2
Epshtein, V.3
Gottesman, M.E.4
Nudler, E.5
-
20
-
-
0027507727
-
Characterization of the Staphylococcus aureus chromosomal gene pcrA, identified by mutations affecting plasmid pT181 replication
-
8232203
-
Iordanescu S, (1993) Characterization of the Staphylococcus aureus chromosomal gene pcrA, identified by mutations affecting plasmid pT181 replication. Mol Gen Genet 241: 185-192. PubMed: 8232203.
-
(1993)
Mol Gen Genet
, vol.241
, pp. 185-192
-
-
Iordanescu, S.1
-
21
-
-
0031854048
-
PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication
-
doi: 10.1046/j.1365-2958.1998.00927.x
-
Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, et al. (1998) PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29: 261-273. doi:10.1046/j.1365-2958.1998.00927.x. PubMed: 9701819.
-
(1998)
Mol Microbiol
, vol.29
, pp. 261-273
-
-
Petit, M.A.1
Dervyn, E.2
Rose, M.3
Entian, K.D.4
McGovern, S.5
-
22
-
-
0037124327
-
Essential bacterial helicases that counteract the toxicity of recombination proteins
-
doi: 10.1093/emboj/cdf317
-
Petit MA, Ehrlich D, (2002) Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J 21: 3137-3147. doi:10.1093/emboj/cdf317. PubMed: 12065426.
-
(2002)
EMBO J
, vol.21
, pp. 3137-3147
-
-
Petit, M.A.1
Ehrlich, D.2
-
23
-
-
0036271685
-
The beta-propeller protein YxaL increases the processivity of the PcrA helicase
-
doi: 10.1007/s00438-002-0670-9
-
Noirot-Gros MF, Soultanas P, Wigley DB, Ehrlich SD, Noirot P, et al. (2002) The beta-propeller protein YxaL increases the processivity of the PcrA helicase. Mol Genet Genomics 267: 391-400. doi:10.1007/s00438-002-0670-9. PubMed: 12073041.
-
(2002)
Mol Genet Genomics
, vol.267
, pp. 391-400
-
-
Noirot-Gros, M.F.1
Soultanas, P.2
Wigley, D.B.3
Ehrlich, S.D.4
Noirot, P.5
-
24
-
-
0032524071
-
Escherichia coli ribosomal protein L3 stimulates the helicase activity of the Bacillus stearothermophilus PcrA helicase
-
doi: 10.1093/nar/26.10.2374
-
Soultanas P, Dillingham MS, Wigley DB, (1998) Escherichia coli ribosomal protein L3 stimulates the helicase activity of the Bacillus stearothermophilus PcrA helicase. Nucleic Acids Res 26: 2374-2379. doi:10.1093/nar/26.10.2374. PubMed: 9580688.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 2374-2379
-
-
Soultanas, P.1
Dillingham, M.S.2
Wigley, D.B.3
-
25
-
-
0033559112
-
Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase
-
doi: 10.1093/nar/27.6.1421
-
Soultanas P, Dillingham MS, Papadopoulos F, Phillips SE, Thomas CD, et al. (1999) Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res 27: 1421-1428. doi:10.1093/nar/27.6.1421. PubMed: 10037801.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 1421-1428
-
-
Soultanas, P.1
Dillingham, M.S.2
Papadopoulos, F.3
Phillips, S.E.4
Thomas, C.D.5
-
26
-
-
79960421161
-
The dynamic protein partnership of RNA polymerase in Bacillus subtilis
-
doi: 10.1002/pmic.201000790
-
Delumeau O, Lecointe F, Muntel J, Guillot A, Guédon E, et al. (2011) The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics 11: 2992-3001. doi:10.1002/pmic.201000790. PubMed: 21710567.
-
(2011)
Proteomics
, vol.11
, pp. 2992-3001
-
-
Delumeau, O.1
Lecointe, F.2
Muntel, J.3
Guillot, A.4
Guédon, E.5
-
27
-
-
0037062435
-
An expanded view of bacterial DNA replication
-
doi: 10.1073/pnas.122040799
-
Noirot-Gros MF, Dervyn E, Wu LJ, Mervelet P, Errington J, et al. (2002) An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 99: 8342-8347. doi:10.1073/pnas.122040799. PubMed: 12060778.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 8342-8347
-
-
Noirot-Gros, M.F.1
Dervyn, E.2
Wu, L.J.3
Mervelet, P.4
Errington, J.5
-
28
-
-
66149093054
-
Stimulation of UvrD helicase by UvrAB
-
doi: 10.1074/jbc.M808030200
-
Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, et al. (2009) Stimulation of UvrD helicase by UvrAB. J Biol Chem 284: 9612-9623. doi:10.1074/jbc.M808030200. PubMed: 19208629.
-
(2009)
J Biol Chem
, vol.284
, pp. 9612-9623
-
-
Atkinson, J.1
Guy, C.P.2
Cadman, C.J.3
Moolenaar, G.F.4
Goosen, N.5
-
29
-
-
0031746383
-
PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro
-
doi: 10.1046/j.1365-2958.1998.00882.x
-
Qi Y, Hulett FM, (1998) PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28: 1187-1197. doi:10.1046/j.1365-2958.1998.00882.x. PubMed: 9680208.
-
(1998)
Mol Microbiol
, vol.28
, pp. 1187-1197
-
-
Qi, Y.1
Hulett, F.M.2
-
30
-
-
13844317928
-
RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
-
doi: 10.1093/nar/gki225
-
Smith AJ, Savery NJ, (2005) RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res 33: 755-764. doi:10.1093/nar/gki225. PubMed: 15687384.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 755-764
-
-
Smith, A.J.1
Savery, N.J.2
-
31
-
-
0037590607
-
RecBCD enzyme is a bipolar DNA helicase
-
doi: 10.1038/nature01673
-
Dillingham MS, Spies M, Kowalczykowski SC, (2003) RecBCD enzyme is a bipolar DNA helicase. Nature 423: 893-897. doi:10.1038/nature01673. PubMed: 12815438.
-
(2003)
Nature
, vol.423
, pp. 893-897
-
-
Dillingham, M.S.1
Spies, M.2
Kowalczykowski, S.C.3
-
32
-
-
76749090482
-
The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes
-
doi: 10.1016/j.dnarep.2009.12.016
-
Yeeles JT, Dillingham MS, (2010) The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes. DNA Repair (Amst) 9: 276-285. doi:10.1016/j.dnarep.2009.12.016. PubMed: 20116346.
-
(2010)
DNA Repair (Amst)
, vol.9
, pp. 276-285
-
-
Yeeles, J.T.1
Dillingham, M.S.2
-
33
-
-
35448931532
-
Novel whole-cell antibiotic biosensors for compound discovery
-
doi: 10.1128/AEM.00586-07
-
Urban A, Eckermann S, Fast B, Metzger S, Gehling M, et al. (2007) Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol 73: 6436-6443. doi:10.1128/AEM.00586-07. PubMed: 17720843.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 6436-6443
-
-
Urban, A.1
Eckermann, S.2
Fast, B.3
Metzger, S.4
Gehling, M.5
-
34
-
-
0033515425
-
Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
-
doi: 10.1016/S0092-8674(00)80716-3
-
Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB, (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97: 75-84. doi:10.1016/S0092-8674(00)80716-3. PubMed: 10199404.
-
(1999)
Cell
, vol.97
, pp. 75-84
-
-
Velankar, S.S.1
Soultanas, P.2
Dillingham, M.S.3
Subramanya, H.S.4
Wigley, D.B.5
-
35
-
-
0032102956
-
Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism
-
doi: 10.1093/nar/26.11.2686
-
Bird LE, Brannigan JA, Subramanya HS, Wigley DB, (1998) Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. Nucleic Acids Res 26: 2686-2693. doi:10.1093/nar/26.11.2686. PubMed: 9592155.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 2686-2693
-
-
Bird, L.E.1
Brannigan, J.A.2
Subramanya, H.S.3
Wigley, D.B.4
-
36
-
-
79952322620
-
Interaction of Rep and DnaB on DNA
-
doi: 10.1093/nar/gkq975
-
Atkinson J, Gupta MK, McGlynn P, (2011) Interaction of Rep and DnaB on DNA. Nucleic Acids Res 39: 1351-1359. doi:10.1093/nar/gkq975. PubMed: 20959294.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 1351-1359
-
-
Atkinson, J.1
Gupta, M.K.2
McGlynn, P.3
-
37
-
-
0029856618
-
Crystal structure of a DExx box DNA helicase
-
doi: 10.1038/384379a0
-
Subramanya HS, Bird LE, Brannigan JA, Wigley DB, (1996) Crystal structure of a DExx box DNA helicase. Nature 384: 379-383. doi:10.1038/384379a0. PubMed: 8934527.
-
(1996)
Nature
, vol.384
, pp. 379-383
-
-
Subramanya, H.S.1
Bird, L.E.2
Brannigan, J.A.3
Wigley, D.B.4
-
38
-
-
79960907291
-
Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding
-
doi: 10.1016/j.jmb.2011.06.019
-
Jia H, Korolev S, Niedziela-Majka A, Maluf NK, Gauss GH, et al. (2011) Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 411: 633-648. doi:10.1016/j.jmb.2011.06.019. PubMed: 21704638.
-
(2011)
J Mol Biol
, vol.411
, pp. 633-648
-
-
Jia, H.1
Korolev, S.2
Niedziela-Majka, A.3
Maluf, N.K.4
Gauss, G.H.5
-
39
-
-
33845657428
-
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
-
doi: 10.1016/j.cell.2006.10.049
-
Lee JY, Yang W, (2006) UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127: 1349-1360. doi:10.1016/j.cell.2006.10.049. PubMed: 17190599.
-
(2006)
Cell
, vol.127
, pp. 1349-1360
-
-
Lee, J.Y.1
Yang, W.2
-
40
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
doi: 10.1006/jmbi.1999.3091
-
Jones DT, (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195-202. doi:10.1006/jmbi.1999.3091. PubMed: 10493868.
-
(1999)
J Mol Biol
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
41
-
-
30344438515
-
Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM
-
doi: 10.1002/prot.20737
-
Kim DE, Chivian D, Malmström L, Baker D, (2005) Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 61 (Suppl 7):: 193-200. doi:10.1002/prot.20737. PubMed: 16187362.
-
(2005)
Proteins
, vol.61
, Issue.SUPPL. 7
, pp. 193-200
-
-
Kim, D.E.1
Chivian, D.2
Malmström, L.3
Baker, D.4
-
42
-
-
50849094872
-
Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription
-
doi: 10.1016/j.str.2008.06.012
-
Shaw G, Gan J, Zhou YN, Zhi H, Subburaman P, et al. (2008) Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription. Structure 16: 1417-1427. doi:10.1016/j.str.2008.06.012. PubMed: 18786404.
-
(2008)
Structure
, vol.16
, pp. 1417-1427
-
-
Shaw, G.1
Gan, J.2
Zhou, Y.N.3
Zhi, H.4
Subburaman, P.5
-
43
-
-
32044436258
-
Structural basis for bacterial transcription-coupled DNA repair
-
doi: 10.1016/j.cell.2005.11.045
-
Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, et al. (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124: 507-520. doi:10.1016/j.cell.2005.11.045. PubMed: 16469698.
-
(2006)
Cell
, vol.124
, pp. 507-520
-
-
Deaconescu, A.M.1
Chambers, A.L.2
Smith, A.J.3
Nickels, B.E.4
Hochschild, A.5
-
44
-
-
34347332162
-
The molecular mechanism of transcription-coupled DNA repair
-
doi: 10.1016/j.tim.2007.05.005
-
Savery NJ, (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 15: 326-333. doi:10.1016/j.tim.2007.05.005. PubMed: 17572090.
-
(2007)
Trends Microbiol
, vol.15
, pp. 326-333
-
-
Savery, N.J.1
-
45
-
-
74549191169
-
An allosteric mechanism of Rho-dependent transcription termination
-
doi: 10.1038/nature08669
-
Epshtein V, Dutta D, Wade J, Nudler E, (2010) An allosteric mechanism of Rho-dependent transcription termination. Nature 463: 245-249. doi:10.1038/nature08669. PubMed: 20075920.
-
(2010)
Nature
, vol.463
, pp. 245-249
-
-
Epshtein, V.1
Dutta, D.2
Wade, J.3
Nudler, E.4
-
46
-
-
78650415624
-
Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction
-
doi: 10.1093/nar/gkq692
-
Westblade LF, Campbell EA, Pukhrambam C, Padovan JC, Nickels BE, et al. (2010) Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res 38: 8357-8369. doi:10.1093/nar/gkq692. PubMed: 20702425.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 8357-8369
-
-
Westblade, L.F.1
Campbell, E.A.2
Pukhrambam, C.3
Padovan, J.C.4
Nickels, B.E.5
-
47
-
-
84881092730
-
Structure and function of CarD, an essential mycobacterial transcription factor
-
doi: 10.1073/pnas.1308270110
-
Srivastava DB, Leon K, Osmundson J, Garner AL, Weiss LA, et al. (2013) Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A 110: 12619-12624. doi:10.1073/pnas.1308270110. PubMed: 23858468.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 12619-12624
-
-
Srivastava, D.B.1
Leon, K.2
Osmundson, J.3
Garner, A.L.4
Weiss, L.A.5
-
48
-
-
34848840105
-
Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro
-
doi: 10.1074/jbc.M704399200
-
Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM, (2007) Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem 282: 27076-27085. doi:10.1074/jbc.M704399200. PubMed: 17631491.
-
(2007)
J Biol Chem
, vol.282
, pp. 27076-27085
-
-
Niedziela-Majka, A.1
Chesnik, M.A.2
Tomko, E.J.3
Lohman, T.M.4
-
49
-
-
41849106909
-
Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding
-
doi: 10.1093/nar/gkm1174
-
Yang Y, Dou SX, Ren H, Wang PY, Zhang XD, et al. (2008) Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res 36: 1976-1989. doi:10.1093/nar/gkm1174. PubMed: 18276648.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 1976-1989
-
-
Yang, Y.1
Dou, S.X.2
Ren, H.3
Wang, P.Y.4
Zhang, X.D.5
-
50
-
-
77958595004
-
RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription
-
doi: 10.1093/nar/gkq697
-
Kanagaraj R, Huehn D, MacKellar A, Menigatti M, Zheng L, et al. (2010) RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Nucleic Acids Res 38: 8131-8140. doi:10.1093/nar/gkq697. PubMed: 20705653.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 8131-8140
-
-
Kanagaraj, R.1
Huehn, D.2
MacKellar, A.3
Menigatti, M.4
Zheng, L.5
-
51
-
-
80053026614
-
Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B
-
doi: 10.4161/trns.2.5.17803
-
Ni Z, Olsen JB, Guo X, Zhong G, Ruan ED, et al. (2011) Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription 2: 237-242. doi:10.4161/trns.2.5.17803. PubMed: 22231121.
-
(2011)
Transcription
, vol.2
, pp. 237-242
-
-
Ni, Z.1
Olsen, J.B.2
Guo, X.3
Zhong, G.4
Ruan, E.D.5
-
52
-
-
84871861757
-
Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response
-
doi: 10.1128/MCB.01195-12
-
Yüce O, West SC, (2013) Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 33: 406-417. doi:10.1128/MCB.01195-12. PubMed: 23149945.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 406-417
-
-
Yüce, O.1
West, S.C.2
-
53
-
-
84869026790
-
Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes
-
doi: 10.1016/j.cell.2012.09.041
-
Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, et al. (2012) Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151: 835-846. doi:10.1016/j.cell.2012.09.041. PubMed: 23141540.
-
(2012)
Cell
, vol.151
, pp. 835-846
-
-
Alzu, A.1
Bermejo, R.2
Begnis, M.3
Lucca, C.4
Piccini, D.5
-
54
-
-
79959345878
-
Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
-
doi: 10.1016/j.molcel.2011.04.026
-
Skourti-Stathaki K, Proudfoot NJ, Gromak N, (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42: 794-805. doi:10.1016/j.molcel.2011.04.026. PubMed: 21700224.
-
(2011)
Mol Cell
, vol.42
, pp. 794-805
-
-
Skourti-Stathaki, K.1
Proudfoot, N.J.2
Gromak, N.3
-
55
-
-
74249094928
-
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae
-
doi: 10.1534/genetics.109.110031
-
Finkel JS, Chinchilla K, Ursic D, Culbertson MR, (2010) Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 184: 107-118. doi:10.1534/genetics.109.110031. PubMed: 19884310.
-
(2010)
Genetics
, vol.184
, pp. 107-118
-
-
Finkel, J.S.1
Chinchilla, K.2
Ursic, D.3
Culbertson, M.R.4
-
56
-
-
2342453900
-
Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing
-
doi: 10.1093/nar/gkh561
-
Ursic D, Chinchilla K, Finkel JS, Culbertson MR, (2004) Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 32: 2441-2452. doi:10.1093/nar/gkh561. PubMed: 15121901.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 2441-2452
-
-
Ursic, D.1
Chinchilla, K.2
Finkel, J.S.3
Culbertson, M.R.4
-
57
-
-
78650727733
-
Yeast Sen1 helicase protects the genome from transcription-associated instability
-
doi: 10.1016/j.molcel.2010.12.007
-
Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, et al. (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41: 21-32. doi:10.1016/j.molcel.2010.12.007. PubMed: 21211720.
-
(2011)
Mol Cell
, vol.41
, pp. 21-32
-
-
Mischo, H.E.1
Gómez-González, B.2
Grzechnik, P.3
Rondón, A.G.4
Wei, W.5
-
58
-
-
0030740262
-
Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP
-
doi: 10.1016/S0092-8674(00)80525-5
-
Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G, (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90: 635-647. doi:10.1016/S0092-8674(00)80525-5. PubMed: 9288744.
-
(1997)
Cell
, vol.90
, pp. 635-647
-
-
Korolev, S.1
Hsieh, J.2
Gauss, G.H.3
Lohman, T.M.4
Waksman, G.5
-
59
-
-
2142738304
-
WebLogo: a sequence logo generator
-
doi: 10.1101/gr.849004
-
Crooks GE, Hon G, Chandonia JM, Brenner SE, (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188-1190. doi:10.1101/gr.849004. PubMed: 15173120.
-
(2004)
Genome Res
, vol.14
, pp. 1188-1190
-
-
Crooks, G.E.1
Hon, G.2
Chandonia, J.M.3
Brenner, S.E.4
-
60
-
-
34249857539
-
COBALT: constraint-based alignment tool for multiple protein sequences
-
doi: 10.1093/bioinformatics/btm076
-
Papadopoulos JS, Agarwala R, (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23: 1073-1079. doi:10.1093/bioinformatics/btm076. PubMed: 17332019.
-
(2007)
Bioinformatics
, vol.23
, pp. 1073-1079
-
-
Papadopoulos, J.S.1
Agarwala, R.2
-
61
-
-
79955684513
-
Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation
-
doi: 10.1371/journal.pone.0018910
-
Chen C, Natale DA, Finn RD, Huang H, Zhang J, et al. (2011) Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation. PLOS ONE 6: e18910. doi:10.1371/journal.pone.0018910. PubMed: 21556138.
-
(2011)
PLOS ONE
, vol.6
-
-
Chen, C.1
Natale, D.A.2
Finn, R.D.3
Huang, H.4
Zhang, J.5
-
62
-
-
0028935455
-
SubtiList: a relational database for the Bacillus subtilis genome
-
doi: 10.1099/13500872-141-2-261
-
Moszer I, Glaser P, Danchin A, (1995) SubtiList: a relational database for the Bacillus subtilis genome. Microbiology 141(2):: 261-268. doi:10.1099/13500872-141-2-261. PubMed: 7704253.
-
(1995)
Microbiology
, vol.141
, pp. 261-268
-
-
Moszer, I.1
Glaser, P.2
Danchin, A.3
|