-
1
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-755
-
(2008)
Nature
, vol.451
, pp. 1069-1755
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
2
-
-
10744225487
-
A unified nomenclature for yeast autophagy-related genes
-
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, et al. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5:539-455
-
(2003)
Dev. Cell
, vol.5
, pp. 539-455
-
-
Klionsky, D.J.1
Cregg, J.M.2
Dunn Jr., W.A.3
Emr, S.D.4
Sakai, Y.5
-
3
-
-
38949108670
-
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
-
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-755
-
(2008)
Autophagy
, vol.4
, pp. 151-755
-
-
Klionsky, D.J.1
Abeliovich, H.2
Agostinis, P.3
Agrawal, D.K.4
Aliev, G.5
-
4
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G,Mariño G, Levine B. 2010. Autophagy and the integrated stress response. Mol. Cell 40:280- 933
-
(2010)
Mol. Cell
, vol.40
, pp. 280-933
-
-
Kroemer, G.1
Mariño, G.2
Levine, B.3
-
5
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-488
-
(2010)
Science
, vol.330
, pp. 1344-1488
-
-
Rabinowitz, J.D.1
White, E.2
-
6
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N, Yamamoto A,MatsuiM, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:1101-111
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
7
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032-366
-
(2004)
Nature
, vol.432
, pp. 1032-1366
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
-
8
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425-344
-
(2005)
J. Cell Biol
, vol.169
, pp. 425-344
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
-
9
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, et al. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237-488
-
(2005)
Cell
, vol.120
, pp. 237-488
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
Harris, M.H.4
Li, C.5
-
10
-
-
79953153832
-
Autophagy and tumorigenesis
-
Roy S, Debnath J. 2010. Autophagy and tumorigenesis. Semin. Immunopathol. 32:383-966
-
(2010)
Semin. Immunopathol
, vol.32
, pp. 383-966
-
-
Roy, S.1
Debnath, J.2
-
11
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-411
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-411
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
12
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-911
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1921
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
-
13
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992-20033
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-20033
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
-
14
-
-
77950501014
-
MTOR regulation of autophagy
-
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. 2010. mTOR regulation of autophagy. FEBS Lett. 584:1287-955
-
(2010)
FEBS Lett
, vol.584
, pp. 1287-1955
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
15
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova MM, Shaw RJ. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13:1016-233
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1016-1233
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
16
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, et al. 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29:2570-811
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 2570-2811
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
-
17
-
-
58049204465
-
Autophagy and pattern recognition receptors in innate immunity
-
DelgadoM, Singh S, De Haro S, Master S, PonpuakM, et al. 2009. Autophagy and pattern recognition receptors in innate immunity. Immunol. Rev. 227:189-2022
-
(2009)
Immunol. Rev
, vol.227
, pp. 189-2022
-
-
Delgado, M.1
Singh, S.2
De Haro, S.3
Master, S.4
Ponpuak, M.5
-
18
-
-
57749100267
-
MyD88 and TRIF target Beclin 1 to trigger autophagy in macrophages
-
Shi CS, Kehrl JH. 2008. MyD88 and TRIF target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283:33175-822
-
(2008)
J. Biol. Chem
, vol.283
, pp. 33175-33822
-
-
Shi, C.S.1
Kehrl, J.H.2
-
19
-
-
78651077774
-
Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling
-
ShinDM, Yuk JM, LeeHM, Lee SH, Son JW, et al. 2010. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell. Microbiol. 12:1648-655
-
(2010)
Cell. Microbiol
, vol.12
, pp. 1648-1655
-
-
Shin, D.M.1
Yuk, J.M.2
Lee, H.M.3
Lee, S.H.4
Son, J.W.5
-
20
-
-
80053634368
-
The dynamic nature of autophagy in cancer
-
1999-20100
-
Kimmelman AC. 2011. The dynamic nature of autophagy in cancer. Genes Dev. 25:1999-20100
-
(2011)
Genes Dev
, pp. 25
-
-
Kimmelman, A.C.1
-
21
-
-
77951915586
-
Autophagy during cardiac stress: Joys and frustrations of autophagy
-
Gottlieb RA, Mentzer RMJr. 2010. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu. Rev. Physiol. 72:45-599
-
(2010)
Annu. Rev. Physiol
, vol.72
, pp. 45-599
-
-
Gottlieb, R.A.1
Mentzer Jr., R.M.2
-
22
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion
-
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, et al. 2007. Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ. Res. 100:914-222
-
(2007)
Circ. Res
, vol.100
, pp. 914-222
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
Abdellatif, M.4
Sakoda, H.5
-
23
-
-
34250802633
-
AMPK mediates autophagy during myocardial ischemia in vivo
-
Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J. 2007. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3:405-77
-
(2007)
Autophagy
, vol.3
, pp. 405-477
-
-
Takagi, H.1
Matsui, Y.2
Hirotani, S.3
Sakoda, H.4
Asano, T.5
Sadoshima, J.6
-
24
-
-
33749570745
-
Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes
-
Hamacher-Brady A, Brady NR, Gottlieb RA. 2006. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J. Biol. Chem. 281:29776-877
-
(2006)
J. Biol. Chem
, vol.281
, pp. 29776-29877
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Gottlieb, R.A.3
-
25
-
-
33744536558
-
Urocortin inhibits Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury
-
Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, et al. 2006. Urocortin inhibits Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 40:846-522
-
(2006)
J. Mol. Cell. Cardiol
, vol.40
, pp. 846-522
-
-
Valentim, L.1
Laurence, K.M.2
Townsend, P.A.3
Carroll, C.J.4
Soond, S.5
-
26
-
-
64049086758
-
Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
-
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:385-966
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 385-966
-
-
Matsunaga, K.1
Saitoh, T.2
Tabata, K.3
Omori, H.4
Satoh, T.5
-
27
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468-766
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 468-766
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
-
28
-
-
77955518491
-
Autophagy induced by ischemic preconditioning is essential for cardioprotection
-
Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, et al. 2010. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J. Cardiovasc. Transl. Res. 3:365-733
-
(2010)
J. Cardiovasc. Transl. Res
, vol.3
, pp. 365-733
-
-
Huang, C.1
Yitzhaki, S.2
Perry, C.N.3
Liu, W.4
Giricz, Z.5
-
29
-
-
33744958258
-
Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
-
Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281:11374-833
-
(2006)
J. Biol. Chem
, vol.281
, pp. 11374-11833
-
-
Birmingham, C.L.1
Smith, A.C.2
Bakowski, M.A.3
Yoshimori, T.4
Brumell, J.H.5
-
30
-
-
76249112828
-
Autophagy protects against Sindbis virus infection of the central nervous system
-
Orvedahl A, MacPherson S, Sumpter R Jr, Tall öczy Z, Zou Z, Levine B. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115-277
-
(2010)
Cell Host Microbe
, vol.7
, pp. 115-277
-
-
Orvedahl, A.1
MacPherson, S.2
Sumpter Jr., R.3
Tallöczy, Z.4
Zou, Z.5
Levine, B.6
-
31
-
-
70349652310
-
Listeria monocytogenes ActA- mediated escape from autophagic recognition
-
Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, et al. 2009. Listeria monocytogenes ActA- mediated escape from autophagic recognition. Nat. Cell Biol. 11:1233-400
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 1233-1400
-
-
Yoshikawa, Y.1
Ogawa, M.2
Hain, T.3
Yoshida, M.4
Fukumatsu, M.5
-
32
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. 2005. Escape of intracellular Shigella from autophagy. Science 307:727-311
-
(2005)
Science
, vol.307
, pp. 727-311
-
-
Ogawa, M.1
Yoshimori, T.2
Suzuki, T.3
Sagara, H.4
Mizushima, N.5
Sasakawa, C.6
-
33
-
-
10944253145
-
Autophagy is a defense mechanism inhibitingBCGand Mycobacterium tuberculosis survival in infected macrophages
-
GutierrezMG, Master SS, Singh SB, Taylor GA, ColomboMI, Deretic V. 2004. Autophagy is a defense mechanism inhibitingBCGand Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753- 666
-
(2004)
Cell
, vol.119
, pp. 753-666
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
34
-
-
21344472825
-
Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
-
GutierrezMG,VzquezCL, Munaf DB, Zoppino F, Bern W,et al. 2005. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7:981-933
-
(2005)
Cell. Microbiol
, vol.7
, pp. 981-933
-
-
Gutierrez, M.G.1
Vzquez, C.L.2
Munaf, D.B.3
Zoppino, F.4
Bern, W.5
-
35
-
-
34447643958
-
Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
-
Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135-444
-
(2007)
Immunity
, vol.27
, pp. 135-444
-
-
Xu, Y.1
Jagannath, C.2
Liu, X.D.3
Sharafkhaneh, A.4
Kolodziejska, K.E.5
Eissa, N.T.6
-
36
-
-
41949101594
-
Toll-like receptors control autophagy
-
DelgadoMA, Elmaoued RA, Davis AS, Kyei G, Deretic V. 2008. Toll-like receptors control autophagy. EMBO J. 27:1110-211
-
(2008)
EMBO J
, vol.27
, pp. 1110-1211
-
-
Delgado, M.A.1
Elmaoued, R.A.2
Davis, A.S.3
Kyei, G.4
Deretic, V.5
-
37
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim YG, et al. 2009. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11:55-622
-
(2009)
Nat. Immunol
, vol.11
, pp. 55-622
-
-
Travassos, L.H.1
Carneiro, L.A.M.2
Ramjeet, M.3
Hussey, S.4
Kim, Y.G.5
-
38
-
-
78649242978
-
HMGB1: A novel Beclin 1-binding protein active in autophagy
-
Kang R, Livesey KM, Zeh H, Loze MT, Tang D. 2010. HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209-111
-
(2010)
Autophagy
, vol.6
, pp. 1209-1121
-
-
Kang, R.1
Livesey, K.M.2
Zeh, H.3
Loze, M.T.4
Tang, D.5
-
39
-
-
35348921764
-
The Atg5-Atg12 conjugate associates with innate antiviral immune responses
-
Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, et al. 2007. The Atg5-Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104:14050-555
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 14050-14555
-
-
Jounai, N.1
Takeshita, F.2
Kobiyama, K.3
Sawano, A.4
Miyawaki, A.5
-
40
-
-
67650234499
-
NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets
-
Kirkin V, Lamark T, Johansen T, Dikic I. 2009. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732-333
-
(2009)
Autophagy
, vol.5
, pp. 732-333
-
-
Kirkin, V.1
Lamark, T.2
Johansen, T.3
Dikic, I.4
-
41
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V, Lamark T, Sou YS, Bjk G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-166
-
(2009)
Mol. Cell
, vol.33
, pp. 505-166
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjk, G.4
Nunn, J.L.5
-
42
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-455
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24455
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
-
43
-
-
70350450808
-
The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston TLM, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215- 211
-
(2009)
Nat. Immunol
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.M.1
Ryzhakov, G.2
Bloor, S.3
Von Muhlinen, N.4
Randow, F.5
-
44
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-333
-
(2011)
Science
, vol.333
, pp. 228-333
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
-
45
-
-
2342464290
-
Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system
-
Perrin AJ, Jiang X, Birmingham CL, So NSY, Brumell JH. 2004. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14:806-111
-
(2004)
Curr. Biol
, vol.14
, pp. 806-111
-
-
Perrin, A.J.1
Jiang, X.2
Birmingham, C.L.3
So, N.S.Y.4
Brumell, J.H.5
-
46
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
-
DupontN,Lacas-Gervais S, Bertout J, Paz I,FrecheB, et al. 2009. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6:137-499
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-499
-
-
Dupont, N.1
Lacas-Gervais, S.2
Bertout, J.3
Paz, I.4
Freche, B.5
-
47
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:5909-166
-
(2009)
J. Immunol
, vol.183
, pp. 5909-5176
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
48
-
-
79956147302
-
A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens
-
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, et al. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376-899
-
(2011)
Cell Host Microbe
, vol.9
, pp. 376-899
-
-
Ogawa, M.1
Yoshikawa, Y.2
Kobayashi, T.3
Mimuro, H.4
Fukumatsu, M.5
-
49
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
ThurstonTLM,Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414-188
-
(2012)
Nature
, vol.482
, pp. 414-188
-
-
Thurston, T.L.M.1
Wandel, M.P.2
Von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
50
-
-
52149099867
-
Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance
-
Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. 2008. Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance. Nature 455:396-4000
-
(2008)
Nature
, vol.455
, pp. 396-4000
-
-
Nedjic, J.1
Aichinger, M.2
Emmerich, J.3
Mizushima, N.4
Klein, L.5
-
51
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction
-
Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, et al. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction. Nature 456:264-688
-
(2008)
Nature
, vol.456
, pp. 264-688
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
-
52
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, et al. 2010. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222-300
-
(2010)
Nat. Immunol
, vol.12
, pp. 222-300
-
-
Nakahira, K.1
Haspel, J.A.2
Rathinam, V.A.K.3
Lee, S.J.4
Dolinay, T.5
-
53
-
-
82455210868
-
Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β
-
Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. 2011. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30:4701-111
-
(2011)
EMBO J
, vol.30
, pp. 4701-4121
-
-
Dupont, N.1
Jiang, S.2
Pilli, M.3
Ornatowski, W.4
Bhattacharya, D.5
Deretic, V.6
-
54
-
-
79151470481
-
Autophagy: A broad role in unconventional protein secretion?
-
Manjithaya R, Subramani S. 2011. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol. 21:67-733
-
(2011)
Trends Cell Biol
, vol.21
, pp. 67-733
-
-
Manjithaya, R.1
Subramani, S.2
-
55
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells
-
Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, et al. 2008. A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells. Nature 456:259-633
-
(2008)
Nature
, vol.456
, pp. 259-633
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
Miyoshi, H.4
Loh, J.5
-
56
-
-
70349756909
-
The immunopathogenesis of Crohn's disease: A three-stage model
-
Sewell GW, Marks DJB, Segal AW. 2009. The immunopathogenesis of Crohn's disease: a three-stage model. Curr. Opin. Immunol. 21:506-133
-
(2009)
Curr. Opin. Immunol
, vol.21
, pp. 506-133
-
-
Sewell, G.W.1
Marks, D.J.B.2
Segal, A.W.3
-
57
-
-
80052641505
-
Crohn's disease: NOD2, autophagy and ER stress converge
-
Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A. 2011. Crohn's disease: NOD2, autophagy and ER stress converge. Gut 60:1580-888
-
(2011)
Gut
, vol.60
, pp. 1580-1888
-
-
Fritz, T.1
Niederreiter, L.2
Adolph, T.3
Blumberg, R.S.4
Kaser, A.5
-
58
-
-
33748506089
-
Human IRGM induces autophagy to eliminate intracellular mycobacteria
-
Singh SB, Davis AS, Taylor GA, Deretic V. 2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438-411
-
(2006)
Science
, vol.313
, pp. 1438-1421
-
-
Singh, S.B.1
Davis, A.S.2
Taylor, G.A.3
Deretic, V.4
-
59
-
-
77953904042
-
Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
-
Cadwell K, Patel KK, Maloney NS, Liu TC, Ng ACY, et al. 2010. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135-455
-
(2010)
Cell
, vol.141
, pp. 1135-1455
-
-
Cadwell, K.1
Patel, K.K.2
Maloney, N.S.3
Liu, T.C.4
Ng, A.C.Y.5
-
60
-
-
1142292747
-
Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia
-
Feng CG, Collazo-Custodio CM, EckhausM,Hieny S, Belkaid Y, et al. 2004. Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J. Immunol. 172:1163-688
-
(2004)
J. Immunol
, vol.172
, pp. 1163-1688
-
-
Feng, C.G.1
Collazo-Custodio, C.M.2
Eckhausmhieny, S.3
Belkaid, Y.4
-
61
-
-
38449116497
-
Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47)
-
Henry SC, Daniell X, Indaram M, Whitesides JF, Sempowski GD, et al. 2007. Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47). J. Immunol. 179:6963- 722
-
(2007)
J. Immunol
, vol.179
, pp. 6963-6732
-
-
Henry, S.C.1
Daniell, X.2
Indaram, M.3
Whitesides, J.F.4
Sempowski, G.D.5
-
62
-
-
73849151394
-
NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
-
Cooney R, Baker J, Brain O, Danis B, Pichulik T, et al. 2009. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16:90-977
-
(2009)
Nat. Med
, vol.16
, pp. 90-977
-
-
Cooney, R.1
Baker, J.2
Brain, O.3
Danis, B.4
Pichulik, T.5
-
63
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731-344
-
(2005)
Science
, vol.307
, pp. 731-344
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
Henegariu, O.4
Inohara, N.5
-
64
-
-
13244277880
-
Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1βprocessing
-
Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, et al. 2005. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1βprocessing. Science 307:734-388
-
(2005)
Science
, vol.307
, pp. 734-388
-
-
Maeda, S.1
Hsu, L.C.2
Liu, H.3
Bankston, L.A.4
Iimura, M.5
-
65
-
-
77957682295
-
ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
-
Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. 2010. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139:1630-411
-
(2010)
Gastroenterology
, vol.139
, pp. 1630-1421
-
-
Homer, C.R.1
Richmond, A.L.2
Rebert, N.A.3
Achkar, J.P.4
McDonald, C.5
-
66
-
-
61649114427
-
A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells andCrohn's disease
-
Cadwell K, Patel KK, Komatsu M, Virgin HW IV, Stappenbeck TS. 2009. A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells andCrohn's disease. Autophagy 5:250-522
-
(2009)
Autophagy
, vol.5
, pp. 250-522
-
-
Cadwell, K.1
Patel, K.K.2
Komatsu, M.3
Virgin IV, H.W.4
Stappenbeck, T.S.5
-
67
-
-
77956410115
-
Selective autophagy: Ubiquitin-mediated recognition and beyond
-
Kraft C, Peter M, Hofmann K. 2010. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12:836-411
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 836-411
-
-
Kraft, C.1
Peter, M.2
Hofmann, K.3
-
68
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of β-cell mass in response to high-fat diet
-
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, et al. 2008. Autophagy is important in islet homeostasis and compensatory increase of β-cell mass in response to high-fat diet. CellMetab. 8:325-322
-
(2008)
Cell Metab
, vol.8
, pp. 325-322
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
-
69
-
-
52749094770
-
Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia
-
Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, et al. 2008. Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia. Cell Metab. 8:318-244
-
(2008)
Cell Metab
, vol.8
, pp. 318-244
-
-
Jung, H.S.1
Chung, K.W.2
Won Kim, J.3
Kim, J.4
Komatsu, M.5
-
70
-
-
70449927247
-
Autophagy is required to maintain muscle mass
-
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, et al. 2009. Autophagy is required to maintain muscle mass. Cell Metab. 10:507-155
-
(2009)
Cell Metab
, vol.10
, pp. 507-155
-
-
Masiero, E.1
Agatea, L.2
Mammucari, C.3
Blaauw, B.4
Loro, E.5
-
71
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, et al. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13:619-244
-
(2007)
Nat. Med
, vol.13
, pp. 619-244
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
-
72
-
-
57049094929
-
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
-
Raben N, Hill V, Shea L, Takikita S, Baum R, et al. 2008. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17:3897-9088
-
(2008)
Hum. Mol. Genet
, vol.17
, pp. 3897-9088
-
-
Raben, N.1
Hill, V.2
Shea, L.3
Takikita, S.4
Baum, R.5
-
73
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-899
-
(2006)
Nature
, vol.441
, pp. 885-899
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
-
74
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M,Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-844
-
(2006)
Nature
, vol.441
, pp. 880-844
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
-
75
-
-
0346020435
-
The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress
-
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. 2003. The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727-388
-
(2003)
Cell
, vol.115
, pp. 727-388
-
-
Kawaguchi, Y.1
Kovacs, J.J.2
McLaurin, A.3
Vance, J.M.4
Ito, A.5
Yao, T.P.6
-
76
-
-
77649337122
-
HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
-
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969-800
-
(2010)
EMBO J
, vol.29
, pp. 969-800
-
-
Lee, J.Y.1
Koga, H.2
Kawaguchi, Y.3
Tang, W.4
Wong, E.5
-
77
-
-
79960308079
-
Autophagy deregulation in neurodegenerative diseases-recent advances and future perspectives
-
Cheung ZH, IpNY. 2011. Autophagy deregulation in neurodegenerative diseases - recent advances and future perspectives. J. Neurochem. 118:317-255
-
(2011)
J. Neurochem
, vol.118
, pp. 317-255
-
-
Cheung, Z.H.1
Ip, N.Y.2
-
78
-
-
77956252454
-
Nix is critical to two distinct phases ofmitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
Ding WX,NiHM, Li M, Liao Y, Chen X, et al. 2010. Nix is critical to two distinct phases ofmitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:27879-900
-
(2010)
J. Biol. Chem
, vol.285
, pp. 27879-27900
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
-
79
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V,McEwan DG, Zhang J,Wild P, et al. 2009. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11:45-511
-
(2009)
EMBO Rep
, vol.11
, pp. 45-511
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
-
80
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L, Feng D, Chen G, Chen M, Zheng Q, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177-855
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 177-855
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
-
81
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933-422
-
(2010)
J. Cell Biol
, vol.191
, pp. 933-422
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
82
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726-377
-
(2011)
Hum. Mol. Genet
, vol.20
, pp. 1726-1387
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
-
83
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-211
-
(2010)
J. Cell Biol
, vol.189
, pp. 211-211
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
-
84
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen DF,YouleRJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795-8033
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-8033
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
85
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e10002988
-
(2010)
PLoS Biol
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
-
86
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, et al. 2010. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA 107:378-833
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 378-833
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
Cui, M.4
De Vries, R.L.A.5
-
87
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii SR, Kishi C, Ishihara N, Mizushima N. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:19630-400
-
(2011)
J. Biol. Chem
, vol.286
, pp. 19630-19410
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
88
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893-9066
-
(2011)
Cell
, vol.147
, pp. 893-9066
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
-
89
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467-788
-
(2010)
Cell Metab
, vol.11
, pp. 467-788
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
90
-
-
33744916798
-
Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
-
Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, et al. 2006. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281:14474-855
-
(2006)
J. Biol. Chem
, vol.281
, pp. 14474-14855
-
-
Shibata, M.1
Lu, T.2
Furuya, T.3
Degterev, A.4
Mizushima, N.5
-
91
-
-
0037118259
-
Neuronal α- Synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein
-
Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VMY. 2002. Neuronal α- synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521-333
-
(2002)
Neuron
, vol.34
, pp. 521-333
-
-
Giasson, B.I.1
Duda, J.E.2
Quinn, S.M.3
Zhang, B.4
Trojanowski, J.Q.5
Lee, V.M.Y.6
-
92
-
-
4344659685
-
Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy
-
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292-955
-
(2004)
Science
, vol.305
, pp. 1292-1955
-
-
Cuervo, A.M.1
Stefanis, L.2
Fredenburg, R.3
Lansbury, P.T.4
Sulzer, D.5
-
93
-
-
53049098471
-
Wild type α-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells
-
Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. 2008. Wild type α-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283:23542-566
-
(2008)
J. Biol. Chem
, vol.283
, pp. 23542-23566
-
-
Vogiatzi, T.1
Xilouri, M.2
Vekrellis, K.3
Stefanis, L.4
-
94
-
-
0041589248
-
α-Synuclein is degraded by both autophagy and the proteasome
-
Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. 2003. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278:25009-133
-
(2003)
J. Biol. Chem
, vol.278
, pp. 25009-25133
-
-
Webb, J.L.1
Ravikumar, B.2
Atkins, J.3
Skepper, J.N.4
Rubinsztein, D.C.5
-
95
-
-
79953202481
-
Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy
-
Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, et al. 2011. Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286:10814-244
-
(2011)
J. Biol. Chem
, vol.286
, pp. 10814-10254
-
-
Choubey, V.1
Safiulina, D.2
Vaarmann, A.3
Cagalinec, M.4
Wareski, P.5
-
96
-
-
85027948203
-
Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease
-
Wong ASL, Lee RHK, Cheung AY, Yeung PK, Chung SK, et al. 2011. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat. Cell Biol. 13:568-799
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 568-799
-
-
Wong, A.S.L.1
Lee, R.H.K.2
Cheung, A.Y.3
Yeung, P.K.4
Chung, S.K.5
-
97
-
-
46749144187
-
Genomic investigation of α-synuclein multiplication and parkinsonism
-
Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, et al. 2008. Genomic investigation of α-synuclein multiplication and parkinsonism. Ann. Neurol. 63:743-500
-
(2008)
Ann. Neurol
, vol.63
, pp. 743-500
-
-
Ross, O.A.1
Braithwaite, A.T.2
Skipper, L.M.3
Kachergus, J.4
Hulihan, M.M.5
-
98
-
-
77957189194
-
α-Synuclein impairs macroautophagy: Implications for Parkinson's disease
-
Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, et al. 2010. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190:1023-377
-
(2010)
J. Cell Biol
, vol.190
, pp. 1023-1377
-
-
Winslow, A.R.1
Chen, C.W.2
Corrochano, S.3
Acevedo-Arozena, A.4
Gordon, D.E.5
-
99
-
-
0034681471
-
Dopaminergic loss and inclusion body formation in α-synuclein mice: Implications for neurodegenerative disorders
-
Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, et al. 2000. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265-699
-
(2000)
Science
, vol.287
, pp. 1265-1699
-
-
Masliah, E.1
Rockenstein, E.2
Veinbergs, I.3
Mallory, M.4
Hashimoto, M.5
-
100
-
-
70350550208
-
Beclin1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases
-
Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, et al. 2009. Beclin1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29:13578-888
-
(2009)
J. Neurosci
, vol.29
, pp. 13578-13888
-
-
Spencer, B.1
Potkar, R.2
Trejo, M.3
Rockenstein, E.4
Patrick, C.5
-
101
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-88
-
(1998)
Nature
, vol.392
, pp. 605-688
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
-
102
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente EM, Abou-Sleiman PM, Caputo V,Muqit MMK,Harvey K, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158-600
-
(2004)
Science
, vol.304
, pp. 1158-1600
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.K.4
Harvey, K.5
-
103
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S, Holmstrm KM, Skujat D, Fiesel FC, Rothfuss OC, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119-311
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 119-311
-
-
Geisler, S.1
Holmstrm, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
-
104
-
-
77952326081
-
Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. 2010. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189:671-799
-
(2010)
J. Cell Biol
, vol.189
, pp. 671-799
-
-
Lee, J.Y.1
Nagano, Y.2
Taylor, J.P.3
Lim, K.L.4
Yao, T.P.5
-
105
-
-
57749100375
-
Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts
-
Mortiboys H, Thomas KJ, Koopman WJH, Klaffke S, Abou-Sleiman P, et al. 2008. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann. Neurol. 64:555-655
-
(2008)
Ann. Neurol
, vol.64
, pp. 555-655
-
-
Mortiboys, H.1
Thomas, K.J.2
Koopman, W.J.H.3
Klaffke, S.4
Abou-Sleiman, P.5
-
106
-
-
0025254401
-
Mitochondrial complex i deficiency in Parkinson's disease
-
Schapira A, Cooper J,DexterD,Clark J, Jenner P,Marsden C. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823-277
-
(1990)
J. Neurochem
, vol.54
, pp. 823-277
-
-
Schapira, A.1
Cooper, J.2
Dexter, D.3
Clark, J.4
Jenner, P.5
Marsden, C.6
-
107
-
-
49649097747
-
Loss of PINK1 causesmitochondrial functional defects and increased sensitivity to oxidative stress
-
GautierCA, Kitada T, Shen J. 2008. Loss of PINK1 causesmitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 105:11364-699
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 11364-11699
-
-
Gautier, C.A.1
Kitada, T.2
Shen, J.3
-
108
-
-
2442481789
-
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice
-
Palacino JJ, Sagi D, Goldberg MS,Krauss S,MotzC, et al. 2004. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279:18614-222
-
(2004)
J. Biol. Chem
, vol.279
, pp. 18614-18232
-
-
Palacino, J.J.1
Sagi, D.2
Goldberg, M.S.3
Krauss, S.4
Motz, C.5
-
109
-
-
66749163493
-
Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration
-
Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, et al. 2009. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e57777
-
(2009)
PLoS ONE
, vol.4
-
-
Gispert, S.1
Ricciardi, F.2
Kurz, A.3
Azizov, M.4
Hoepken, H.H.5
-
110
-
-
60849106352
-
Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinaseK-resistantα-synuclein
-
Lu XH, Fleming SM,Meurers B, Ackerson LC,Mortazavi F, et al. 2009. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinaseK-resistantα-synuclein. J. Neurosci. 29:1962-766
-
(2009)
J. Neurosci
, vol.29
, pp. 1962-1776
-
-
Lu, X.H.1
Fleming, S.M.2
Meurers, B.3
Ackerson, L.C.4
Mortazavi, F.5
-
111
-
-
33847048316
-
Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death
-
Zhu J, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. 2007. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170:75-866
-
(2007)
Am. J. Pathol
, vol.170
, pp. 75-866
-
-
Zhu, J.1
Horbinski, C.2
Guo, F.3
Watkins, S.4
Uchiyama, Y.5
Chu, C.T.6
-
112
-
-
77956855813
-
Pathogenic lysosomal depletion in Parkinson's disease
-
Dehay B, Bov J, Rodriuez-Muela N, Perier C, Recasens A, et al. 2010. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30:12535-444
-
(2010)
J. Neurosci
, vol.30
, pp. 12535-12454
-
-
Dehay, B.1
Bov, J.2
Rodriuez-Muela, N.3
Perier, C.4
Recasens, A.5
-
113
-
-
14844303381
-
Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study
-
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, et al. 2005. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64:113-222
-
(2005)
J. Neuropathol. Exp. Neurol
, vol.64
, pp. 113-222
-
-
Nixon, R.A.1
Wegiel, J.2
Kumar, A.3
Yu, W.H.4
Peterhoff, C.5
-
114
-
-
77953913051
-
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
-
Lee JH, Yu WH, Kumar A, Lee S,Mohan PS, et al. 2010. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146-588
-
(2010)
Cell
, vol.141
, pp. 1146-1588
-
-
Lee, J.H.1
Yu, W.H.2
Kumar, A.3
Lee, S.4
Mohan, P.S.5
-
115
-
-
49049096562
-
Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
-
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, et al. 2008. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28:6926-377
-
(2008)
J. Neurosci
, vol.28
, pp. 6926-6387
-
-
Boland, B.1
Kumar, A.2
Lee, S.3
Platt, F.M.4
Wegiel, J.5
-
116
-
-
26444587508
-
Macroautophagy - A novel β-amyloid peptide-generating pathway activated in Alzheimer's disease
-
Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, et al. 2005. Macroautophagy - a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171:87-988
-
(2005)
J. Cell Biol
, vol.171
, pp. 87-988
-
-
Yu, W.H.1
Cuervo, A.M.2
Kumar, A.3
Peterhoff, C.M.4
Schmidt, S.D.5
-
117
-
-
77951227122
-
Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau
-
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. 2010. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau. J. Biol. Chem. 285:13107-200
-
(2010)
J. Biol. Chem
, vol.285
, pp. 13107-13200
-
-
Caccamo, A.1
Majumder, S.2
Richardson, A.3
Strong, R.4
Oddo, S.5
-
118
-
-
77956215864
-
Regulation of amyloid precursor protein processing by the Beclin 1 complex
-
Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T. 2010. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS ONE 5:e111022
-
(2010)
PLoS ONE
, vol.5
-
-
Jaeger, P.A.1
Pickford, F.2
Sun, C.H.3
Lucin, K.M.4
Masliah, E.5
Wyss-Coray, T.6
-
119
-
-
45749114895
-
The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid βaccumulation in mice
-
Pickford F, Masliah E, BritschgiM, Lucin K, Narasimhan R, et al. 2008. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid βaccumulation in mice. J. Clin. Investig. 118:2190-999
-
(2008)
J. Clin. Investig
, vol.118
, pp. 2190-2999
-
-
Pickford, F.1
Masliah, E.2
Britschgi, M.3
Lucin, K.4
Narasimhan, R.5
-
120
-
-
31544454404
-
Rapamycin alleviates toxicity of different aggregate-prone proteins
-
Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, et al. 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15:433-422
-
(2006)
Hum. Mol. Genet
, vol.15
, pp. 433-422
-
-
Berger, Z.1
Ravikumar, B.2
Menzies, F.M.3
Oroz, L.G.4
Underwood, B.R.5
-
121
-
-
70349987102
-
Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing
-
Wang Y, Martinez-Vicente M, Kr ?uger U, Kaushik S, Wong E, et al. 2009. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18:4153-700
-
(2009)
Hum. Mol. Genet
, vol.18
, pp. 4153-4700
-
-
Wang, Y.1
Martinez-Vicente, M.2
Kruger, U.3
Kaushik, S.4
Wong, E.5
-
122
-
-
66349120877
-
Autophagy protects neuron from Aβ-induced cytotoxicity
-
Hung SY, Huang WP, Liou HC, FuWM. 2009. Autophagy protects neuron from Aβ-induced cytotoxicity. Autophagy 5:502-100
-
(2009)
Autophagy
, vol.5
, pp. 502-100
-
-
Hung, S.Y.1
Huang, W.P.2
Liou, H.C.3
Fu, W.M.4
-
123
-
-
77957335213
-
Amyloid-β1-42 induces reactive oxygen species- mediated autophagic cell death in U87 and SH-SY5Y cells
-
Wang H, Ma J, Tan Y,Wang Z, Sheng C, et al. 2010. Amyloid-β1-42 induces reactive oxygen species- mediated autophagic cell death in U87 and SH-SY5Y cells. J. Alzheimer Dis. 21:597-6100
-
(2010)
J. Alzheimer Dis
, vol.21
, pp. 597-6100
-
-
Wang, H.1
Ma, J.2
Tan Ywang, Z.3
Sheng, C.4
-
124
-
-
0034307476
-
Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy
-
Kegel KB, Kim M, Sapp E, McIntyre C, Castaño JG, et al. 2000. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20:7268-788
-
(2000)
J. Neurosci
, vol.20
, pp. 7268-7788
-
-
Kegel, K.B.1
Kim, M.2
Sapp, E.3
McIntyre, C.4
Castaño, J.G.5
-
125
-
-
0036566266
-
Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
-
Ravikumar B, Duden R, Rubinsztein DC. 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107-177
-
(2002)
Hum. Mol. Genet
, vol.11
, pp. 1107-1177
-
-
Ravikumar, B.1
Duden, R.2
Rubinsztein, D.C.3
-
126
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, et al. 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13:567-766
-
(2010)
Nat. Neurosci
, vol.13
, pp. 567-766
-
-
Martinez-Vicente, M.1
Talloczy, Z.2
Wong, E.3
Tang, G.4
Koga, H.5
-
127
-
-
2642586352
-
Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly andmousemodels of Huntington disease
-
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, et al. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly andmousemodels of Huntington disease. Nat. Genet. 36:585-955
-
(2004)
Nat. Genet
, vol.36
, pp. 585-955
-
-
Ravikumar, B.1
Vacher, C.2
Berger, Z.3
Davies, J.E.4
Luo, S.5
-
128
-
-
33745365931
-
Proteolytic and lipolytic responses to starvation
-
Finn PF, Dice JF. 2006. Proteolytic and lipolytic responses to starvation. Nutrition 22:830-444
-
(2006)
Nutrition
, vol.22
, pp. 830-444
-
-
Finn, P.F.1
Dice, J.F.2
-
129
-
-
23044463578
-
Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle
-
Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, et al. 2005. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 19:1715-222
-
(2005)
Genes Dev
, vol.19
, pp. 1715-1232
-
-
Wang, X.1
Blagden, C.2
Fan, J.3
Nowak, S.J.4
Taniuchi, I.5
-
130
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, et al. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6:458-711
-
(2007)
Cell Metab
, vol.6
, pp. 458-711
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
-
131
-
-
41749114288
-
Autophagy: Basic principles and relevance to disease
-
KunduM, Thompson CB. 2008. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol. Mech. Dis. 3:427-555
-
(2008)
Annu. Rev. Pathol. Mech. Dis
, vol.3
, pp. 427-555
-
-
Kundu, M.1
Thompson, C.B.2
-
132
-
-
54849404282
-
Skeletal muscle is a primary target of SOD1G93A-mediated toxicity
-
Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, et al. 2008. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 8:425-366
-
(2008)
Cell Metab
, vol.8
, pp. 425-366
-
-
Dobrowolny, G.1
Aucello, M.2
Rizzuto, E.3
Beccafico, S.4
Mammucari, C.5
-
133
-
-
68249153748
-
Control of autophagy initiation by phosphoinositide-3-phosphatase Jumpy
-
Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, et al. 2009. Control of autophagy initiation by phosphoinositide-3-phosphatase Jumpy. EMBO J. 28:2244-588
-
(2009)
EMBO J
, vol.28
, pp. 2244-2588
-
-
Vergne, I.1
Roberts, E.2
Elmaoued, R.A.3
Tosch, V.4
Delgado, M.A.5
-
134
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, et al. 2009. Autophagy regulates lipid metabolism. Nature 458:1131-355
-
(2009)
Nature
, vol.458
, pp. 1131-1355
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
-
135
-
-
0028306355
-
Ethanol administration alters the proteolytic activity of hepatic lysosomes
-
Donohue TM Jr, McVicker DL, Kharbanda KK, Chaisson ML, Zetterman RK. 1994. Ethanol administration alters the proteolytic activity of hepatic lysosomes. Alcohol. Clin. Exp. Res. 18:536-411
-
(1994)
Alcohol. Clin. Exp. Res
, vol.18
, pp. 536-411
-
-
Donohue Jr., T.M.1
McVicker, D.L.2
Kharbanda, K.K.3
Chaisson, M.L.4
Zetterman, R.K.5
-
136
-
-
0025962110
-
Inhibition of proteolysis in the liver by chronic ethanol feeding
-
Pös A, Hirsimki P. 1991. Inhibition of proteolysis in the liver by chronic ethanol feeding. Biochem. J. 273:149-522
-
(1991)
Biochem. J
, vol.273
, pp. 149-522
-
-
Pös, A.1
Hirsimki, P.2
-
137
-
-
0036144410
-
P62 is a common component of cytoplasmic inclusions in protein aggregation diseases
-
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, et al. 2002. p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160:255-633
-
(2002)
Am. J. Pathol
, vol.160
, pp. 255-633
-
-
Zatloukal, K.1
Stumptner, C.2
Fuchsbichler, A.3
Heid, H.4
Schnoelzer, M.5
-
138
-
-
46249115957
-
Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation
-
Harada M, Hanada S, Toivola DM, Ghori N, Omary MB. 2008. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47:2026-355
-
(2008)
Hepatology
, vol.47
, pp. 2026-2355
-
-
Harada, M.1
Hanada, S.2
Toivola, D.M.3
Ghori, N.4
Omary, M.B.5
-
139
-
-
30144445780
-
AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats
-
Tomita K, Tamiya G, Ando S, Kitamura N, Koizumi H, et al. 2005. AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats. Alcohol. Clin. Exp. Res. 29:240-45SS
-
(2005)
Alcohol. Clin. Exp. Res
, vol.29
-
-
Tomita, K.1
Tamiya, G.2
Ando, S.3
Kitamura, N.4
Koizumi, H.5
-
140
-
-
9644290860
-
The role of AMP-activated protein kinase in the action of ethanol in the liver
-
You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. 2004. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127:1798-8088
-
(2004)
Gastroenterology
, vol.127
, pp. 1798-8088
-
-
You, M.1
Matsumoto, M.2
Pacold, C.M.3
Cho, W.K.4
Crabb, D.W.5
-
141
-
-
71449091240
-
Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia
-
Liu HY, Han J, Cao SY, Hong T, Zhuo D, et al. 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. J. Biol. Chem. 284:31484-922
-
(2009)
J. Biol. Chem
, vol.284
, pp. 31484-31922
-
-
Liu, H.Y.1
Han, J.2
Cao, S.Y.3
Hong, T.4
Zhuo, D.5
-
142
-
-
77952409809
-
Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
-
Wu JJ, Quijano C, Chen E, Liu H, Cao L, et al. 2009. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 1:425-377
-
(2009)
Aging
, vol.1
, pp. 425-377
-
-
Wu, J.J.1
Quijano, C.2
Chen, E.3
Liu, H.4
Cao, L.5
-
143
-
-
67349150186
-
Autophagy in human type 2 diabetes pancreatic β-cells
-
Masini M, BuglianiM, Lupi R, Del Guerra S, Boggi U, et al. 2009. Autophagy in human type 2 diabetes pancreatic β-cells. Diabetologia 52:1083-866
-
(2009)
Diabetologia
, vol.52
, pp. 1083-1866
-
-
Masini, M.1
Bugliani, M.2
Lupi, R.3
Del Guerra, S.4
Boggi, U.5
-
144
-
-
34548368589
-
Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
-
Marsh BJ, Soden C, Alarcn C, Wicksteed BL, Yaekura K, et al. 2007. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol. 21:2255-699
-
(2007)
Mol. Endocrinol
, vol.21
, pp. 2255-2699
-
-
Marsh, B.J.1
Soden, C.2
Alarcn, C.3
Wicksteed, B.L.4
Yaekura, K.5
-
145
-
-
34047179973
-
Ubiquitinated-protein aggregates form in pancreaticβ-cells during diabetes-induced oxidative stress and are regulated by autophagy
-
Kaniuk NA, Kiraly M, Bates H, VranicM, Volchuk A, Brumell JH. 2007. Ubiquitinated-protein aggregates form in pancreaticβ-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930-399
-
(2007)
Diabetes
, vol.56
, pp. 930-399
-
-
Kaniuk, N.A.1
Kiraly, M.2
Bates, H.3
Vranicm Volchuk, A.4
Brumell, J.H.5
-
146
-
-
33845582804
-
Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
-
Li X, ZhangL,Meshinchi S, Dias-LemeC,Raffin D, et al. 2006. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55:2965-733
-
(2006)
Diabetes
, vol.55
, pp. 2965-2743
-
-
Li, X.1
Zhanglmeshinchi, S.2
Dias-Lemecraffin, D.3
-
147
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, et al. 2008. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. CellHostMicrobe 4:458-699
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-699
-
-
Zhao, Z.1
Fux, B.2
Goodwin, M.3
Dunay, I.R.4
Strong, D.5
-
148
-
-
77956525570
-
Coronaviruses hijack the LC3- I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
-
Reggiori F, Monastyrska I, Verheije MH, Cale T, Ulasli M, et al. 2010. Coronaviruses hijack the LC3- I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7:500-88
-
(2010)
Cell Host Microbe
, vol.7
, pp. 500-588
-
-
Reggiori, F.1
Monastyrska, I.2
Verheije, M.H.3
Cale, T.4
Ulasli, M.5
-
149
-
-
77955637249
-
ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death
-
Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, et al. 2010. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142:590-6000
-
(2010)
Cell
, vol.142
, pp. 590-6000
-
-
Radoshevich, L.1
Murrow, L.2
Chen, N.3
Fernandez, E.4
Roy, S.5
-
150
-
-
83455225635
-
The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis
-
Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol. Cell 44:698-7099
-
(2011)
Mol. Cell
, vol.44
, pp. 698-7099
-
-
Rubinstein, A.D.1
Eisenstein, M.2
Ber, Y.3
Bialik, S.4
Kimchi, A.5
|