메뉴 건너뛰기




Volumn 8, Issue , 2013, Pages 105-137

Autophagy as a stress-response and quality-control mechanism: Implications for cell injury and human disease

Author keywords

Inflammation; Lysosome; Macroautophagy; Mitophagy; Myopathy; Neurodegeneration

Indexed keywords

ACTIN RELATED PROTEIN 2-3 COMPLEX; AUTOPHAGY PROTEIN 5; BECLIN 1; BH3 PROTEIN; BRCA1 PROTEIN; GALECTIN 8; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; HYPOXIA INDUCIBLE FACTOR 1; INTERLEUKIN 18; INTERLEUKIN 1BETA; MAMMALIAN TARGET OF RAPAMYCIN; MITOCHONDRIAL DNA; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; OPTINEURIN; PATTERN RECOGNITION RECEPTOR; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN BAX; PROTEIN BCL 2; PROTEIN P53; PUMA PROTEIN; RETINOIC ACID INDUCIBLE PROTEIN I; TOLL LIKE RECEPTOR 1; TOLL LIKE RECEPTOR 2; TOLL LIKE RECEPTOR 3; TOLL LIKE RECEPTOR 4; TOLL LIKE RECEPTOR 5; TOLL LIKE RECEPTOR 6; TOLL LIKE RECEPTOR 7; TOLL LIKE RECEPTOR 8; TOLL LIKE RECEPTOR 9;

EID: 84875892111     PISSN: 15534006     EISSN: 15534014     Source Type: Book Series    
DOI: 10.1146/annurev-pathol-020712-163918     Document Type: Review
Times cited : (446)

References (150)
  • 1
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-755
    • (2008) Nature , vol.451 , pp. 1069-1755
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 3
    • 38949108670 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
    • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-755
    • (2008) Autophagy , vol.4 , pp. 151-755
    • Klionsky, D.J.1    Abeliovich, H.2    Agostinis, P.3    Agrawal, D.K.4    Aliev, G.5
  • 4
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G,Mariño G, Levine B. 2010. Autophagy and the integrated stress response. Mol. Cell 40:280- 933
    • (2010) Mol. Cell , vol.40 , pp. 280-933
    • Kroemer, G.1    Mariño, G.2    Levine, B.3
  • 5
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-488
    • (2010) Science , vol.330 , pp. 1344-1488
    • Rabinowitz, J.D.1    White, E.2
  • 6
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N, Yamamoto A,MatsuiM, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:1101-111
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3    Yoshimori, T.4    Ohsumi, Y.5
  • 7
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032-366
    • (2004) Nature , vol.432 , pp. 1032-1366
    • Kuma, A.1    Hatano, M.2    Matsui, M.3    Yamamoto, A.4    Nakaya, H.5
  • 8
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425-344
    • (2005) J. Cell Biol , vol.169 , pp. 425-344
    • Komatsu, M.1    Waguri, S.2    Ueno, T.3    Iwata, J.4    Murata, S.5
  • 9
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, et al. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237-488
    • (2005) Cell , vol.120 , pp. 237-488
    • Lum, J.J.1    Bauer, D.E.2    Kong, M.3    Harris, M.H.4    Li, C.5
  • 10
    • 79953153832 scopus 로고    scopus 로고
    • Autophagy and tumorigenesis
    • Roy S, Debnath J. 2010. Autophagy and tumorigenesis. Semin. Immunopathol. 32:383-966
    • (2010) Semin. Immunopathol , vol.32 , pp. 383-966
    • Roy, S.1    Debnath, J.2
  • 11
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-411
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-411
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 12
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-911
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1921
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5
  • 13
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992-20033
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-20033
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5
  • 15
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova MM, Shaw RJ. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13:1016-233
    • (2011) Nat. Cell Biol , vol.13 , pp. 1016-1233
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 16
    • 66349121718 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
    • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, et al. 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29:2570-811
    • (2009) Mol. Cell. Biol , vol.29 , pp. 2570-2811
    • Bellot, G.1    Garcia-Medina, R.2    Gounon, P.3    Chiche, J.4    Roux, D.5
  • 17
    • 58049204465 scopus 로고    scopus 로고
    • Autophagy and pattern recognition receptors in innate immunity
    • DelgadoM, Singh S, De Haro S, Master S, PonpuakM, et al. 2009. Autophagy and pattern recognition receptors in innate immunity. Immunol. Rev. 227:189-2022
    • (2009) Immunol. Rev , vol.227 , pp. 189-2022
    • Delgado, M.1    Singh, S.2    De Haro, S.3    Master, S.4    Ponpuak, M.5
  • 18
    • 57749100267 scopus 로고    scopus 로고
    • MyD88 and TRIF target Beclin 1 to trigger autophagy in macrophages
    • Shi CS, Kehrl JH. 2008. MyD88 and TRIF target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283:33175-822
    • (2008) J. Biol. Chem , vol.283 , pp. 33175-33822
    • Shi, C.S.1    Kehrl, J.H.2
  • 19
    • 78651077774 scopus 로고    scopus 로고
    • Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling
    • ShinDM, Yuk JM, LeeHM, Lee SH, Son JW, et al. 2010. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell. Microbiol. 12:1648-655
    • (2010) Cell. Microbiol , vol.12 , pp. 1648-1655
    • Shin, D.M.1    Yuk, J.M.2    Lee, H.M.3    Lee, S.H.4    Son, J.W.5
  • 20
    • 80053634368 scopus 로고    scopus 로고
    • The dynamic nature of autophagy in cancer
    • 1999-20100
    • Kimmelman AC. 2011. The dynamic nature of autophagy in cancer. Genes Dev. 25:1999-20100
    • (2011) Genes Dev , pp. 25
    • Kimmelman, A.C.1
  • 21
    • 77951915586 scopus 로고    scopus 로고
    • Autophagy during cardiac stress: Joys and frustrations of autophagy
    • Gottlieb RA, Mentzer RMJr. 2010. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu. Rev. Physiol. 72:45-599
    • (2010) Annu. Rev. Physiol , vol.72 , pp. 45-599
    • Gottlieb, R.A.1    Mentzer Jr., R.M.2
  • 22
    • 34147168105 scopus 로고    scopus 로고
    • Distinct roles of autophagy in the heart during ischemia and reperfusion
    • Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, et al. 2007. Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ. Res. 100:914-222
    • (2007) Circ. Res , vol.100 , pp. 914-222
    • Matsui, Y.1    Takagi, H.2    Qu, X.3    Abdellatif, M.4    Sakoda, H.5
  • 24
    • 33749570745 scopus 로고    scopus 로고
    • Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes
    • Hamacher-Brady A, Brady NR, Gottlieb RA. 2006. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J. Biol. Chem. 281:29776-877
    • (2006) J. Biol. Chem , vol.281 , pp. 29776-29877
    • Hamacher-Brady, A.1    Brady, N.R.2    Gottlieb, R.A.3
  • 25
    • 33744536558 scopus 로고    scopus 로고
    • Urocortin inhibits Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury
    • Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, et al. 2006. Urocortin inhibits Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 40:846-522
    • (2006) J. Mol. Cell. Cardiol , vol.40 , pp. 846-522
    • Valentim, L.1    Laurence, K.M.2    Townsend, P.A.3    Carroll, C.J.4    Soond, S.5
  • 26
    • 64049086758 scopus 로고    scopus 로고
    • Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:385-966
    • (2009) Nat. Cell Biol , vol.11 , pp. 385-966
    • Matsunaga, K.1    Saitoh, T.2    Tabata, K.3    Omori, H.4    Satoh, T.5
  • 27
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468-766
    • (2009) Nat. Cell Biol , vol.11 , pp. 468-766
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5
  • 28
    • 77955518491 scopus 로고    scopus 로고
    • Autophagy induced by ischemic preconditioning is essential for cardioprotection
    • Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, et al. 2010. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J. Cardiovasc. Transl. Res. 3:365-733
    • (2010) J. Cardiovasc. Transl. Res , vol.3 , pp. 365-733
    • Huang, C.1    Yitzhaki, S.2    Perry, C.N.3    Liu, W.4    Giricz, Z.5
  • 29
    • 33744958258 scopus 로고    scopus 로고
    • Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
    • Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281:11374-833
    • (2006) J. Biol. Chem , vol.281 , pp. 11374-11833
    • Birmingham, C.L.1    Smith, A.C.2    Bakowski, M.A.3    Yoshimori, T.4    Brumell, J.H.5
  • 31
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA- mediated escape from autophagic recognition
    • Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, et al. 2009. Listeria monocytogenes ActA- mediated escape from autophagic recognition. Nat. Cell Biol. 11:1233-400
    • (2009) Nat. Cell Biol , vol.11 , pp. 1233-1400
    • Yoshikawa, Y.1    Ogawa, M.2    Hain, T.3    Yoshida, M.4    Fukumatsu, M.5
  • 33
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibitingBCGand Mycobacterium tuberculosis survival in infected macrophages
    • GutierrezMG, Master SS, Singh SB, Taylor GA, ColomboMI, Deretic V. 2004. Autophagy is a defense mechanism inhibitingBCGand Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753- 666
    • (2004) Cell , vol.119 , pp. 753-666
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 34
    • 21344472825 scopus 로고    scopus 로고
    • Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
    • GutierrezMG,VzquezCL, Munaf DB, Zoppino F, Bern W,et al. 2005. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7:981-933
    • (2005) Cell. Microbiol , vol.7 , pp. 981-933
    • Gutierrez, M.G.1    Vzquez, C.L.2    Munaf, D.B.3    Zoppino, F.4    Bern, W.5
  • 37
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim YG, et al. 2009. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11:55-622
    • (2009) Nat. Immunol , vol.11 , pp. 55-622
    • Travassos, L.H.1    Carneiro, L.A.M.2    Ramjeet, M.3    Hussey, S.4    Kim, Y.G.5
  • 38
    • 78649242978 scopus 로고    scopus 로고
    • HMGB1: A novel Beclin 1-binding protein active in autophagy
    • Kang R, Livesey KM, Zeh H, Loze MT, Tang D. 2010. HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209-111
    • (2010) Autophagy , vol.6 , pp. 1209-1121
    • Kang, R.1    Livesey, K.M.2    Zeh, H.3    Loze, M.T.4    Tang, D.5
  • 40
    • 67650234499 scopus 로고    scopus 로고
    • NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets
    • Kirkin V, Lamark T, Johansen T, Dikic I. 2009. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732-333
    • (2009) Autophagy , vol.5 , pp. 732-333
    • Kirkin, V.1    Lamark, T.2    Johansen, T.3    Dikic, I.4
  • 41
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V, Lamark T, Sou YS, Bjk G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-166
    • (2009) Mol. Cell , vol.33 , pp. 505-166
    • Kirkin, V.1    Lamark, T.2    Sou, Y.S.3    Bjk, G.4    Nunn, J.L.5
  • 42
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-455
    • (2007) J. Biol. Chem , vol.282 , pp. 24131-24455
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3    Brech, A.4    Bruun, J.A.5
  • 43
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston TLM, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215- 211
    • (2009) Nat. Immunol , vol.10 , pp. 1215-1221
    • Thurston, T.L.M.1    Ryzhakov, G.2    Bloor, S.3    Von Muhlinen, N.4    Randow, F.5
  • 44
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-333
    • (2011) Science , vol.333 , pp. 228-333
    • Wild, P.1    Farhan, H.2    McEwan, D.G.3    Wagner, S.4    Rogov, V.V.5
  • 45
    • 2342464290 scopus 로고    scopus 로고
    • Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system
    • Perrin AJ, Jiang X, Birmingham CL, So NSY, Brumell JH. 2004. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14:806-111
    • (2004) Curr. Biol , vol.14 , pp. 806-111
    • Perrin, A.J.1    Jiang, X.2    Birmingham, C.L.3    So, N.S.Y.4    Brumell, J.H.5
  • 46
    • 68349143052 scopus 로고    scopus 로고
    • Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
    • DupontN,Lacas-Gervais S, Bertout J, Paz I,FrecheB, et al. 2009. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6:137-499
    • (2009) Cell Host Microbe , vol.6 , pp. 137-499
    • Dupont, N.1    Lacas-Gervais, S.2    Bertout, J.3    Paz, I.4    Freche, B.5
  • 47
  • 49
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • ThurstonTLM,Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414-188
    • (2012) Nature , vol.482 , pp. 414-188
    • Thurston, T.L.M.1    Wandel, M.P.2    Von Muhlinen, N.3    Foeglein, A.4    Randow, F.5
  • 50
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance
    • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. 2008. Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance. Nature 455:396-4000
    • (2008) Nature , vol.455 , pp. 396-4000
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 51
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction
    • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, et al. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction. Nature 456:264-688
    • (2008) Nature , vol.456 , pp. 264-688
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5
  • 52
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, et al. 2010. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222-300
    • (2010) Nat. Immunol , vol.12 , pp. 222-300
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.K.3    Lee, S.J.4    Dolinay, T.5
  • 53
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β
    • Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. 2011. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30:4701-111
    • (2011) EMBO J , vol.30 , pp. 4701-4121
    • Dupont, N.1    Jiang, S.2    Pilli, M.3    Ornatowski, W.4    Bhattacharya, D.5    Deretic, V.6
  • 54
    • 79151470481 scopus 로고    scopus 로고
    • Autophagy: A broad role in unconventional protein secretion?
    • Manjithaya R, Subramani S. 2011. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol. 21:67-733
    • (2011) Trends Cell Biol , vol.21 , pp. 67-733
    • Manjithaya, R.1    Subramani, S.2
  • 55
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells
    • Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, et al. 2008. A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells. Nature 456:259-633
    • (2008) Nature , vol.456 , pp. 259-633
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3    Miyoshi, H.4    Loh, J.5
  • 56
    • 70349756909 scopus 로고    scopus 로고
    • The immunopathogenesis of Crohn's disease: A three-stage model
    • Sewell GW, Marks DJB, Segal AW. 2009. The immunopathogenesis of Crohn's disease: a three-stage model. Curr. Opin. Immunol. 21:506-133
    • (2009) Curr. Opin. Immunol , vol.21 , pp. 506-133
    • Sewell, G.W.1    Marks, D.J.B.2    Segal, A.W.3
  • 58
    • 33748506089 scopus 로고    scopus 로고
    • Human IRGM induces autophagy to eliminate intracellular mycobacteria
    • Singh SB, Davis AS, Taylor GA, Deretic V. 2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438-411
    • (2006) Science , vol.313 , pp. 1438-1421
    • Singh, S.B.1    Davis, A.S.2    Taylor, G.A.3    Deretic, V.4
  • 59
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
    • Cadwell K, Patel KK, Maloney NS, Liu TC, Ng ACY, et al. 2010. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135-455
    • (2010) Cell , vol.141 , pp. 1135-1455
    • Cadwell, K.1    Patel, K.K.2    Maloney, N.S.3    Liu, T.C.4    Ng, A.C.Y.5
  • 60
    • 1142292747 scopus 로고    scopus 로고
    • Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia
    • Feng CG, Collazo-Custodio CM, EckhausM,Hieny S, Belkaid Y, et al. 2004. Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J. Immunol. 172:1163-688
    • (2004) J. Immunol , vol.172 , pp. 1163-1688
    • Feng, C.G.1    Collazo-Custodio, C.M.2    Eckhausmhieny, S.3    Belkaid, Y.4
  • 61
    • 38449116497 scopus 로고    scopus 로고
    • Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47)
    • Henry SC, Daniell X, Indaram M, Whitesides JF, Sempowski GD, et al. 2007. Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47). J. Immunol. 179:6963- 722
    • (2007) J. Immunol , vol.179 , pp. 6963-6732
    • Henry, S.C.1    Daniell, X.2    Indaram, M.3    Whitesides, J.F.4    Sempowski, G.D.5
  • 62
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, Danis B, Pichulik T, et al. 2009. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16:90-977
    • (2009) Nat. Med , vol.16 , pp. 90-977
    • Cooney, R.1    Baker, J.2    Brain, O.3    Danis, B.4    Pichulik, T.5
  • 63
    • 13244292161 scopus 로고    scopus 로고
    • Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
    • Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731-344
    • (2005) Science , vol.307 , pp. 731-344
    • Kobayashi, K.S.1    Chamaillard, M.2    Ogura, Y.3    Henegariu, O.4    Inohara, N.5
  • 64
    • 13244277880 scopus 로고    scopus 로고
    • Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1βprocessing
    • Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, et al. 2005. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1βprocessing. Science 307:734-388
    • (2005) Science , vol.307 , pp. 734-388
    • Maeda, S.1    Hsu, L.C.2    Liu, H.3    Bankston, L.A.4    Iimura, M.5
  • 65
    • 77957682295 scopus 로고    scopus 로고
    • ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
    • Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. 2010. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139:1630-411
    • (2010) Gastroenterology , vol.139 , pp. 1630-1421
    • Homer, C.R.1    Richmond, A.L.2    Rebert, N.A.3    Achkar, J.P.4    McDonald, C.5
  • 66
    • 61649114427 scopus 로고    scopus 로고
    • A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells andCrohn's disease
    • Cadwell K, Patel KK, Komatsu M, Virgin HW IV, Stappenbeck TS. 2009. A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells andCrohn's disease. Autophagy 5:250-522
    • (2009) Autophagy , vol.5 , pp. 250-522
    • Cadwell, K.1    Patel, K.K.2    Komatsu, M.3    Virgin IV, H.W.4    Stappenbeck, T.S.5
  • 67
    • 77956410115 scopus 로고    scopus 로고
    • Selective autophagy: Ubiquitin-mediated recognition and beyond
    • Kraft C, Peter M, Hofmann K. 2010. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12:836-411
    • (2010) Nat. Cell Biol , vol.12 , pp. 836-411
    • Kraft, C.1    Peter, M.2    Hofmann, K.3
  • 68
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of β-cell mass in response to high-fat diet
    • Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, et al. 2008. Autophagy is important in islet homeostasis and compensatory increase of β-cell mass in response to high-fat diet. CellMetab. 8:325-322
    • (2008) Cell Metab , vol.8 , pp. 325-322
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3    Komatsu, M.4    Ueno, T.5
  • 69
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia
    • Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, et al. 2008. Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia. Cell Metab. 8:318-244
    • (2008) Cell Metab , vol.8 , pp. 318-244
    • Jung, H.S.1    Chung, K.W.2    Won Kim, J.3    Kim, J.4    Komatsu, M.5
  • 71
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, et al. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13:619-244
    • (2007) Nat. Med , vol.13 , pp. 619-244
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3    Higuchi, Y.4    Hikoso, S.5
  • 72
    • 57049094929 scopus 로고    scopus 로고
    • Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
    • Raben N, Hill V, Shea L, Takikita S, Baum R, et al. 2008. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17:3897-9088
    • (2008) Hum. Mol. Genet , vol.17 , pp. 3897-9088
    • Raben, N.1    Hill, V.2    Shea, L.3    Takikita, S.4    Baum, R.5
  • 73
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-899
    • (2006) Nature , vol.441 , pp. 885-899
    • Hara, T.1    Nakamura, K.2    Matsui, M.3    Yamamoto, A.4    Nakahara, Y.5
  • 74
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M,Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-844
    • (2006) Nature , vol.441 , pp. 880-844
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3    Murata, S.4    Iwata, J.5
  • 75
    • 0346020435 scopus 로고    scopus 로고
    • The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress
    • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. 2003. The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727-388
    • (2003) Cell , vol.115 , pp. 727-388
    • Kawaguchi, Y.1    Kovacs, J.J.2    McLaurin, A.3    Vance, J.M.4    Ito, A.5    Yao, T.P.6
  • 76
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969-800
    • (2010) EMBO J , vol.29 , pp. 969-800
    • Lee, J.Y.1    Koga, H.2    Kawaguchi, Y.3    Tang, W.4    Wong, E.5
  • 77
    • 79960308079 scopus 로고    scopus 로고
    • Autophagy deregulation in neurodegenerative diseases-recent advances and future perspectives
    • Cheung ZH, IpNY. 2011. Autophagy deregulation in neurodegenerative diseases - recent advances and future perspectives. J. Neurochem. 118:317-255
    • (2011) J. Neurochem , vol.118 , pp. 317-255
    • Cheung, Z.H.1    Ip, N.Y.2
  • 78
    • 77956252454 scopus 로고    scopus 로고
    • Nix is critical to two distinct phases ofmitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
    • Ding WX,NiHM, Li M, Liao Y, Chen X, et al. 2010. Nix is critical to two distinct phases ofmitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:27879-900
    • (2010) J. Biol. Chem , vol.285 , pp. 27879-27900
    • Ding, W.X.1    Ni, H.M.2    Li, M.3    Liao, Y.4    Chen, X.5
  • 79
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak I, Kirkin V,McEwan DG, Zhang J,Wild P, et al. 2009. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11:45-511
    • (2009) EMBO Rep , vol.11 , pp. 45-511
    • Novak, I.1    Kirkin, V.2    McEwan, D.G.3    Zhang, J.4    Wild, P.5
  • 80
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L, Feng D, Chen G, Chen M, Zheng Q, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177-855
    • (2012) Nat. Cell Biol , vol.14 , pp. 177-855
    • Liu, L.1    Feng, D.2    Chen, G.3    Chen, M.4    Zheng, Q.5
  • 81
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933-422
    • (2010) J. Cell Biol , vol.191 , pp. 933-422
    • Jin, S.M.1    Lazarou, M.2    Wang, C.3    Kane, L.A.4    Narendra, D.P.5    Youle, R.J.6
  • 82
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726-377
    • (2011) Hum. Mol. Genet , vol.20 , pp. 1726-1387
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3    Sweredoski, M.J.4    Kolawa, N.J.5
  • 83
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-211
    • (2010) J. Cell Biol , vol.189 , pp. 211-211
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5
  • 84
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D, Tanaka A, Suen DF,YouleRJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795-8033
    • (2008) J. Cell Biol , vol.183 , pp. 795-8033
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 85
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e10002988
    • (2010) PLoS Biol , vol.8
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3    Suen, D.F.4    Gautier, C.A.5
  • 87
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii SR, Kishi C, Ishihara N, Mizushima N. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:19630-400
    • (2011) J. Biol. Chem , vol.286 , pp. 19630-19410
    • Yoshii, S.R.1    Kishi, C.2    Ishihara, N.3    Mizushima, N.4
  • 88
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893-9066
    • (2011) Cell , vol.147 , pp. 893-9066
    • Wang, X.1    Winter, D.2    Ashrafi, G.3    Schlehe, J.4    Wong, Y.L.5
  • 89
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467-788
    • (2010) Cell Metab , vol.11 , pp. 467-788
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 90
    • 33744916798 scopus 로고    scopus 로고
    • Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
    • Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, et al. 2006. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281:14474-855
    • (2006) J. Biol. Chem , vol.281 , pp. 14474-14855
    • Shibata, M.1    Lu, T.2    Furuya, T.3    Degterev, A.4    Mizushima, N.5
  • 91
    • 0037118259 scopus 로고    scopus 로고
    • Neuronal α- Synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein
    • Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VMY. 2002. Neuronal α- synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521-333
    • (2002) Neuron , vol.34 , pp. 521-333
    • Giasson, B.I.1    Duda, J.E.2    Quinn, S.M.3    Zhang, B.4    Trojanowski, J.Q.5    Lee, V.M.Y.6
  • 92
    • 4344659685 scopus 로고    scopus 로고
    • Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy
    • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292-955
    • (2004) Science , vol.305 , pp. 1292-1955
    • Cuervo, A.M.1    Stefanis, L.2    Fredenburg, R.3    Lansbury, P.T.4    Sulzer, D.5
  • 93
    • 53049098471 scopus 로고    scopus 로고
    • Wild type α-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells
    • Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. 2008. Wild type α-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283:23542-566
    • (2008) J. Biol. Chem , vol.283 , pp. 23542-23566
    • Vogiatzi, T.1    Xilouri, M.2    Vekrellis, K.3    Stefanis, L.4
  • 95
    • 79953202481 scopus 로고    scopus 로고
    • Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy
    • Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, et al. 2011. Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286:10814-244
    • (2011) J. Biol. Chem , vol.286 , pp. 10814-10254
    • Choubey, V.1    Safiulina, D.2    Vaarmann, A.3    Cagalinec, M.4    Wareski, P.5
  • 96
    • 85027948203 scopus 로고    scopus 로고
    • Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease
    • Wong ASL, Lee RHK, Cheung AY, Yeung PK, Chung SK, et al. 2011. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat. Cell Biol. 13:568-799
    • (2011) Nat. Cell Biol , vol.13 , pp. 568-799
    • Wong, A.S.L.1    Lee, R.H.K.2    Cheung, A.Y.3    Yeung, P.K.4    Chung, S.K.5
  • 99
    • 0034681471 scopus 로고    scopus 로고
    • Dopaminergic loss and inclusion body formation in α-synuclein mice: Implications for neurodegenerative disorders
    • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, et al. 2000. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265-699
    • (2000) Science , vol.287 , pp. 1265-1699
    • Masliah, E.1    Rockenstein, E.2    Veinbergs, I.3    Mallory, M.4    Hashimoto, M.5
  • 100
    • 70350550208 scopus 로고    scopus 로고
    • Beclin1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases
    • Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, et al. 2009. Beclin1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29:13578-888
    • (2009) J. Neurosci , vol.29 , pp. 13578-13888
    • Spencer, B.1    Potkar, R.2    Trejo, M.3    Rockenstein, E.4    Patrick, C.5
  • 101
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-88
    • (1998) Nature , vol.392 , pp. 605-688
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3    Matsumine, H.4    Yamamura, Y.5
  • 102
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente EM, Abou-Sleiman PM, Caputo V,Muqit MMK,Harvey K, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158-600
    • (2004) Science , vol.304 , pp. 1158-1600
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3    Muqit, M.M.K.4    Harvey, K.5
  • 104
    • 77952326081 scopus 로고    scopus 로고
    • Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
    • Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. 2010. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189:671-799
    • (2010) J. Cell Biol , vol.189 , pp. 671-799
    • Lee, J.Y.1    Nagano, Y.2    Taylor, J.P.3    Lim, K.L.4    Yao, T.P.5
  • 107
    • 49649097747 scopus 로고    scopus 로고
    • Loss of PINK1 causesmitochondrial functional defects and increased sensitivity to oxidative stress
    • GautierCA, Kitada T, Shen J. 2008. Loss of PINK1 causesmitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 105:11364-699
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 11364-11699
    • Gautier, C.A.1    Kitada, T.2    Shen, J.3
  • 108
    • 2442481789 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative damage in parkin-deficient mice
    • Palacino JJ, Sagi D, Goldberg MS,Krauss S,MotzC, et al. 2004. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279:18614-222
    • (2004) J. Biol. Chem , vol.279 , pp. 18614-18232
    • Palacino, J.J.1    Sagi, D.2    Goldberg, M.S.3    Krauss, S.4    Motz, C.5
  • 109
    • 66749163493 scopus 로고    scopus 로고
    • Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration
    • Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, et al. 2009. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e57777
    • (2009) PLoS ONE , vol.4
    • Gispert, S.1    Ricciardi, F.2    Kurz, A.3    Azizov, M.4    Hoepken, H.H.5
  • 110
    • 60849106352 scopus 로고    scopus 로고
    • Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinaseK-resistantα-synuclein
    • Lu XH, Fleming SM,Meurers B, Ackerson LC,Mortazavi F, et al. 2009. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinaseK-resistantα-synuclein. J. Neurosci. 29:1962-766
    • (2009) J. Neurosci , vol.29 , pp. 1962-1776
    • Lu, X.H.1    Fleming, S.M.2    Meurers, B.3    Ackerson, L.C.4    Mortazavi, F.5
  • 111
    • 33847048316 scopus 로고    scopus 로고
    • Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death
    • Zhu J, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. 2007. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170:75-866
    • (2007) Am. J. Pathol , vol.170 , pp. 75-866
    • Zhu, J.1    Horbinski, C.2    Guo, F.3    Watkins, S.4    Uchiyama, Y.5    Chu, C.T.6
  • 113
    • 14844303381 scopus 로고    scopus 로고
    • Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study
    • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, et al. 2005. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64:113-222
    • (2005) J. Neuropathol. Exp. Neurol , vol.64 , pp. 113-222
    • Nixon, R.A.1    Wegiel, J.2    Kumar, A.3    Yu, W.H.4    Peterhoff, C.5
  • 114
    • 77953913051 scopus 로고    scopus 로고
    • Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
    • Lee JH, Yu WH, Kumar A, Lee S,Mohan PS, et al. 2010. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146-588
    • (2010) Cell , vol.141 , pp. 1146-1588
    • Lee, J.H.1    Yu, W.H.2    Kumar, A.3    Lee, S.4    Mohan, P.S.5
  • 115
    • 49049096562 scopus 로고    scopus 로고
    • Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
    • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, et al. 2008. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28:6926-377
    • (2008) J. Neurosci , vol.28 , pp. 6926-6387
    • Boland, B.1    Kumar, A.2    Lee, S.3    Platt, F.M.4    Wegiel, J.5
  • 116
    • 26444587508 scopus 로고    scopus 로고
    • Macroautophagy - A novel β-amyloid peptide-generating pathway activated in Alzheimer's disease
    • Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, et al. 2005. Macroautophagy - a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171:87-988
    • (2005) J. Cell Biol , vol.171 , pp. 87-988
    • Yu, W.H.1    Cuervo, A.M.2    Kumar, A.3    Peterhoff, C.M.4    Schmidt, S.D.5
  • 117
    • 77951227122 scopus 로고    scopus 로고
    • Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau
    • Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. 2010. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau. J. Biol. Chem. 285:13107-200
    • (2010) J. Biol. Chem , vol.285 , pp. 13107-13200
    • Caccamo, A.1    Majumder, S.2    Richardson, A.3    Strong, R.4    Oddo, S.5
  • 119
    • 45749114895 scopus 로고    scopus 로고
    • The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid βaccumulation in mice
    • Pickford F, Masliah E, BritschgiM, Lucin K, Narasimhan R, et al. 2008. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid βaccumulation in mice. J. Clin. Investig. 118:2190-999
    • (2008) J. Clin. Investig , vol.118 , pp. 2190-2999
    • Pickford, F.1    Masliah, E.2    Britschgi, M.3    Lucin, K.4    Narasimhan, R.5
  • 121
    • 70349987102 scopus 로고    scopus 로고
    • Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing
    • Wang Y, Martinez-Vicente M, Kr ?uger U, Kaushik S, Wong E, et al. 2009. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18:4153-700
    • (2009) Hum. Mol. Genet , vol.18 , pp. 4153-4700
    • Wang, Y.1    Martinez-Vicente, M.2    Kruger, U.3    Kaushik, S.4    Wong, E.5
  • 122
    • 66349120877 scopus 로고    scopus 로고
    • Autophagy protects neuron from Aβ-induced cytotoxicity
    • Hung SY, Huang WP, Liou HC, FuWM. 2009. Autophagy protects neuron from Aβ-induced cytotoxicity. Autophagy 5:502-100
    • (2009) Autophagy , vol.5 , pp. 502-100
    • Hung, S.Y.1    Huang, W.P.2    Liou, H.C.3    Fu, W.M.4
  • 123
    • 77957335213 scopus 로고    scopus 로고
    • Amyloid-β1-42 induces reactive oxygen species- mediated autophagic cell death in U87 and SH-SY5Y cells
    • Wang H, Ma J, Tan Y,Wang Z, Sheng C, et al. 2010. Amyloid-β1-42 induces reactive oxygen species- mediated autophagic cell death in U87 and SH-SY5Y cells. J. Alzheimer Dis. 21:597-6100
    • (2010) J. Alzheimer Dis , vol.21 , pp. 597-6100
    • Wang, H.1    Ma, J.2    Tan Ywang, Z.3    Sheng, C.4
  • 124
    • 0034307476 scopus 로고    scopus 로고
    • Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy
    • Kegel KB, Kim M, Sapp E, McIntyre C, Castaño JG, et al. 2000. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20:7268-788
    • (2000) J. Neurosci , vol.20 , pp. 7268-7788
    • Kegel, K.B.1    Kim, M.2    Sapp, E.3    McIntyre, C.4    Castaño, J.G.5
  • 125
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
    • Ravikumar B, Duden R, Rubinsztein DC. 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107-177
    • (2002) Hum. Mol. Genet , vol.11 , pp. 1107-1177
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 126
    • 77951665859 scopus 로고    scopus 로고
    • Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
    • Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, et al. 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13:567-766
    • (2010) Nat. Neurosci , vol.13 , pp. 567-766
    • Martinez-Vicente, M.1    Talloczy, Z.2    Wong, E.3    Tang, G.4    Koga, H.5
  • 127
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly andmousemodels of Huntington disease
    • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, et al. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly andmousemodels of Huntington disease. Nat. Genet. 36:585-955
    • (2004) Nat. Genet , vol.36 , pp. 585-955
    • Ravikumar, B.1    Vacher, C.2    Berger, Z.3    Davies, J.E.4    Luo, S.5
  • 128
    • 33745365931 scopus 로고    scopus 로고
    • Proteolytic and lipolytic responses to starvation
    • Finn PF, Dice JF. 2006. Proteolytic and lipolytic responses to starvation. Nutrition 22:830-444
    • (2006) Nutrition , vol.22 , pp. 830-444
    • Finn, P.F.1    Dice, J.F.2
  • 129
    • 23044463578 scopus 로고    scopus 로고
    • Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle
    • Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, et al. 2005. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 19:1715-222
    • (2005) Genes Dev , vol.19 , pp. 1715-1232
    • Wang, X.1    Blagden, C.2    Fan, J.3    Nowak, S.J.4    Taniuchi, I.5
  • 131
    • 41749114288 scopus 로고    scopus 로고
    • Autophagy: Basic principles and relevance to disease
    • KunduM, Thompson CB. 2008. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol. Mech. Dis. 3:427-555
    • (2008) Annu. Rev. Pathol. Mech. Dis , vol.3 , pp. 427-555
    • Kundu, M.1    Thompson, C.B.2
  • 133
    • 68249153748 scopus 로고    scopus 로고
    • Control of autophagy initiation by phosphoinositide-3-phosphatase Jumpy
    • Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, et al. 2009. Control of autophagy initiation by phosphoinositide-3-phosphatase Jumpy. EMBO J. 28:2244-588
    • (2009) EMBO J , vol.28 , pp. 2244-2588
    • Vergne, I.1    Roberts, E.2    Elmaoued, R.A.3    Tosch, V.4    Delgado, M.A.5
  • 136
    • 0025962110 scopus 로고
    • Inhibition of proteolysis in the liver by chronic ethanol feeding
    • Pös A, Hirsimki P. 1991. Inhibition of proteolysis in the liver by chronic ethanol feeding. Biochem. J. 273:149-522
    • (1991) Biochem. J , vol.273 , pp. 149-522
    • Pös, A.1    Hirsimki, P.2
  • 137
    • 0036144410 scopus 로고    scopus 로고
    • P62 is a common component of cytoplasmic inclusions in protein aggregation diseases
    • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, et al. 2002. p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160:255-633
    • (2002) Am. J. Pathol , vol.160 , pp. 255-633
    • Zatloukal, K.1    Stumptner, C.2    Fuchsbichler, A.3    Heid, H.4    Schnoelzer, M.5
  • 138
    • 46249115957 scopus 로고    scopus 로고
    • Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation
    • Harada M, Hanada S, Toivola DM, Ghori N, Omary MB. 2008. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47:2026-355
    • (2008) Hepatology , vol.47 , pp. 2026-2355
    • Harada, M.1    Hanada, S.2    Toivola, D.M.3    Ghori, N.4    Omary, M.B.5
  • 139
    • 30144445780 scopus 로고    scopus 로고
    • AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats
    • Tomita K, Tamiya G, Ando S, Kitamura N, Koizumi H, et al. 2005. AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats. Alcohol. Clin. Exp. Res. 29:240-45SS
    • (2005) Alcohol. Clin. Exp. Res , vol.29
    • Tomita, K.1    Tamiya, G.2    Ando, S.3    Kitamura, N.4    Koizumi, H.5
  • 140
    • 9644290860 scopus 로고    scopus 로고
    • The role of AMP-activated protein kinase in the action of ethanol in the liver
    • You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. 2004. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127:1798-8088
    • (2004) Gastroenterology , vol.127 , pp. 1798-8088
    • You, M.1    Matsumoto, M.2    Pacold, C.M.3    Cho, W.K.4    Crabb, D.W.5
  • 141
    • 71449091240 scopus 로고    scopus 로고
    • Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia
    • Liu HY, Han J, Cao SY, Hong T, Zhuo D, et al. 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. J. Biol. Chem. 284:31484-922
    • (2009) J. Biol. Chem , vol.284 , pp. 31484-31922
    • Liu, H.Y.1    Han, J.2    Cao, S.Y.3    Hong, T.4    Zhuo, D.5
  • 142
    • 77952409809 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
    • Wu JJ, Quijano C, Chen E, Liu H, Cao L, et al. 2009. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 1:425-377
    • (2009) Aging , vol.1 , pp. 425-377
    • Wu, J.J.1    Quijano, C.2    Chen, E.3    Liu, H.4    Cao, L.5
  • 144
    • 34548368589 scopus 로고    scopus 로고
    • Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
    • Marsh BJ, Soden C, Alarcn C, Wicksteed BL, Yaekura K, et al. 2007. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol. 21:2255-699
    • (2007) Mol. Endocrinol , vol.21 , pp. 2255-2699
    • Marsh, B.J.1    Soden, C.2    Alarcn, C.3    Wicksteed, B.L.4    Yaekura, K.5
  • 145
    • 34047179973 scopus 로고    scopus 로고
    • Ubiquitinated-protein aggregates form in pancreaticβ-cells during diabetes-induced oxidative stress and are regulated by autophagy
    • Kaniuk NA, Kiraly M, Bates H, VranicM, Volchuk A, Brumell JH. 2007. Ubiquitinated-protein aggregates form in pancreaticβ-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930-399
    • (2007) Diabetes , vol.56 , pp. 930-399
    • Kaniuk, N.A.1    Kiraly, M.2    Bates, H.3    Vranicm Volchuk, A.4    Brumell, J.H.5
  • 146
    • 33845582804 scopus 로고    scopus 로고
    • Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
    • Li X, ZhangL,Meshinchi S, Dias-LemeC,Raffin D, et al. 2006. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55:2965-733
    • (2006) Diabetes , vol.55 , pp. 2965-2743
    • Li, X.1    Zhanglmeshinchi, S.2    Dias-Lemecraffin, D.3
  • 147
    • 55249109400 scopus 로고    scopus 로고
    • Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
    • Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, et al. 2008. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. CellHostMicrobe 4:458-699
    • (2008) Cell Host Microbe , vol.4 , pp. 458-699
    • Zhao, Z.1    Fux, B.2    Goodwin, M.3    Dunay, I.R.4    Strong, D.5
  • 148
    • 77956525570 scopus 로고    scopus 로고
    • Coronaviruses hijack the LC3- I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
    • Reggiori F, Monastyrska I, Verheije MH, Cale T, Ulasli M, et al. 2010. Coronaviruses hijack the LC3- I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7:500-88
    • (2010) Cell Host Microbe , vol.7 , pp. 500-588
    • Reggiori, F.1    Monastyrska, I.2    Verheije, M.H.3    Cale, T.4    Ulasli, M.5
  • 149
    • 77955637249 scopus 로고    scopus 로고
    • ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death
    • Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, et al. 2010. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142:590-6000
    • (2010) Cell , vol.142 , pp. 590-6000
    • Radoshevich, L.1    Murrow, L.2    Chen, N.3    Fernandez, E.4    Roy, S.5
  • 150
    • 83455225635 scopus 로고    scopus 로고
    • The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis
    • Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol. Cell 44:698-7099
    • (2011) Mol. Cell , vol.44 , pp. 698-7099
    • Rubinstein, A.D.1    Eisenstein, M.2    Ber, Y.3    Bialik, S.4    Kimchi, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.