메뉴 건너뛰기




Volumn 25, Issue 12, 2014, Pages 620-627

Role of islet β cell autophagy in the pathogenesis of diabetes

Author keywords

Autophagy; ER stress; Islet amyloid; Obesity; cell

Indexed keywords

AMYLIN; AMYLOID PROTEIN; EXENDIN 4; LIPID; LIRAGLUTIDE; METFORMIN; RAPAMYCIN; ROSIGLITAZONE;

EID: 84921458749     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.08.005     Document Type: Review
Times cited : (79)

References (98)
  • 1
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 2
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-7416.
    • (2011) Cell , vol.147 , pp. 728-7416
    • Mizushima, N.1    Komatsu, M.2
  • 3
    • 0014083718 scopus 로고
    • Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes
    • Deter R.L., de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 1967, 33:437-449.
    • (1967) J. Cell Biol. , vol.33 , pp. 437-449
    • Deter, R.L.1    de Duve, C.2
  • 4
    • 0017816161 scopus 로고
    • Inhibition by insulin of the formation of autophagic vacuoles in rat liver
    • Pfeifer U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. J. Cell Biol. 1978, 78:152-167.
    • (1978) J. Cell Biol. , vol.78 , pp. 152-167
    • Pfeifer, U.1
  • 5
    • 27544500981 scopus 로고    scopus 로고
    • Growing roles for the mTOR pathway
    • Sarbassov D.D., et al. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005, 17:596-603.
    • (2005) Curr. Opin. Cell Biol. , vol.17 , pp. 596-603
    • Sarbassov, D.D.1
  • 6
    • 2442645184 scopus 로고    scopus 로고
    • Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha
    • Chang I., et al. Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha. J. Immunol. 2004, 172:7008-7014.
    • (2004) J. Immunol. , vol.172 , pp. 7008-7014
    • Chang, I.1
  • 7
    • 0033540037 scopus 로고    scopus 로고
    • Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
    • Maechler P., Wollheim C.B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 1999, 402:685-689.
    • (1999) Nature , vol.402 , pp. 685-689
    • Maechler, P.1    Wollheim, C.B.2
  • 8
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan U., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306:457-461.
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1
  • 9
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: possible role in insulin resistance
    • Petersen K.F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003, 300:1140-1142.
    • (2003) Science , vol.300 , pp. 1140-1142
    • Petersen, K.F.1
  • 10
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi G., Schwarz T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013, 20:31-42.
    • (2013) Cell Death Differ. , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 11
    • 34248581851 scopus 로고    scopus 로고
    • ER-phagy: selective autophagy of the endoplasmic reticulum
    • Bernales S., et al. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 2007, 3:285-287.
    • (2007) Autophagy , vol.3 , pp. 285-287
    • Bernales, S.1
  • 12
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 2010, 22:132-139.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 13
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • Di Bartolomeo S., et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 2010, 191:155-168.
    • (2010) J. Cell Biol. , vol.191 , pp. 155-168
    • Di Bartolomeo, S.1
  • 14
    • 64049086758 scopus 로고    scopus 로고
    • Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga K., et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11:385-396.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 385-396
    • Matsunaga, K.1
  • 15
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 16
    • 77950462712 scopus 로고    scopus 로고
    • Where do they come from? Insights from autophagosome formation
    • Hamasaki M., Yoshimori T. Where do they come from? Insights from autophagosome formation. FEBS Lett. 2010, 584:1296-1301.
    • (2010) FEBS Lett. , vol.584 , pp. 1296-1301
    • Hamasaki, M.1    Yoshimori, T.2
  • 17
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 18
    • 0000730374 scopus 로고
    • Cytoplasmic components in hepatic cell lysosomes
    • Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 1962, 12:198-202.
    • (1962) J. Cell Biol. , vol.12 , pp. 198-202
    • Ashford, T.P.1    Porter, K.R.2
  • 19
    • 34548368589 scopus 로고    scopus 로고
    • Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells
    • Marsh B.J., et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol. Endocrinol. 2007, 21:2255-2269.
    • (2007) Mol. Endocrinol. , vol.21 , pp. 2255-2269
    • Marsh, B.J.1
  • 20
    • 0021335764 scopus 로고
    • Insulin, not C-peptide, is present in crinophagic bodies of the pancreatic β-cell
    • Orci L., et al. Insulin, not C-peptide, is present in crinophagic bodies of the pancreatic β-cell. J. Cell Biol. 1984, 98:222-228.
    • (1984) J. Cell Biol. , vol.98 , pp. 222-228
    • Orci, L.1
  • 21
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27:433-446.
    • (2008) EMBO J. , vol.27 , pp. 433-446
    • Twig, G.1
  • 22
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008, 8:325-332.
    • (2008) Cell Metab. , vol.8 , pp. 325-332
    • Ebato, C.1
  • 23
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia
    • Jung H.S., et al. Loss of autophagy diminishes pancreatic β-cell mass and function with resultant hyperglycemia. Cell Metab. 2008, 8:318-324.
    • (2008) Cell Metab. , vol.8 , pp. 318-324
    • Jung, H.S.1
  • 24
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1
  • 25
    • 84888224672 scopus 로고    scopus 로고
    • Exendin-4 improves β-cell function in autophagy-deficient β-cells
    • Abe H., et al. Exendin-4 improves β-cell function in autophagy-deficient β-cells. Endocrinology 2013, 154:4512-4524.
    • (2013) Endocrinology , vol.154 , pp. 4512-4524
    • Abe, H.1
  • 26
    • 84875301262 scopus 로고    scopus 로고
    • Liraglutide prevents high glucose level induced insulinoma cells apoptosis by targeting autophagy
    • Chen Z-F., et al. Liraglutide prevents high glucose level induced insulinoma cells apoptosis by targeting autophagy. Chin. Med. J. (Engl.) 2013, 126:937-941.
    • (2013) Chin. Med. J. (Engl.) , vol.126 , pp. 937-941
    • Chen, Z.-F.1
  • 27
    • 33750448469 scopus 로고    scopus 로고
    • GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress
    • Yusta B., et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006, 4:391-406.
    • (2006) Cell Metab. , vol.4 , pp. 391-406
    • Yusta, B.1
  • 28
    • 84872055241 scopus 로고    scopus 로고
    • A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity
    • Noyan-Ashraf M.H., et al. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 2013, 127:74-85.
    • (2013) Circulation , vol.127 , pp. 74-85
    • Noyan-Ashraf, M.H.1
  • 29
    • 80053001967 scopus 로고    scopus 로고
    • GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy
    • Sharma S., et al. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLOS ONE 2011, 6:e25269.
    • (2011) PLOS ONE , vol.6 , pp. e25269
    • Sharma, S.1
  • 30
    • 84899489684 scopus 로고    scopus 로고
    • G protein-coupled receptors and the regulation of autophagy
    • Wauson E.M., et al. G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol. Metab. 2014, 25:274-282.
    • (2014) Trends Endocrinol. Metab. , vol.25 , pp. 274-282
    • Wauson, E.M.1
  • 31
    • 34047179973 scopus 로고    scopus 로고
    • Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy
    • Kaniuk N.A., et al. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 2007, 56:930-939.
    • (2007) Diabetes , vol.56 , pp. 930-939
    • Kaniuk, N.A.1
  • 32
    • 67649450485 scopus 로고    scopus 로고
    • Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells
    • Back S.H., et al. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 2009, 10:13-26.
    • (2009) Cell Metab. , vol.10 , pp. 13-26
    • Back, S.H.1
  • 33
    • 22544444513 scopus 로고    scopus 로고
    • Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis
    • Scheuner D., et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 2005, 11:757-764.
    • (2005) Nat. Med. , vol.11 , pp. 757-764
    • Scheuner, D.1
  • 34
    • 84897986050 scopus 로고    scopus 로고
    • Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR
    • Houck S.A., et al. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol. Cell 2014, 54:166-179.
    • (2014) Mol. Cell , vol.54 , pp. 166-179
    • Houck, S.A.1
  • 35
    • 84856764175 scopus 로고    scopus 로고
    • Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
    • Quan W., et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 2012, 55:392-403.
    • (2012) Diabetologia , vol.55 , pp. 392-403
    • Quan, W.1
  • 36
    • 56349087407 scopus 로고    scopus 로고
    • Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions
    • Merksamer P.I., et al. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 2008, 135:933-947.
    • (2008) Cell , vol.135 , pp. 933-947
    • Merksamer, P.I.1
  • 37
    • 0027314535 scopus 로고
    • 2+ depletion
    • 2+ depletion. J. Biol. Chem. 1993, 268:12003-12009.
    • (1993) J. Biol. Chem. , vol.268 , pp. 12003-12009
    • Li, W.W.1
  • 38
    • 49649084031 scopus 로고    scopus 로고
    • Initiation and execution of lipotoxic ER stress in pancreatic beta-cells
    • Cunha D.A., et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 2008, 121:2308-2318.
    • (2008) J. Cell Sci. , vol.121 , pp. 2308-2318
    • Cunha, D.A.1
  • 39
    • 58149463600 scopus 로고    scopus 로고
    • Protective role of autophagy in palmitate-induced INS-1 beta cell death
    • Choi S.E., et al. Protective role of autophagy in palmitate-induced INS-1 beta cell death. Endocrinology 2009, 150:126-134.
    • (2009) Endocrinology , vol.150 , pp. 126-134
    • Choi, S.E.1
  • 40
    • 84875416620 scopus 로고    scopus 로고
    • Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes
    • Bachar-Wikstrom E., et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013, 62:1227-1237.
    • (2013) Diabetes , vol.62 , pp. 1227-1237
    • Bachar-Wikstrom, E.1
  • 41
    • 84870873590 scopus 로고    scopus 로고
    • Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death
    • Bartolome A., et al. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy 2012, 8:1757-1768.
    • (2012) Autophagy , vol.8 , pp. 1757-1768
    • Bartolome, A.1
  • 42
    • 84896731193 scopus 로고    scopus 로고
    • Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy
    • Jiang Y., et al. Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int. J. Biochem. Cell Biol. 2014, 10:268-277.
    • (2014) Int. J. Biochem. Cell Biol. , vol.10 , pp. 268-277
    • Jiang, Y.1
  • 43
    • 84881122467 scopus 로고    scopus 로고
    • Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5'-AMP-activated protein kinase modulation
    • Wu J., et al. Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5'-AMP-activated protein kinase modulation. Endocrine 2013, 44:87-98.
    • (2013) Endocrine , vol.44 , pp. 87-98
    • Wu, J.1
  • 44
    • 74349115340 scopus 로고    scopus 로고
    • Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic β-cells from high glucose
    • Han D., et al. Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic β-cells from high glucose. Biochem. J. 2010, 425:541-551.
    • (2010) Biochem. J. , vol.425 , pp. 541-551
    • Han, D.1
  • 45
    • 70350343033 scopus 로고    scopus 로고
    • Autophagy regulates pancreatic beta cell death in response to Pdx1 deficiency and nutrient deprivation
    • Fujimoto K., et al. Autophagy regulates pancreatic beta cell death in response to Pdx1 deficiency and nutrient deprivation. J. Biol. Chem. 2009, 284:27664-27673.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27664-27673
    • Fujimoto, K.1
  • 46
    • 84856431622 scopus 로고    scopus 로고
    • The end of autophagic cell death?
    • Shen S., et al. The end of autophagic cell death?. Autophagy 2012, 8:1-3.
    • (2012) Autophagy , vol.8 , pp. 1-3
    • Shen, S.1
  • 47
    • 84855975333 scopus 로고    scopus 로고
    • Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo
    • Tenemura M., et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am. J. Transplant. 2012, 12:102-114.
    • (2012) Am. J. Transplant. , vol.12 , pp. 102-114
    • Tenemura, M.1
  • 48
    • 67349150186 scopus 로고    scopus 로고
    • Autophagy in human type 2 diabetes pancreatic beta cells
    • Masini M., et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009, 52:1083-1086.
    • (2009) Diabetologia , vol.52 , pp. 1083-1086
    • Masini, M.1
  • 49
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga H., et al. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010, 24:3052-3065.
    • (2010) FASEB J. , vol.24 , pp. 3052-3065
    • Koga, H.1
  • 50
    • 63349104160 scopus 로고    scopus 로고
    • The MAP1-LC3 conjugation system is involved in lipid droplet formation
    • Shibata M., et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 2009, 382:419-423.
    • (2009) Biochem. Biophys. Res. Commun. , vol.382 , pp. 419-423
    • Shibata, M.1
  • 51
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 52
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 53
    • 82755195229 scopus 로고    scopus 로고
    • Fatty acids suppress autophagic turnover in β-cells
    • Las G., et al. Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem. 2011, 286:42534-42544.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42534-42544
    • Las, G.1
  • 54
    • 77958484950 scopus 로고    scopus 로고
    • Free fatty acids stimulates autophagy in pancreatic β-cells via JNK pathway
    • Komiya K., et al. Free fatty acids stimulates autophagy in pancreatic β-cells via JNK pathway. Biochem. Biophys. Res. Com. 2010, 401:561-567.
    • (2010) Biochem. Biophys. Res. Com. , vol.401 , pp. 561-567
    • Komiya, K.1
  • 55
    • 33646204392 scopus 로고    scopus 로고
    • Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size
    • Hosokawa N., et al. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 2006, 580:2623-2629.
    • (2006) FEBS Lett. , vol.580 , pp. 2623-2629
    • Hosokawa, N.1
  • 56
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N., et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 2004, 15:1101-1111.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1
  • 57
    • 84923331724 scopus 로고    scopus 로고
    • Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes
    • (in press)
    • Lim Y-M., et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 2014, (in press).
    • (2014) Nat. Commun.
    • Lim, Y.-M.1
  • 58
    • 84863181426 scopus 로고    scopus 로고
    • The role of autophagy in endoplasmic reticulum stress-induced pancreatic β-cell death
    • Yin J-J., et al. The role of autophagy in endoplasmic reticulum stress-induced pancreatic β-cell death. Autophagy 2012, 8:158-164.
    • (2012) Autophagy , vol.8 , pp. 158-164
    • Yin, J.-J.1
  • 59
    • 79954535899 scopus 로고    scopus 로고
    • Islet amyloid polypeptide, islet amyloid, and diabetes mellitus
    • Westermark P., et al. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011, 91:795-826.
    • (2011) Physiol. Rev. , vol.91 , pp. 795-826
    • Westermark, P.1
  • 60
    • 0032969276 scopus 로고    scopus 로고
    • Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes
    • Kahn S.E., et al. Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 1999, 48:241-253.
    • (1999) Diabetes , vol.48 , pp. 241-253
    • Kahn, S.E.1
  • 61
    • 33750363298 scopus 로고    scopus 로고
    • The roles of intracellular protein-degradation pathways in neurodegeneration
    • Rubinsztein D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006, 443:780-786.
    • (2006) Nature , vol.443 , pp. 780-786
    • Rubinsztein, D.C.1
  • 62
    • 84905492806 scopus 로고    scopus 로고
    • Amyloidogenic peptide oligomer accumulation in autophagy-deficient β-cells leads to diabetes
    • Kim J., et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β-cells leads to diabetes. J. Clin. Invest. 2014, 125:3311-3324.
    • (2014) J. Clin. Invest. , vol.125 , pp. 3311-3324
    • Kim, J.1
  • 63
    • 84905460026 scopus 로고    scopus 로고
    • Autophagy defends pancreatic β-cells from human islet amyloid polypeptide-induced toxicity
    • Rivera J.F., et al. Autophagy defends pancreatic β-cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 2014, 124:3489-3500.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3489-3500
    • Rivera, J.F.1
  • 64
    • 43549100675 scopus 로고    scopus 로고
    • Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis
    • Haataja L., et al. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 2008, 29:303-316.
    • (2008) Endocr. Rev. , vol.29 , pp. 303-316
    • Haataja, L.1
  • 65
    • 79951672803 scopus 로고    scopus 로고
    • Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-postivie cytoplasmic inclusions
    • Rivera J.F., et al. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-postivie cytoplasmic inclusions. Cell Death Differ. 2011, 18:415-426.
    • (2011) Cell Death Differ. , vol.18 , pp. 415-426
    • Rivera, J.F.1
  • 66
    • 79960512207 scopus 로고    scopus 로고
    • Autophagy protects against human islet amyloid polypeptide-associated apoptosis
    • Morita S., et al. Autophagy protects against human islet amyloid polypeptide-associated apoptosis. J. Diabetes Investig. 2011, 2:48-55.
    • (2011) J. Diabetes Investig. , vol.2 , pp. 48-55
    • Morita, S.1
  • 67
    • 84905460021 scopus 로고    scopus 로고
    • Human IAPP-induced pancreatic beta-cell toxicity and its regulation by autophagy
    • Shigihara N., et al. Human IAPP-induced pancreatic beta-cell toxicity and its regulation by autophagy. J. Clin. Invest. 2014, 124:3634-3644.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3634-3644
    • Shigihara, N.1
  • 68
    • 34247161367 scopus 로고    scopus 로고
    • Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein
    • Sarkar S., et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 2007, 282:5641-5652.
    • (2007) J. Biol. Chem. , vol.282 , pp. 5641-5652
    • Sarkar, S.1
  • 69
    • 84859134790 scopus 로고    scopus 로고
    • Expression of wild-type and mutant S20G hIAPP in physiologic knock-in mouse models fails to induce islet amyloid formation, but induces mild glucose intolerance
    • Hiddinga H.J., et al. Expression of wild-type and mutant S20G hIAPP in physiologic knock-in mouse models fails to induce islet amyloid formation, but induces mild glucose intolerance. J. Diabetes Investig. 2012, 3:138-147.
    • (2012) J. Diabetes Investig. , vol.3 , pp. 138-147
    • Hiddinga, H.J.1
  • 70
    • 78751490442 scopus 로고    scopus 로고
    • β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide-induced UCH-L1 deficiency
    • Costes S., et al. β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide-induced UCH-L1 deficiency. Diabetes 2011, 60:227-238.
    • (2011) Diabetes , vol.60 , pp. 227-238
    • Costes, S.1
  • 71
    • 84903635601 scopus 로고    scopus 로고
    • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells
    • Costes S., et al. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells. Autophagy 2014, 10:1004-1014.
    • (2014) Autophagy , vol.10 , pp. 1004-1014
    • Costes, S.1
  • 72
    • 77954955774 scopus 로고    scopus 로고
    • Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes
    • Miklossy J., et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol. Aging 2010, 31:1503-1515.
    • (2010) Neurobiol. Aging , vol.31 , pp. 1503-1515
    • Miklossy, J.1
  • 73
    • 84878253079 scopus 로고    scopus 로고
    • The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells
    • Steneberg P., et al. The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes 2013, 62:2004-2014.
    • (2013) Diabetes , vol.62 , pp. 2004-2014
    • Steneberg, P.1
  • 74
    • 79951687790 scopus 로고    scopus 로고
    • Impaired glucose tolerance in mice lacking cellular prion protein
    • Strom A., et al. Impaired glucose tolerance in mice lacking cellular prion protein. Pancreas 2011, 40:229-232.
    • (2011) Pancreas , vol.40 , pp. 229-232
    • Strom, A.1
  • 75
    • 0033048453 scopus 로고    scopus 로고
    • The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles
    • Janson J., et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999, 48:491-498.
    • (1999) Diabetes , vol.48 , pp. 491-498
    • Janson, J.1
  • 76
    • 24644502612 scopus 로고    scopus 로고
    • Lipid membranes modulate the structure of islet amyloid polypeptide
    • Jayasinghe S.A., Langen R. Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 2005, 44:12113-12119.
    • (2005) Biochemistry , vol.44 , pp. 12113-12119
    • Jayasinghe, S.A.1    Langen, R.2
  • 77
    • 0035907265 scopus 로고    scopus 로고
    • Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide
    • Park K., Verchere C.B. Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. J. Biol. Chem. 2001, 276:16611-16616.
    • (2001) J. Biol. Chem. , vol.276 , pp. 16611-16616
    • Park, K.1    Verchere, C.B.2
  • 78
    • 68349148211 scopus 로고    scopus 로고
    • Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
    • Feuerer M., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15:930-939.
    • (2009) Nat. Med. , vol.15 , pp. 930-939
    • Feuerer, M.1
  • 79
    • 0027459878 scopus 로고
    • Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance
    • Hotamisligil G.S., et al. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993, 259:87-91.
    • (1993) Science , vol.259 , pp. 87-91
    • Hotamisligil, G.S.1
  • 80
    • 79751512463 scopus 로고    scopus 로고
    • The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
    • Vandanmagsar B., et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 15:179-188.
    • (2011) Nat. Med. , vol.15 , pp. 179-188
    • Vandanmagsar, B.1
  • 81
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12:408-415.
    • (2011) Nat. Immunol. , vol.12 , pp. 408-415
    • Wen, H.1
  • 82
    • 80054903245 scopus 로고    scopus 로고
    • Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage
    • Youm Y-H., et al. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 2012, 152:4039-4045.
    • (2012) Endocrinology , vol.152 , pp. 4039-4045
    • Youm, Y.-H.1
  • 83
    • 78751620798 scopus 로고    scopus 로고
    • NLR functions beyond pathogen recognition
    • Kuger T.A., Sansonetti P.J. NLR functions beyond pathogen recognition. Nat. Immunol. 2011, 12:121-128.
    • (2011) Nat. Immunol. , vol.12 , pp. 121-128
    • Kuger, T.A.1    Sansonetti, P.J.2
  • 84
    • 77956958947 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
    • Masters S.L., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 2010, 11:897-904.
    • (2010) Nat. Immunol. , vol.11 , pp. 897-904
    • Masters, S.L.1
  • 85
    • 80052650475 scopus 로고    scopus 로고
    • IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction
    • Westwell-Roper C., et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J. Immunol. 2011, 187:2755-2765.
    • (2011) J. Immunol. , vol.187 , pp. 2755-2765
    • Westwell-Roper, C.1
  • 86
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-269.
    • (2008) Nature , vol.456 , pp. 264-269
    • Saitoh, T.1
  • 87
    • 84901346313 scopus 로고    scopus 로고
    • Autophagy - a key player in cellular and body metabolism
    • Kim K.H., Lee M-S. Autophagy - a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 2014, 10:322-337.
    • (2014) Nat. Rev. Endocrinol. , vol.10 , pp. 322-337
    • Kim, K.H.1    Lee, M.-S.2
  • 88
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
    • He C., et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012, 481:511-515.
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1
  • 89
    • 84883114523 scopus 로고    scopus 로고
    • Overexpression of Atg5 in mice activates autophagy and extends lifespan
    • Pyo J.O., et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 2013, 4:2300.
    • (2013) Nat. Commun. , vol.4 , pp. 2300
    • Pyo, J.O.1
  • 90
    • 84891719799 scopus 로고    scopus 로고
    • Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms
    • Barlow A.D., et al. Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes 2013, 62:2674-2682.
    • (2013) Diabetes , vol.62 , pp. 2674-2682
    • Barlow, A.D.1
  • 91
    • 42449104351 scopus 로고    scopus 로고
    • MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
    • Fraenkel M., et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008, 57:945-957.
    • (2008) Diabetes , vol.57 , pp. 945-957
    • Fraenkel, M.1
  • 92
    • 40749090482 scopus 로고    scopus 로고
    • + T cell-induced cytotoxicity
    • + T cell-induced cytotoxicity. Diabetes 2008, 57:415-423.
    • (2008) Diabetes , vol.57 , pp. 415-423
    • Riboulet-Chavey, A.1
  • 93
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
    • Kalender A., et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11:390-401.
    • (2010) Cell Metab. , vol.11 , pp. 390-401
    • Kalender, A.1
  • 94
    • 84885383560 scopus 로고    scopus 로고
    • Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
    • Kim K.H., et al. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 2013, 440:76-81.
    • (2013) Biochem. Biophys. Res. Commun. , vol.440 , pp. 76-81
    • Kim, K.H.1
  • 95
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju A.K., et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510:542-546.
    • (2014) Nature , vol.510 , pp. 542-546
    • Madiraju, A.K.1
  • 96
    • 84897960120 scopus 로고    scopus 로고
    • An increase in the Akkermansia sp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
    • Shin N-R., et al. An increase in the Akkermansia sp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63:727-735.
    • (2014) Gut , vol.63 , pp. 727-735
    • Shin, N.-R.1
  • 97
    • 84870054636 scopus 로고    scopus 로고
    • GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus
    • Meier J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8:728-742.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 728-742
    • Meier, J.J.1
  • 98
    • 34548037901 scopus 로고    scopus 로고
    • Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium
    • Hoyer-Hansen M., Jaatela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007, 14:1576-1582.
    • (2007) Cell Death Differ. , vol.14 , pp. 1576-1582
    • Hoyer-Hansen, M.1    Jaatela, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.