-
1
-
-
84880544460
-
Nutrients and growth factors in mTORC1 activation
-
Efeyan A., Sabatini D.M. Nutrients and growth factors in mTORC1 activation. Biochem. Soc. Trans. 2013, 41:902-905.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 902-905
-
-
Efeyan, A.1
Sabatini, D.M.2
-
2
-
-
84873665112
-
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan A., Zoncu R., Chang S., Gumper I., Snitkin H., Wolfson R.L., Kirak O., Sabatini D.D., Sabatini D.M. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493:679-683.
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
Zoncu, R.2
Chang, S.3
Gumper, I.4
Snitkin, H.5
Wolfson, R.L.6
Kirak, O.7
Sabatini, D.D.8
Sabatini, D.M.9
-
3
-
-
6344245674
-
Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development
-
Gangloff Y.G., Mueller M., Dann S.G., Svoboda P., Sticker M., Spetz J.F., Um S.H., Brown E.J., Cereghini S., Thomas G., Kozma S.C. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol. 2004, 24:9508-9516.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9508-9516
-
-
Gangloff, Y.G.1
Mueller, M.2
Dann, S.G.3
Svoboda, P.4
Sticker, M.5
Spetz, J.F.6
Um, S.H.7
Brown, E.J.8
Cereghini, S.9
Thomas, G.10
Kozma, S.C.11
-
4
-
-
79953140523
-
Rheb is essential for murine development
-
Goorden S.M., Hoogeveen-Westerveld M., Cheng C., van Woerden G.M., Mozaffari M., Post L., Duckers H.J., Nellist M., Elgersma Y. Rheb is essential for murine development. Mol. Cell. Biol. 2011, 31:1672-1678.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 1672-1678
-
-
Goorden, S.M.1
Hoogeveen-Westerveld, M.2
Cheng, C.3
van Woerden, G.M.4
Mozaffari, M.5
Post, L.6
Duckers, H.J.7
Nellist, M.8
Elgersma, Y.9
-
5
-
-
84896702221
-
Mammalian target of rapamycin complex I (mTORC1) activity in ras homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts
-
Groenewoud M.J., Goorden S.M., Kassies J., Pellis-van Berkel W., Lamb R.F., Elgersma Y., Zwartkruis F.J. Mammalian target of rapamycin complex I (mTORC1) activity in ras homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts. PLoS ONE 2013, 8:e81649.
-
(2013)
PLoS ONE
, vol.8
-
-
Groenewoud, M.J.1
Goorden, S.M.2
Kassies, J.3
Pellis-van Berkel, W.4
Lamb, R.F.5
Elgersma, Y.6
Zwartkruis, F.J.7
-
6
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin D.A., Stevens D.M., Thoreen C.C., Burds A.A., Kalaany N.Y., Moffat J., Brown M., Fitzgerald K.J., Sabatini D.M. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 2006, 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
Brown, M.7
Fitzgerald, K.J.8
Sabatini, D.M.9
-
7
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
Harrington L.S., Findlay G.M., Gray A., Tolkacheva T., Wigfield S., Rebholz H., Barnett J., Leslie N.R., Cheng S., Shepherd P.R., et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 2004, 166:213-223.
-
(2004)
J. Cell Biol.
, vol.166
, pp. 213-223
-
-
Harrington, L.S.1
Findlay, G.M.2
Gray, A.3
Tolkacheva, T.4
Wigfield, S.5
Rebholz, H.6
Barnett, J.7
Leslie, N.R.8
Cheng, S.9
Shepherd, P.R.10
-
8
-
-
0034463918
-
A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1
-
Haruta T., Uno T., Kawahara J., Takano A., Egawa K., Sharma P.M., Olefsky J.M., Kobayashi M. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol. Endocrinol. 2000, 14:783-794.
-
(2000)
Mol. Endocrinol.
, vol.14
, pp. 783-794
-
-
Haruta, T.1
Uno, T.2
Kawahara, J.3
Takano, A.4
Egawa, K.5
Sharma, P.M.6
Olefsky, J.M.7
Kobayashi, M.8
-
9
-
-
84861833364
-
MTORC1 is essential for leukemia propagation but not stem cell self-renewal
-
Hoshii T., Tadokoro Y., Naka K., Ooshio T., Muraguchi T., Sugiyama N., Soga T., Araki K., Yamamura K., Hirao A. mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J. Clin. Invest. 2012, 122:2114-2129.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2114-2129
-
-
Hoshii, T.1
Tadokoro, Y.2
Naka, K.3
Ooshio, T.4
Muraguchi, T.5
Sugiyama, N.6
Soga, T.7
Araki, K.8
Yamamura, K.9
Hirao, A.10
-
10
-
-
84866082606
-
MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
-
Kalaitzidis D., Sykes S.M., Wang Z., Punt N., Tang Y., Ragu C., Sinha A.U., Lane S.W., Souza A.L., Clish C.B., et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012, 11:429-439.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 429-439
-
-
Kalaitzidis, D.1
Sykes, S.M.2
Wang, Z.3
Punt, N.4
Tang, Y.5
Ragu, C.6
Sinha, A.U.7
Lane, S.W.8
Souza, A.L.9
Clish, C.B.10
-
11
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A., Selvaraj A., Kim S.Y., Gulati P., BrÛlé S., Viollet B., Kemp B.E., Bardeesy N., Dennis P., Schlager J.J., et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11:390-401.
-
(2010)
Cell Metab.
, vol.11
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
Gulati, P.4
BrÛlé, S.5
Viollet, B.6
Kemp, B.E.7
Bardeesy, N.8
Dennis, P.9
Schlager, J.J.10
-
12
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming D.W., Ye L., Katajisto P., Goncalves M.D., Saitoh M., Stevens D.M., Davis J.G., Salmon A.B., Richardson A., Ahima R.S., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335:1638-1643.
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
Ye, L.2
Katajisto, P.3
Goncalves, M.D.4
Saitoh, M.5
Stevens, D.M.6
Davis, J.G.7
Salmon, A.B.8
Richardson, A.9
Ahima, R.S.10
-
13
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
14
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
15
-
-
3242721268
-
MTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells
-
Murakami M., Ichisaka T., Maeda M., Oshiro N., Hara K., Edenhofer F., Kiyama H., Yonezawa K., Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 2004, 24:6710-6718.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 6710-6718
-
-
Murakami, M.1
Ichisaka, T.2
Maeda, M.3
Oshiro, N.4
Hara, K.5
Edenhofer, F.6
Kiyama, H.7
Yonezawa, K.8
Yamanaka, S.9
-
16
-
-
63749105226
-
MTOR and the control of whole body metabolism
-
Polak P., Hall M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 2009, 21:209-218.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 209-218
-
-
Polak, P.1
Hall, M.N.2
-
17
-
-
0032898369
-
Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase
-
Postic C., Shiota M., Niswender K.D., Jetton T.L., Chen Y., Moates J.M., Shelton K.D., Lindner J., Cherrington A.D., Magnuson M.A. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 1999, 274:305-315.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 305-315
-
-
Postic, C.1
Shiota, M.2
Niswender, K.D.3
Jetton, T.L.4
Chen, Y.5
Moates, J.M.6
Shelton, K.D.7
Lindner, J.8
Cherrington, A.D.9
Magnuson, M.A.10
-
18
-
-
34249885603
-
Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss
-
Ruzankina Y., Pinzon-Guzman C., Asare A., Ong T., Pontano L., Cotsarelis G., Zediak V.P., Velez M., Bhandoola A., Brown E.J. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007, 1:113-126.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 113-126
-
-
Ruzankina, Y.1
Pinzon-Guzman, C.2
Asare, A.3
Ong, T.4
Pontano, L.5
Cotsarelis, G.6
Zediak, V.P.7
Velez, M.8
Bhandoola, A.9
Brown, E.J.10
-
19
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., Sabatini D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
20
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
21
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov D.D., Ali S.M., Sengupta S., Sheen J.H., Hsu P.P., Bagley A.F., Markhard A.L., Sabatini D.M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006, 22:159-168.
-
(2006)
Mol. Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
Markhard, A.L.7
Sabatini, D.M.8
-
22
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S., Peterson T.R., Laplante M., Oh S., Sabatini D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100-1104.
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
23
-
-
33845709128
-
P14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis
-
Teis D., Taub N., Kurzbauer R., Hilber D., de Araujo M.E., Erlacher M., Offterdinger M., Villunger A., Geley S., Bohn G., et al. p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J. Cell Biol. 2006, 175:861-868.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 861-868
-
-
Teis, D.1
Taub, N.2
Kurzbauer, R.3
Hilber, D.4
de Araujo, M.E.5
Erlacher, M.6
Offterdinger, M.7
Villunger, A.8
Geley, S.9
Bohn, G.10
-
24
-
-
84886860011
-
Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization
-
Tesio M., Oser G.M., Baccelli I., Blanco-Bose W., Wu H., Göthert J.R., Kogan S.C., Trumpp A. Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization. J. Exp. Med. 2013, 210:2337-2349.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2337-2349
-
-
Tesio, M.1
Oser, G.M.2
Baccelli, I.3
Blanco-Bose, W.4
Wu, H.5
Göthert, J.R.6
Kogan, S.C.7
Trumpp, A.8
-
25
-
-
4544220704
-
Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity
-
Um S.H., Frigerio F., Watanabe M., Picard F., Joaquin M., Sticker M., Fumagalli S., Allegrini P.R., Kozma S.C., Auwerx J., Thomas G. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431:200-205.
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
Frigerio, F.2
Watanabe, M.3
Picard, F.4
Joaquin, M.5
Sticker, M.6
Fumagalli, S.7
Allegrini, P.R.8
Kozma, S.C.9
Auwerx, J.10
Thomas, G.11
-
26
-
-
79953737332
-
Metabolite profiles and the risk of developing diabetes
-
Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., Mccabe E., Lewis G.D., Fox C.S., Jacques P.F., Fernandez C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17:448-453.
-
(2011)
Nat. Med.
, vol.17
, pp. 448-453
-
-
Wang, T.J.1
Larson, M.G.2
Vasan, R.S.3
Cheng, S.4
Rhee, E.P.5
Mccabe, E.6
Lewis, G.D.7
Fox, C.S.8
Jacques, P.F.9
Fernandez, C.10
-
27
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz O.H., Valdez R., Theisen B.K., Guo W., Ferguson D.O., Wu H., Morrison S.J. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
Valdez, R.2
Theisen, B.K.3
Guo, W.4
Ferguson, D.O.5
Wu, H.6
Morrison, S.J.7
-
28
-
-
33744515637
-
FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression
-
Zhang W., Patil S., Chauhan B., Guo S., Powell D.R., Le J., Klotsas A., Matika R., Xiao X., Franks R., et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 2006, 281:10105-10117.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10105-10117
-
-
Zhang, W.1
Patil, S.2
Chauhan, B.3
Guo, S.4
Powell, D.R.5
Le, J.6
Klotsas, A.7
Matika, R.8
Xiao, X.9
Franks, R.10
|