메뉴 건너뛰기




Volumn 120, Issue 2, 2010, Pages 545-558

Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice

Author keywords

[No Author keywords available]

Indexed keywords

DELETED IN BREAST CANCER 1; NICOTINAMIDE ADENINE DINUCLEOTIDE; SIRTUIN 1; TUMOR PROTEIN; UNCLASSIFIED DRUG;

EID: 76649085804     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI39319     Document Type: Article
Times cited : (162)

References (58)
  • 1
    • 33845868198 scopus 로고    scopus 로고
    • Sirtuins as potential targets for metabolic syndrome
    • Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006;444(7121):868-874.
    • (2006) Nature , vol.444 , Issue.7121 , pp. 868-874
    • Guarente, L.1
  • 2
    • 48249091971 scopus 로고    scopus 로고
    • Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72:483-488.
    • Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72:483-488.
  • 3
    • 53049092131 scopus 로고    scopus 로고
    • The anti-aging, metabolism potential of SIRT1
    • Ghosh HS. The anti-aging, metabolism potential of SIRT1. Curr Opin Investig Drugs. 2008; 9(10):1095-1102.
    • (2008) Curr Opin Investig Drugs , vol.9 , Issue.10 , pp. 1095-1102
    • Ghosh, H.S.1
  • 5
    • 34547101692 scopus 로고    scopus 로고
    • The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats
    • Deng XQ, Chen LL, Li NX. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 2007;27(5):708-715.
    • (2007) Liver Int , vol.27 , Issue.5 , pp. 708-715
    • Deng, X.Q.1    Chen, L.L.2    Li, N.X.3
  • 7
    • 40449093056 scopus 로고    scopus 로고
    • Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice
    • You M, Cao Q, Liang X, Ajmo JM, Ness GC. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr. 2008;138(3):497-501.
    • (2008) J Nutr , vol.138 , Issue.3 , pp. 497-501
    • You, M.1    Cao, Q.2    Liang, X.3    Ajmo, J.M.4    Ness, G.C.5
  • 8
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113-118.
    • (2005) Nature , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 9
    • 0035913903 scopus 로고    scopus 로고
    • hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107(2):149-159.
    • (2001) Cell , vol.107 , Issue.2 , pp. 149-159
    • Vaziri, H.1
  • 10
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011-2015.
    • (2004) Science , vol.303 , Issue.5666 , pp. 2011-2015
    • Brunet, A.1
  • 11
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369-2380.
    • (2004) EMBO J , vol.23 , Issue.12 , pp. 2369-2380
    • Yeung, F.1
  • 12
    • 33847647624 scopus 로고    scopus 로고
    • SIRT1 promotes DNA repair activity and deacetylation of Ku70
    • Jeong J, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007; 39(1):8-13.
    • (2007) Exp Mol Med , vol.39 , Issue.1 , pp. 8-13
    • Jeong, J.1
  • 13
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51-62.
    • (2003) Mol Cell , vol.12 , Issue.1 , pp. 51-62
    • Fulco, M.1
  • 14
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.
    • (2000) Nature , vol.403 , Issue.6771 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 15
    • 0034705129 scopus 로고    scopus 로고
    • The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
    • Landry J, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807-5811.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.11 , pp. 5807-5811
    • Landry, J.1
  • 16
    • 52749091816 scopus 로고    scopus 로고
    • SirT1 gain of function increases energy efficiency and prevents diabetes in mice
    • Banks AS, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8(4):333-341.
    • (2008) Cell Metab , vol.8 , Issue.4 , pp. 333-341
    • Banks, A.S.1
  • 17
    • 47549102014 scopus 로고    scopus 로고
    • SIRT1 is a circadian deacetylase for core clock components
    • Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components. Cell. 2008; 134(2):212-214.
    • (2008) Cell , vol.134 , Issue.2 , pp. 212-214
    • Belden, W.J.1    Dunlap, J.C.2
  • 18
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277(47):45099-45107.
    • (2002) J Biol Chem , vol.277 , Issue.47 , pp. 45099-45107
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3    Latorre-Esteves, M.4    Sinclair, D.A.5
  • 19
    • 45549098657 scopus 로고    scopus 로고
    • SirT1 regulates energy metabolism and response to caloric restriction in mice
    • Boily G, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE. 2008;3(3):e1759.
    • (2008) PLoS ONE , vol.3 , Issue.3
    • Boily, G.1
  • 20
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4(2):e31.
    • (2006) PLoS Biol , vol.4 , Issue.2
    • Bordone, L.1
  • 21
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • Cohen HY, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390-392.
    • (2004) Science , vol.305 , Issue.5682 , pp. 390-392
    • Cohen, H.Y.1
  • 22
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • Feige JN, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8(5):347-358.
    • (2008) Cell Metab , vol.8 , Issue.5 , pp. 347-358
    • Feige, J.N.1
  • 23
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007; 26(7):1913-1923.
    • (2007) EMBO J , vol.26 , Issue.7 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 24
    • 50649112638 scopus 로고    scopus 로고
    • SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
    • Hou X, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015-20026.
    • (2008) J Biol Chem , vol.283 , Issue.29 , pp. 20015-20026
    • Hou, X.1
  • 25
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • Lagouge M, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109-1122.
    • (2006) Cell , vol.127 , Issue.6 , pp. 1109-1122
    • Lagouge, M.1
  • 26
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2alpha promotes cell survival under stress
    • Luo J, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001; 107(2):137-148.
    • (2001) Cell , vol.107 , Issue.2 , pp. 137-148
    • Luo, J.1
  • 27
  • 28
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280(16):16456-16460.
    • (2005) J Biol Chem , vol.280 , Issue.16 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 29
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437-448.
    • (2005) Cell , vol.123 , Issue.3 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.C.3    Luo, J.4    Gu, W.5    Baylin, S.B.6
  • 30
    • 33748200050 scopus 로고    scopus 로고
    • Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
    • Wang C, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006;8(9):1025-1031.
    • (2006) Nat Cell Biol , vol.8 , Issue.9 , pp. 1025-1031
    • Wang, C.1
  • 31
    • 33847035824 scopus 로고    scopus 로고
    • Phosphorylation of HuR by Chk2 regulates SIRT1 expression
    • Abdelmohsen K, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007; 25(4):543-557.
    • (2007) Mol Cell , vol.25 , Issue.4 , pp. 543-557
    • Abdelmohsen, K.1
  • 32
    • 35748962613 scopus 로고    scopus 로고
    • SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
    • Yang Y, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9(11):1253-1262.
    • (2007) Nat Cell Biol , vol.9 , Issue.11 , pp. 1253-1262
    • Yang, Y.1
  • 33
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T, et al. Phosphorylation regulates SIRT1 function. PLoS ONE. 2008;3(12):e4020.
    • (2008) PLoS ONE , vol.3 , Issue.12
    • Sasaki, T.1
  • 34
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008;22(13):1753-1757.
    • (2008) Genes Dev , vol.22 , Issue.13 , pp. 1753-1757
    • Chen, D.1
  • 35
    • 33744509311 scopus 로고    scopus 로고
    • Regulation of intracellular levels of NAD: A novel role for CD38
    • Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun. 2006; 345(4):1386-1392.
    • (2006) Biochem Biophys Res Commun , vol.345 , Issue.4 , pp. 1386-1392
    • Aksoy, P.1    White, T.A.2    Thompson, M.3    Chini, E.N.4
  • 36
    • 33747139670 scopus 로고    scopus 로고
    • Nampt/PBEF/Visfatin: A regulator of mammalian health and longevity?
    • Yang H, Lavu S, Sinclair DA. Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Exp Gerontol. 2006;41(8):718-726.
    • (2006) Exp Gerontol , vol.41 , Issue.8 , pp. 718-726
    • Yang, H.1    Lavu, S.2    Sinclair, D.A.3
  • 37
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang H, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007; 130(6):1095-1107.
    • (2007) Cell , vol.130 , Issue.6 , pp. 1095-1107
    • Yang, H.1
  • 38
    • 35349011726 scopus 로고    scopus 로고
    • Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
    • Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007;28(2):277-290.
    • (2007) Mol Cell , vol.28 , Issue.2 , pp. 277-290
    • Kim, E.J.1    Kho, J.H.2    Kang, M.R.3    Um, S.J.4
  • 39
    • 38749088678 scopus 로고    scopus 로고
    • DBC1 is a negative regulator of SIRT1
    • Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583-586.
    • (2008) Nature , vol.451 , Issue.7178 , pp. 583-586
    • Kim, J.E.1    Chen, J.2    Lou, Z.3
  • 40
    • 38749132992 scopus 로고    scopus 로고
    • Negative regulation of the deacetylase SIRT1 by DBC1
    • Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451(7178):587-590.
    • (2008) Nature , vol.451 , Issue.7178 , pp. 587-590
    • Zhao, W.1    Kruse, J.P.2    Tang, Y.3    Jung, S.Y.4    Qin, J.5    Gu, W.6
  • 41
    • 34547906123 scopus 로고    scopus 로고
    • Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
    • Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007; 104(31):12861-12866.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.31 , pp. 12861-12866
    • Rodgers, J.T.1    Puigserver, P.2
  • 42
    • 33748309231 scopus 로고    scopus 로고
    • Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multi-functional enzyme CD38
    • Aksoy P, et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multi-functional enzyme CD38. Biochem Biophys Res Commun. 2006;349(1):353-359.
    • (2006) Biochem Biophys Res Commun , vol.349 , Issue.1 , pp. 353-359
    • Aksoy, P.1
  • 43
    • 33846693322 scopus 로고    scopus 로고
    • The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals
    • Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23(2):164-170.
    • (2007) Curr Opin Gastroenterol , vol.23 , Issue.2 , pp. 164-170
    • Revollo, J.R.1    Grimm, A.A.2    Imai, S.3
  • 44
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661-673.
    • (2008) Dev Cell , vol.14 , Issue.5 , pp. 661-673
    • Fulco, M.1
  • 46
    • 13944253348 scopus 로고    scopus 로고
    • Calorie restriction - the SIR2 connection
    • Guarente L, Picard F. Calorie restriction - the SIR2 connection. Cell. 2005;120(4):473-482.
    • (2005) Cell , vol.120 , Issue.4 , pp. 473-482
    • Guarente, L.1    Picard, F.2
  • 47
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340.
    • (2008) Cell , vol.134 , Issue.2 , pp. 329-340
    • Nakahata, Y.1
  • 48
    • 67749089440 scopus 로고    scopus 로고
    • Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters
    • Zhang T, et al. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem. 2009;284(30):20408-20417.
    • (2009) J Biol Chem , vol.284 , Issue.30 , pp. 20408-20417
    • Zhang, T.1
  • 49
    • 0034023238 scopus 로고    scopus 로고
    • New functions of a long-known molecule. Emerging roles of NAD in cellular signaling
    • Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem. 2000;267(6):1550-1564.
    • (2000) Eur J Biochem , vol.267 , Issue.6 , pp. 1550-1564
    • Ziegler, M.1
  • 50
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651-654.
    • (2009) Science , vol.324 , Issue.5927 , pp. 651-654
    • Ramsey, K.M.1
  • 51
    • 4344574540 scopus 로고    scopus 로고
    • Large-scale characterization of HeLa cell nuclear phosphoproteins
    • Beausoleil SA, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101(33):12130-12135.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.33 , pp. 12130-12135
    • Beausoleil, S.A.1
  • 52
    • 33749853607 scopus 로고    scopus 로고
    • A probability-based approach for high-throughput protein phosphorylation analysis and site localization
    • Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24(10):1285-1292.
    • (2006) Nat Biotechnol , vol.24 , Issue.10 , pp. 1285-1292
    • Beausoleil, S.A.1    Villen, J.2    Gerber, S.A.3    Rush, J.4    Gygi, S.P.5
  • 53
    • 65449156090 scopus 로고    scopus 로고
    • Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity
    • Fu J, et al. Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity. J Biol Chem. 2009; 284(11):6832-6840.
    • (2009) J Biol Chem , vol.284 , Issue.11 , pp. 6832-6840
    • Fu, J.1
  • 54
    • 67449103687 scopus 로고    scopus 로고
    • Inhibition of SUV39H1 methyltransferase activity by DBC1
    • Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J. Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem. 2009;284(16):10361- 10366.
    • (2009) J Biol Chem , vol.284 , Issue.16 , pp. 10361-10366
    • Li, Z.1    Chen, L.2    Kabra, N.3    Wang, C.4    Fang, J.5    Chen, J.6
  • 55
    • 34347221253 scopus 로고    scopus 로고
    • Modulation of estrogen receptor alpha protein level and survival function by DBC-1
    • Trauernicht AM, Kim SJ, Kim NH, Boyer TG. Modulation of estrogen receptor alpha protein level and survival function by DBC-1. Mol Endocrinol. 2007;21(7):1526-1536.
    • (2007) Mol Endocrinol , vol.21 , Issue.7 , pp. 1526-1536
    • Trauernicht, A.M.1    Kim, S.J.2    Kim, N.H.3    Boyer, T.G.4
  • 56
    • 33744948514 scopus 로고    scopus 로고
    • Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis
    • Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006;281(17):12093- 12101.
    • (2006) J Biol Chem , vol.281 , Issue.17 , pp. 12093-12101
    • Malhi, H.1    Bronk, S.F.2    Werneburg, N.W.3    Gores, G.J.4
  • 57
    • 9144271181 scopus 로고    scopus 로고
    • AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells
    • Zang M, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem. 2004;279(46):47898-47905.
    • (2004) J Biol Chem , vol.279 , Issue.46 , pp. 47898-47905
    • Zang, M.1
  • 58
    • 36049038217 scopus 로고    scopus 로고
    • Barbosa MT, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007; 21(13):3629-3639.
    • Barbosa MT, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007; 21(13):3629-3639.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.