-
1
-
-
33845868198
-
Sirtuins as potential targets for metabolic syndrome
-
Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006;444(7121):868-874.
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 868-874
-
-
Guarente, L.1
-
2
-
-
48249091971
-
-
Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72:483-488.
-
Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72:483-488.
-
-
-
-
3
-
-
53049092131
-
The anti-aging, metabolism potential of SIRT1
-
Ghosh HS. The anti-aging, metabolism potential of SIRT1. Curr Opin Investig Drugs. 2008; 9(10):1095-1102.
-
(2008)
Curr Opin Investig Drugs
, vol.9
, Issue.10
, pp. 1095-1102
-
-
Ghosh, H.S.1
-
4
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008;105(28):9793-9798.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
5
-
-
34547101692
-
The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats
-
Deng XQ, Chen LL, Li NX. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 2007;27(5):708-715.
-
(2007)
Liver Int
, vol.27
, Issue.5
, pp. 708-715
-
-
Deng, X.Q.1
Chen, L.L.2
Li, N.X.3
-
6
-
-
57349114641
-
Resveratrol alleviates alcoholic fatty liver in mice
-
Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 2008; 295(4):G833-G842.
-
(2008)
Am J Physiol Gastrointest Liver Physiol
, vol.295
, Issue.4
-
-
Ajmo, J.M.1
Liang, X.2
Rogers, C.Q.3
Pennock, B.4
You, M.5
-
7
-
-
40449093056
-
Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice
-
You M, Cao Q, Liang X, Ajmo JM, Ness GC. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr. 2008;138(3):497-501.
-
(2008)
J Nutr
, vol.138
, Issue.3
, pp. 497-501
-
-
You, M.1
Cao, Q.2
Liang, X.3
Ajmo, J.M.4
Ness, G.C.5
-
8
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113-118.
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
9
-
-
0035913903
-
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107(2):149-159.
-
(2001)
Cell
, vol.107
, Issue.2
, pp. 149-159
-
-
Vaziri, H.1
-
10
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011-2015.
-
(2004)
Science
, vol.303
, Issue.5666
, pp. 2011-2015
-
-
Brunet, A.1
-
11
-
-
3242719545
-
Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
-
Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369-2380.
-
(2004)
EMBO J
, vol.23
, Issue.12
, pp. 2369-2380
-
-
Yeung, F.1
-
12
-
-
33847647624
-
SIRT1 promotes DNA repair activity and deacetylation of Ku70
-
Jeong J, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007; 39(1):8-13.
-
(2007)
Exp Mol Med
, vol.39
, Issue.1
, pp. 8-13
-
-
Jeong, J.1
-
13
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51-62.
-
(2003)
Mol Cell
, vol.12
, Issue.1
, pp. 51-62
-
-
Fulco, M.1
-
14
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.
-
(2000)
Nature
, vol.403
, Issue.6771
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
15
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
Landry J, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807-5811.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.11
, pp. 5807-5811
-
-
Landry, J.1
-
16
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8(4):333-341.
-
(2008)
Cell Metab
, vol.8
, Issue.4
, pp. 333-341
-
-
Banks, A.S.1
-
17
-
-
47549102014
-
SIRT1 is a circadian deacetylase for core clock components
-
Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components. Cell. 2008; 134(2):212-214.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 212-214
-
-
Belden, W.J.1
Dunlap, J.C.2
-
18
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277(47):45099-45107.
-
(2002)
J Biol Chem
, vol.277
, Issue.47
, pp. 45099-45107
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
Latorre-Esteves, M.4
Sinclair, D.A.5
-
19
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE. 2008;3(3):e1759.
-
(2008)
PLoS ONE
, vol.3
, Issue.3
-
-
Boily, G.1
-
20
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4(2):e31.
-
(2006)
PLoS Biol
, vol.4
, Issue.2
-
-
Bordone, L.1
-
21
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen HY, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390-392.
-
(2004)
Science
, vol.305
, Issue.5682
, pp. 390-392
-
-
Cohen, H.Y.1
-
22
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8(5):347-358.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 347-358
-
-
Feige, J.N.1
-
23
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007; 26(7):1913-1923.
-
(2007)
EMBO J
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
24
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015-20026.
-
(2008)
J Biol Chem
, vol.283
, Issue.29
, pp. 20015-20026
-
-
Hou, X.1
-
25
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109-1122.
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
-
26
-
-
0035913911
-
Negative control of p53 by Sir2alpha promotes cell survival under stress
-
Luo J, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001; 107(2):137-148.
-
(2001)
Cell
, vol.107
, Issue.2
, pp. 137-148
-
-
Luo, J.1
-
27
-
-
45549102566
-
Regulation of SIRT1 protein levels by nutrient availability
-
Kanfi Y, Peshti V, Gozlan YM, Rathaus M, Gil R, Cohen HY. Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett. 2008;582(16):2417-2423.
-
(2008)
FEBS Lett
, vol.582
, Issue.16
, pp. 2417-2423
-
-
Kanfi, Y.1
Peshti, V.2
Gozlan, Y.M.3
Rathaus, M.4
Gil, R.5
Cohen, H.Y.6
-
28
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
-
Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280(16):16456-16460.
-
(2005)
J Biol Chem
, vol.280
, Issue.16
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
29
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437-448.
-
(2005)
Cell
, vol.123
, Issue.3
, pp. 437-448
-
-
Chen, W.Y.1
Wang, D.H.2
Yen, R.C.3
Luo, J.4
Gu, W.5
Baylin, S.B.6
-
30
-
-
33748200050
-
Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
-
Wang C, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006;8(9):1025-1031.
-
(2006)
Nat Cell Biol
, vol.8
, Issue.9
, pp. 1025-1031
-
-
Wang, C.1
-
31
-
-
33847035824
-
Phosphorylation of HuR by Chk2 regulates SIRT1 expression
-
Abdelmohsen K, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007; 25(4):543-557.
-
(2007)
Mol Cell
, vol.25
, Issue.4
, pp. 543-557
-
-
Abdelmohsen, K.1
-
32
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang Y, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9(11):1253-1262.
-
(2007)
Nat Cell Biol
, vol.9
, Issue.11
, pp. 1253-1262
-
-
Yang, Y.1
-
33
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, et al. Phosphorylation regulates SIRT1 function. PLoS ONE. 2008;3(12):e4020.
-
(2008)
PLoS ONE
, vol.3
, Issue.12
-
-
Sasaki, T.1
-
34
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008;22(13):1753-1757.
-
(2008)
Genes Dev
, vol.22
, Issue.13
, pp. 1753-1757
-
-
Chen, D.1
-
35
-
-
33744509311
-
Regulation of intracellular levels of NAD: A novel role for CD38
-
Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun. 2006; 345(4):1386-1392.
-
(2006)
Biochem Biophys Res Commun
, vol.345
, Issue.4
, pp. 1386-1392
-
-
Aksoy, P.1
White, T.A.2
Thompson, M.3
Chini, E.N.4
-
36
-
-
33747139670
-
Nampt/PBEF/Visfatin: A regulator of mammalian health and longevity?
-
Yang H, Lavu S, Sinclair DA. Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Exp Gerontol. 2006;41(8):718-726.
-
(2006)
Exp Gerontol
, vol.41
, Issue.8
, pp. 718-726
-
-
Yang, H.1
Lavu, S.2
Sinclair, D.A.3
-
37
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
-
Yang H, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007; 130(6):1095-1107.
-
(2007)
Cell
, vol.130
, Issue.6
, pp. 1095-1107
-
-
Yang, H.1
-
38
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007;28(2):277-290.
-
(2007)
Mol Cell
, vol.28
, Issue.2
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
39
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583-586.
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 583-586
-
-
Kim, J.E.1
Chen, J.2
Lou, Z.3
-
40
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451(7178):587-590.
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.P.2
Tang, Y.3
Jung, S.Y.4
Qin, J.5
Gu, W.6
-
41
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007; 104(31):12861-12866.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.31
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
42
-
-
33748309231
-
Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multi-functional enzyme CD38
-
Aksoy P, et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multi-functional enzyme CD38. Biochem Biophys Res Commun. 2006;349(1):353-359.
-
(2006)
Biochem Biophys Res Commun
, vol.349
, Issue.1
, pp. 353-359
-
-
Aksoy, P.1
-
43
-
-
33846693322
-
The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals
-
Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23(2):164-170.
-
(2007)
Curr Opin Gastroenterol
, vol.23
, Issue.2
, pp. 164-170
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
44
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661-673.
-
(2008)
Dev Cell
, vol.14
, Issue.5
, pp. 661-673
-
-
Fulco, M.1
-
45
-
-
33846106076
-
A human hepatocellular in vitro model to investigate steatosis
-
Gomez-Lechon MJ, Donato MT, Martinez-Romero A, Jimenez N, Castell JV, O'Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007;165(2):106-116.
-
(2007)
Chem Biol Interact
, vol.165
, Issue.2
, pp. 106-116
-
-
Gomez-Lechon, M.J.1
Donato, M.T.2
Martinez-Romero, A.3
Jimenez, N.4
Castell, J.V.5
O'Connor, J.E.6
-
46
-
-
13944253348
-
Calorie restriction - the SIR2 connection
-
Guarente L, Picard F. Calorie restriction - the SIR2 connection. Cell. 2005;120(4):473-482.
-
(2005)
Cell
, vol.120
, Issue.4
, pp. 473-482
-
-
Guarente, L.1
Picard, F.2
-
47
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 329-340
-
-
Nakahata, Y.1
-
48
-
-
67749089440
-
Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters
-
Zhang T, et al. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem. 2009;284(30):20408-20417.
-
(2009)
J Biol Chem
, vol.284
, Issue.30
, pp. 20408-20417
-
-
Zhang, T.1
-
49
-
-
0034023238
-
New functions of a long-known molecule. Emerging roles of NAD in cellular signaling
-
Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem. 2000;267(6):1550-1564.
-
(2000)
Eur J Biochem
, vol.267
, Issue.6
, pp. 1550-1564
-
-
Ziegler, M.1
-
50
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651-654.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 651-654
-
-
Ramsey, K.M.1
-
51
-
-
4344574540
-
Large-scale characterization of HeLa cell nuclear phosphoproteins
-
Beausoleil SA, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101(33):12130-12135.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.33
, pp. 12130-12135
-
-
Beausoleil, S.A.1
-
52
-
-
33749853607
-
A probability-based approach for high-throughput protein phosphorylation analysis and site localization
-
Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24(10):1285-1292.
-
(2006)
Nat Biotechnol
, vol.24
, Issue.10
, pp. 1285-1292
-
-
Beausoleil, S.A.1
Villen, J.2
Gerber, S.A.3
Rush, J.4
Gygi, S.P.5
-
53
-
-
65449156090
-
Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity
-
Fu J, et al. Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity. J Biol Chem. 2009; 284(11):6832-6840.
-
(2009)
J Biol Chem
, vol.284
, Issue.11
, pp. 6832-6840
-
-
Fu, J.1
-
54
-
-
67449103687
-
Inhibition of SUV39H1 methyltransferase activity by DBC1
-
Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J. Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem. 2009;284(16):10361- 10366.
-
(2009)
J Biol Chem
, vol.284
, Issue.16
, pp. 10361-10366
-
-
Li, Z.1
Chen, L.2
Kabra, N.3
Wang, C.4
Fang, J.5
Chen, J.6
-
55
-
-
34347221253
-
Modulation of estrogen receptor alpha protein level and survival function by DBC-1
-
Trauernicht AM, Kim SJ, Kim NH, Boyer TG. Modulation of estrogen receptor alpha protein level and survival function by DBC-1. Mol Endocrinol. 2007;21(7):1526-1536.
-
(2007)
Mol Endocrinol
, vol.21
, Issue.7
, pp. 1526-1536
-
-
Trauernicht, A.M.1
Kim, S.J.2
Kim, N.H.3
Boyer, T.G.4
-
56
-
-
33744948514
-
Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis
-
Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006;281(17):12093- 12101.
-
(2006)
J Biol Chem
, vol.281
, Issue.17
, pp. 12093-12101
-
-
Malhi, H.1
Bronk, S.F.2
Werneburg, N.W.3
Gores, G.J.4
-
57
-
-
9144271181
-
AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells
-
Zang M, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem. 2004;279(46):47898-47905.
-
(2004)
J Biol Chem
, vol.279
, Issue.46
, pp. 47898-47905
-
-
Zang, M.1
-
58
-
-
36049038217
-
-
Barbosa MT, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007; 21(13):3629-3639.
-
Barbosa MT, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007; 21(13):3629-3639.
-
-
-
|