메뉴 건너뛰기




Volumn 52, Issue 6, 2012, Pages 1413-1437

Machine learning methods for property prediction in chemoinformatics: Quo Vadis?

Author keywords

[No Author keywords available]

Indexed keywords

PREDICTIVE ANALYTICS;

EID: 84862848391     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci200409x     Document Type: Review
Times cited : (212)

References (344)
  • 1
    • 85012688561 scopus 로고
    • Princeton University Press: Princeton, NJ.
    • Bellman, R. E. Dynamic Programming; Princeton University Press: Princeton, NJ, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.E.1
  • 3
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci. U.S.A. 1982, 79 (8) 2554-2558
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 7
    • 0021518106 scopus 로고
    • A Theory of the Learnable
    • Valiant, L. G. A Theory of the Learnable Commun. ACM 1984, 27 (11) 1134-1142
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 8
    • 0001098776 scopus 로고
    • A universal prior for the integers and estimation by minimum description length
    • Rissanen, J. A universal prior for the integers and estimation by minimum description length Ann. Stat. 1983, 11 (2) 416-431
    • (1983) Ann. Stat. , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 9
    • 29144521676 scopus 로고    scopus 로고
    • Chemoinformatics: A new field with a long tradition
    • Gasteiger, J. Chemoinformatics: A new field with a long tradition Anal. Bioanal. Chem. 2006, 384 (1) 57-64
    • (2006) Anal. Bioanal. Chem. , vol.384 , Issue.1 , pp. 57-64
    • Gasteiger, J.1
  • 12
    • 33845780212 scopus 로고    scopus 로고
    • Basic overview of chemoinformatics
    • Engel, T. Basic overview of chemoinformatics J. Chem. Inf. Model. 2006, 46 (6) 2267-2277
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.6 , pp. 2267-2277
    • Engel, T.1
  • 13
    • 79954511288 scopus 로고    scopus 로고
    • Chemoinformatics as a theoretical chemistry discipline
    • Varnek, A.; Baskin, I. I. Chemoinformatics as a theoretical chemistry discipline Mol. Inf. 2011, 30 (1) 20-32
    • (2011) Mol. Inf. , vol.30 , Issue.1 , pp. 20-32
    • Varnek, A.1    Baskin, I.I.2
  • 14
    • 84901022772 scopus 로고    scopus 로고
    • Chemoinformatics: An introduction for computer scientists
    • Brown, N. Chemoinformatics: An introduction for computer scientists ACM Comput. Surv. 2009, 41 (2) 1-38
    • (2009) ACM Comput. Surv. , vol.41 , Issue.2 , pp. 1-38
    • Brown, N.1
  • 15
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs why QSAR often disappoints
    • Maggiora, G. M. On outliers and activity cliffs why QSAR often disappoints J. Chem. Inf. Model. 2006, 46 (4) 1535-1535
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.4 , pp. 1535-1535
    • Maggiora, G.M.1
  • 16
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich, T. G.; Lathrop, R. H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 1997, 89 (1-2) 31-71
    • (1997) Artif. Intell. , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 18
    • 0001746237 scopus 로고
    • General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Solution of the inverse problem in QSAR/QSPR
    • Gordeeva, E. V.; Molchanova, M. S.; Zefirov, N. S. General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Solution of the inverse problem in QSAR/QSPR Tetrahedron Comput. Methodol. 1990, 3 (6) 389-415
    • (1990) Tetrahedron Comput. Methodol. , vol.3 , Issue.6 , pp. 389-415
    • Gordeeva, E.V.1    Molchanova, M.S.2    Zefirov, N.S.3
  • 19
    • 0013490610 scopus 로고
    • Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices)
    • Skvortsova, M. I.; Baskin, I. I.; Slovokhotova, O. L.; Palyulin, V. A.; Zefirov, N. S. Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices) J. Chem. Inf. Comput. Sci. 1993, 33 (4) 630-634
    • (1993) J. Chem. Inf. Comput. Sci. , vol.33 , Issue.4 , pp. 630-634
    • Skvortsova, M.I.1    Baskin, I.I.2    Slovokhotova, O.L.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 20
    • 0000672441 scopus 로고
    • Design of molecules from quantitative structure-activity relationship models. 1. Information transfer between path and vertex degree counts
    • Kier, L. B.; Hall, L. H.; Frazer, J. W. Design of molecules from quantitative structure-activity relationship models. 1. Information transfer between path and vertex degree counts J. Chem. Inf. Comput. Sci. 1993, 33 (1) 143-147
    • (1993) J. Chem. Inf. Comput. Sci. , vol.33 , Issue.1 , pp. 143-147
    • Kier, L.B.1    Hall, L.H.2    Frazer, J.W.3
  • 22
    • 10044267953 scopus 로고    scopus 로고
    • QSPR using MOLGEN-QSPR: The example of haloalkane boiling points
    • Rücker, C.; Meringer, M.; Kerber, A. QSPR using MOLGEN-QSPR: The example of haloalkane boiling points J. Chem. Inf. Comput. Sci. 2004, 44 (6) 2070-2076
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.6 , pp. 2070-2076
    • Rücker, C.1    Meringer, M.2    Kerber, A.3
  • 24
    • 74049144437 scopus 로고    scopus 로고
    • A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem
    • Wong, W.; Burkowski, F. A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem J. Cheminf. 2009, 1 (1) 4
    • (2009) J. Cheminf. , vol.1 , Issue.1 , pp. 4
    • Wong, W.1    Burkowski, F.2
  • 25
    • 77952651054 scopus 로고    scopus 로고
    • Exhaustive structure generation for inverse-QSPR/QSAR
    • Miyao, T.; Arakawa, M.; Funatsu, K. Exhaustive structure generation for inverse-QSPR/QSAR Mol. Inf. 2010, 29 (1-2) 111-125
    • (2010) Mol. Inf. , vol.29 , Issue.1-2 , pp. 111-125
    • Miyao, T.1    Arakawa, M.2    Funatsu, K.3
  • 26
    • 78049448019 scopus 로고    scopus 로고
    • Generative models for chemical structures
    • White, D.; Wilson, R. C. Generative models for chemical structures J. Chem. Inf. Model. 2010, 50 (7) 1257-1274
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.7 , pp. 1257-1274
    • White, D.1    Wilson, R.C.2
  • 27
    • 0001022357 scopus 로고    scopus 로고
    • A neural device for searching direct correlations between structures and properties of chemical compounds
    • Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A neural device for searching direct correlations between structures and properties of chemical compounds J. Chem. Inf. Comput. Sci. 1997, 37 (4) 715-721
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , Issue.4 , pp. 715-721
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 28
    • 0029277327 scopus 로고
    • ChemNet: A novel neural network based method for graph/property mapping
    • Kireev, D. B. ChemNet: A novel neural network based method for graph/property mapping J. Chem. Inf. Comput. Sci. 1995, 35 (2) 175-80
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , Issue.2 , pp. 175-180
    • Kireev, D.B.1
  • 29
    • 84857726149 scopus 로고    scopus 로고
    • Molecular structure encoding into artificial neural networks topology
    • Ivanciuc, O. Molecular structure encoding into artificial neural networks topology Rom. Chem. Q. Rev. 2001, 8, 197-220
    • (2001) Rom. Chem. Q. Rev. , vol.8 , pp. 197-220
    • Ivanciuc, O.1
  • 30
    • 0033878122 scopus 로고    scopus 로고
    • Application of cascade correlation networks for structures to chemistry
    • Bianucci, A. M.; Micheli, A.; Sperduti, A.; Starita, A. Application of cascade correlation networks for structures to chemistry Appl. Intell. 2000, 12 (1-2) 117-146
    • (2000) Appl. Intell. , vol.12 , Issue.1-2 , pp. 117-146
    • Bianucci, A.M.1    Micheli, A.2    Sperduti, A.3    Starita, A.4
  • 31
    • 0035221306 scopus 로고    scopus 로고
    • Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
    • Micheli, A.; Sperduti, A.; Starita, A.; Bianucci, A. M. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines J. Chem. Inf. Comput. Sci. 2001, 41 (1) 202-218
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.1 , pp. 202-218
    • Micheli, A.1    Sperduti, A.2    Starita, A.3    Bianucci, A.M.4
  • 32
    • 33847047522 scopus 로고    scopus 로고
    • Predicting activities without computing descriptors: Graph machines for QSAR
    • Goulon, A.; Picot, T.; Duprat, A.; Dreyfus, G. Predicting activities without computing descriptors: Graph machines for QSAR SAR QSAR Environ. Res. 2007, 18 (1-2) 141-153
    • (2007) SAR QSAR Environ. Res. , vol.18 , Issue.1-2 , pp. 141-153
    • Goulon, A.1    Picot, T.2    Duprat, A.3    Dreyfus, G.4
  • 34
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular structure-activity relationship analysis with support vector machines
    • Mahé, P.; Ueda, N.; Akutsu, T.; Perret, J.-L.; Vert, J.-P. Graph kernels for molecular structure-activity relationship analysis with support vector machines J. Chem. Inf. Model. 2005, 45 (4) 939-951
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.4 , pp. 939-951
    • Mahé, P.1    Ueda, N.2    Akutsu, T.3    Perret, J.-L.4    Vert, J.-P.5
  • 35
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • Mahe, P.; Ralaivola, L.; Stoven, V.; Vert, J.-P. The pharmacophore kernel for virtual screening with support vector machines J. Chem. Inf. Model. 2006, 46 (5) 2003-2014
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.5 , pp. 2003-2014
    • Mahe, P.1    Ralaivola, L.2    Stoven, V.3    Vert, J.-P.4
  • 37
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, S. J.; Chen, J.; Phung, P.; Ralaivola, L.; Baldi, P. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity Bioinformatics 2005, 21, I359-I368
    • (2005) Bioinformatics , vol.21
    • Swamidass, S.J.1    Chen, J.2    Phung, P.3    Ralaivola, L.4    Baldi, P.5
  • 38
    • 33646246986 scopus 로고    scopus 로고
    • Kernel functions for attributed molecular graphs - A new similarity based approach to ADME prediction inclassification and regression
    • Fröhlich, H.; Wegner, J.; Sieker, F.; Zell, Z. Kernel functions for attributed molecular graphs - A new similarity based approach to ADME prediction inclassification and regression QSAR Comb. Sci. 2006, 25 (4) 317-326
    • (2006) QSAR Comb. Sci. , vol.25 , Issue.4 , pp. 317-326
    • Fröhlich, H.1    Wegner, J.2    Sieker, F.3    Zell, Z.4
  • 40
    • 77952616341 scopus 로고    scopus 로고
    • Graph kernels for molecular similarity
    • Rupp, M.; Schneider, G. Graph kernels for molecular similarity Mol. Inf. 2010, 29 (4) 266-273
    • (2010) Mol. Inf. , vol.29 , Issue.4 , pp. 266-273
    • Rupp, M.1    Schneider, G.2
  • 43
    • 84955693483 scopus 로고    scopus 로고
    • Multivariate Data Analysis in Chemistry
    • In; Gasteiger, J. Wiley-VCH: Weinheim
    • Varmuza, K., Multivariate Data Analysis in Chemistry. In Handbook of Chemoinformatics. From Data to Knowledge; Gasteiger, J., Ed.; Wiley-VCH: Weinheim, 2003; pp 1098-1133.
    • (2003) Handbook of Chemoinformatics. from Data to Knowledge , pp. 1098-1133
    • Varmuza, K.1
  • 45
    • 34848824629 scopus 로고    scopus 로고
    • Applications of Support Vector Machines in Chemistry
    • In; Lipkowitz, K. B. Cundari, T. R. John Wiley & Sons, Inc. Hoboken, NJ, Vol.
    • Ivanciuc, O. Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Cundari, T. R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; Vol. 23, pp 291-400.
    • (2007) Reviews in Computational Chemistry , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 47
    • 33748373826 scopus 로고    scopus 로고
    • Neural networks as a method for elucidating structure-property relationships for organic compounds
    • Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Neural networks as a method for elucidating structure-property relationships for organic compounds Russ. Chem. Rev. 2003, 72 (7) 629-649
    • (2003) Russ. Chem. Rev. , vol.72 , Issue.7 , pp. 629-649
    • Halberstam, N.M.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 48
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Mod 2010, 50 (2) 205-216
    • (2010) J. Chem. Inf. Mod , vol.50 , Issue.2 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 49
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
    • Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches Drug Discovery Today 2007, 12 (5-6) 225-33
    • (2007) Drug Discovery Today , vol.12 , Issue.5-6 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 53
    • 18344383728 scopus 로고    scopus 로고
    • Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols
    • Farkas, O.; Heberger, K. Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols J. Chem. Inf. Model. 2005, 45 (2) 339-346
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.2 , pp. 339-346
    • Farkas, O.1    Heberger, K.2
  • 56
    • 13844318087 scopus 로고    scopus 로고
    • Use of structure descriptors to discriminate between modes of toxic action of phenols
    • Spycher, S.; Pellegrini, E.; Gasteiger, J. Use of structure descriptors to discriminate between modes of toxic action of phenols J. Chem. Inf. Model. 2005, 45 (1) 200-8
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.1 , pp. 200-208
    • Spycher, S.1    Pellegrini, E.2    Gasteiger, J.3
  • 61
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • Burden, F. R.; Winkler, D. A. Robust QSAR models using Bayesian regularized neural networks J. Med. Chem. 1999, 42 (16) 3183-3187
    • (1999) J. Med. Chem. , vol.42 , Issue.16 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 62
    • 0035526164 scopus 로고    scopus 로고
    • Search for predictive generic model of aqueous solubility using Bayesian neural nets
    • Bruneau, P. Search for predictive generic model of aqueous solubility using Bayesian neural nets J. Chem. Inf. Comput. Sci. 2001, 41 (6) 1605-1616
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.6 , pp. 1605-1616
    • Bruneau, P.1
  • 63
    • 0001245212 scopus 로고    scopus 로고
    • Use of automatic relevance determination in QSAR studies using Bayesian neural networks
    • Burden, F. R.; Ford, M. G.; Whitley, D. C.; Winkler, D. A. Use of automatic relevance determination in QSAR studies using Bayesian neural networks J. Chem. Inf. Comput. Sci. 2000, 40 (6) 1423-1430
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , Issue.6 , pp. 1423-1430
    • Burden, F.R.1    Ford, M.G.2    Whitley, D.C.3    Winkler, D.A.4
  • 65
    • 0035353660 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship studies using Gaussian processes
    • Burden, F. R. Quantitative structure-activity relationship studies using Gaussian processes J. Chem. Inf. Comput. Sci. 2001, 41 (3) 830-835
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.3 , pp. 830-835
    • Burden, F.R.1
  • 66
    • 5444224314 scopus 로고    scopus 로고
    • Nonlinear prediction of quantitative structure-activity relationships
    • Tino, P.; Nabney, I. T.; Williams, B. S.; Losel, J.; Sun, Y. Nonlinear prediction of quantitative structure-activity relationships J. Chem. Inf. Comput. Sci. 2004, 44 (5) 1647-1653
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.5 , pp. 1647-1653
    • Tino, P.1    Nabney, I.T.2    Williams, B.S.3    Losel, J.4    Sun, Y.5
  • 67
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova, O.; Csanyi, G.; Gola, J. M. R.; Segall, M. D. Gaussian processes: A method for automatic QSAR modeling of ADME properties J. Chem. Inf. Model. 2007, 47 (5) 1847-1857
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.5 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.R.3    Segall, M.D.4
  • 68
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. Bootstrap methods: Another look at the jackknife Ann. Stat. 1979, 7, 1-26
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 71
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV Machines
    • In; Smola, A. J. Bartlett, P. L. Schölkopf, B. Schuurmans, D. MIT Press: Cambridge, MA
    • Platt, J. Probabilities for SV Machines. In Advances in Large Margin Classifiers; Smola, A. J.; Bartlett, P. L.; Schölkopf, B.; Schuurmans, D., Eds.; MIT Press: Cambridge, MA, 2000; pp 61-74.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 72
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • Kwok, J. T. Y.; Tsang, I. W. H. The pre-image problem in kernel methods IEEE Trans. Neural Netw. 2004, 15 (6) 1517-1525
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.T.Y.1    Tsang, I.W.H.2
  • 73
    • 0036557849 scopus 로고    scopus 로고
    • Neural network studies. 4. Introduction to associative neural networks
    • Tetko, I. V. Neural network studies. 4. Introduction to associative neural networks J. Chem. Inf. Comput. Sci. 2002, 42 (3) 717-728
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , Issue.3 , pp. 717-728
    • Tetko, I.V.1
  • 75
    • 0037287399 scopus 로고    scopus 로고
    • Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds
    • Artemenko, N. V.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds Russ. Chem. Bull. 2003, 52 (1) 20-29
    • (2003) Russ. Chem. Bull. , vol.52 , Issue.1 , pp. 20-29
    • Artemenko, N.V.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 76
    • 37649009464 scopus 로고    scopus 로고
    • Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies
    • Zhokhova, N. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, A. N.; Zefirov, N. S. Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies Dokl. Chem. 2007, 417 (2) 282-284
    • (2007) Dokl. Chem. , vol.417 , Issue.2 , pp. 282-284
    • Zhokhova, N.I.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, A.N.4    Zefirov, N.S.5
  • 79
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors Mach. Learn. 1996, 24 (2) 123-140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 80
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests Mach. Learn. 2001, 45 (1) 5-32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 81
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1947-1958
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 82
    • 10044227497 scopus 로고    scopus 로고
    • Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors
    • Guha, R.; Jurs, P. C. Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors J. Chem. Inf. Comput. Sci. 2004, 44 (6) 2179-2189
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.6 , pp. 2179-2189
    • Guha, R.1    Jurs, P.C.2
  • 83
    • 23844503717 scopus 로고    scopus 로고
    • Application of the random forest method in studies of local lymph node assay based skin sensitization data
    • Li, S.; Fedorowicz, A.; Singh, H.; Soderholm, S. C. Application of the random forest method in studies of local lymph node assay based skin sensitization data J. Chem. Inf. Model. 2005, 45 (4) 952-964
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.4 , pp. 952-964
    • Li, S.1    Fedorowicz, A.2    Singh, H.3    Soderholm, S.C.4
  • 84
    • 0040639069 scopus 로고    scopus 로고
    • Stacking Bagged and Dagged Models
    • In; Fisher, D. H. Morgan Kaufmann Publishers: San Francisco, CA
    • Ting, K. M.; Witten, I. H. Stacking Bagged and Dagged Models. In Fourteenth International Conference on Machine Learning; Fisher, D. H., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1997; pp 367-375.
    • (1997) Fourteenth International Conference on Machine Learning , pp. 367-375
    • Ting, K.M.1    Witten, I.H.2
  • 85
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T. K. The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. 1998, 20 (8) 832-844
    • (1998) IEEE Trans. Pattern Anal. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 86
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. Stacked generalization Neural Netw. 1992, 5 (2) 241-259
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 87
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L. Stacked regressions Mach. Learn. 1996, 24 (1) 49-64
    • (1996) Mach. Learn. , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 89
    • 2942717219 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA)
    • Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA) J. Chem. Inf. Comput. Sci. 2004, 44 (3) 931-939
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.3 , pp. 931-939
    • Wegner, J.K.1    Froehlich, H.2    Zell, A.3
  • 90
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. Greedy function approximation: A gradient boosting machine Ann. Stat. 2001, 29 (5) 1189-1232
    • (2001) Ann. Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 91
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman, J. H. Stochastic gradient boosting Comput. Stat. Data An. 2002, 38 (4) 367-378
    • (2002) Comput. Stat. Data An. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 92
    • 20444399504 scopus 로고    scopus 로고
    • Boosting: An ensemble learning tool for compound classification and QSAR modeling
    • Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song, Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling J. Chem. Inf. Model. 2005, 45 (3) 786-799
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.3 , pp. 786-799
    • Svetnik, V.1    Wang, T.2    Tong, C.3    Liaw, A.4    Sheridan, R.P.5    Song, Q.6
  • 93
    • 0036161257 scopus 로고    scopus 로고
    • Linear Programming boosting via column generation
    • Demiriz, A.; Bennett, K. P.; Shawe-Taylor, J. Linear Programming boosting via column generation Mach. Learn. 2002, 46 (1-3) 225-254
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 94
    • 60949105177 scopus 로고    scopus 로고
    • GBoost: A mathematical programming approach to graph classification and regression
    • Saigo, H.; Nowozin, S.; Kadowaki, T.; Kudo, T.; Tsuda, K. GBoost: A mathematical programming approach to graph classification and regression Mach. Learn. 2009, 75 (1) 69-89
    • (2009) Mach. Learn. , vol.75 , Issue.1 , pp. 69-89
    • Saigo, H.1    Nowozin, S.2    Kadowaki, T.3    Kudo, T.4    Tsuda, K.5
  • 95
    • 34547984616 scopus 로고    scopus 로고
    • A Linear Programming Approach for Molecular QSAR Analysis
    • In; Gaertner, T. Garriga, G. C. Meinl, T. Berlin
    • Saigo, H.; Kadowaki, T.; Tsuda, K., A Linear Programming Approach for Molecular QSAR Analysis. In International Workshop on Mining and Learning with Graphs 2006; Gaertner, T.; Garriga, G. C.; Meinl, T., Eds.; Berlin, 2006; pp 85-96.
    • (2006) International Workshop on Mining and Learning with Graphs 2006 , pp. 85-96
    • Saigo, H.1    Kadowaki, T.2    Tsuda, K.3
  • 97
    • 0001938951 scopus 로고    scopus 로고
    • Transductive Inference for Text Classification Using Support Vector Machines
    • In; Kaufmann, M. Bled, Slovenia
    • Joachims, T. Transductive Inference for Text Classification Using Support Vector Machines. In International conference on Machine Learning (ICML); Kaufmann, M., Ed.; Bled, Slovenia, 1999; pp 200-209.
    • (1999) International Conference on Machine Learning (ICML) , pp. 200-209
    • Joachims, T.1
  • 99
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • Schein, A. I.; Ungar, L. H. Active learning for logistic regression: An evaluation Mach. Learn. 2007, 68 (3) 235-265
    • (2007) Mach. Learn. , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 101
    • 34547875776 scopus 로고    scopus 로고
    • Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants
    • Danziger, S. A.; Zeng, J.; Wang, Y.; Brachmann, R. K.; Lathrop, R. H. Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants Bioinformatics 2007, 23 (13) i104-i114
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Danziger, S.A.1    Zeng, J.2    Wang, Y.3    Brachmann, R.K.4    Lathrop, R.H.5
  • 103
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • Fukumizu, K. Statistical active learning in multilayer perceptrons IEEE Trans. Neural Netw. 2000, 11 (1) 17-26
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.1 , pp. 17-26
    • Fukumizu, K.1
  • 104
    • 0033322116 scopus 로고    scopus 로고
    • Improving generalization ability through active learning
    • Vijayakumart, S.; Ogawa, H. Improving generalization ability through active learning IEICE Trans. Inf. Syst. 1999, E82-D (2) 480-487
    • (1999) IEICE Trans. Inf. Syst. , vol.E82-D , Issue.2 , pp. 480-487
    • Vijayakumart, S.1    Ogawa, H.2
  • 106
    • 9444283161 scopus 로고    scopus 로고
    • Active learning support vector machines for optimal sample selection in classification
    • Zomer, S.; Del Nogal Sánchez, M.; Brereton, R. G.; Pérez Pavón, J. L. Active learning support vector machines for optimal sample selection in classification J. Chemom. 2004, 18 (6) 294-305
    • (2004) J. Chemom. , vol.18 , Issue.6 , pp. 294-305
    • Zomer, S.1    Del Nogal Sánchez, M.2    Brereton, R.G.3    Pérez Pavón, J.L.4
  • 107
    • 33749445935 scopus 로고    scopus 로고
    • Active learning for image retrieval with Co-SVM
    • Cheng, J.; Wang, K. Active learning for image retrieval with Co-SVM Pattern Recogn. 2007, 40 (1) 330-334
    • (2007) Pattern Recogn. , vol.40 , Issue.1 , pp. 330-334
    • Cheng, J.1    Wang, K.2
  • 108
    • 77952514780 scopus 로고    scopus 로고
    • A novel active learning approach for SVM in the presence of multi-views
    • Gu, P.; Zhu, Q.; Zhang, C. A novel active learning approach for SVM in the presence of multi-views J. Chem. Inf. Comput. Sci. 2010, 7 (2) 317-324
    • (2010) J. Chem. Inf. Comput. Sci. , vol.7 , Issue.2 , pp. 317-324
    • Gu, P.1    Zhu, Q.2    Zhang, C.3
  • 109
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes, A.; Ertekin, S.; Weston, J.; Bottou, L. Fast kernel classifiers with online and active learning J. Mach. Learn. Res. 2005, 6, 1579-1619
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 110
    • 38649118902 scopus 로고    scopus 로고
    • Second-order SMO improves SVM online and active learning
    • Glasmachers, T.; Igel, C. Second-order SMO improves SVM online and active learning Neural Comput. 2008, 20 (2) 374-382
    • (2008) Neural Comput. , vol.20 , Issue.2 , pp. 374-382
    • Glasmachers, T.1    Igel, C.2
  • 111
    • 0034592915 scopus 로고    scopus 로고
    • Active Learning Using Adaptive Resampling
    • In; Ramakrishnan, R. Stolfo, S. Bayardo, R. Parsa, I. Ramakrishnan, R. Stolfo, S. Bayardo, R. Parsa, I. ACM: Boston, MA
    • Iyengar, V. S.; Apte, C.; Zhang, T., Active Learning Using Adaptive Resampling. In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Ramakrishnan, R.; Stolfo, S.; Bayardo, R.; Parsa, I.; Ramakrishnan, R.; Stolfo, S.; Bayardo, R.; Parsa, I., Eds.; ACM: Boston, MA, 2000; pp 91-98.
    • (2000) Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 91-98
    • Iyengar, V.S.1    Apte, C.2    Zhang, T.3
  • 112
    • 13444292015 scopus 로고    scopus 로고
    • Active learning based on maximizing information gain for content-based image retrieval
    • Xu, J.; Shi, P. Active learning based on maximizing information gain for content-based image retrieval J. Southeast Univ. (Engl. Ed.) 2004, 20 (4) 431-435
    • (2004) J. Southeast Univ. (Engl. Ed.) , vol.20 , Issue.4 , pp. 431-435
    • Xu, J.1    Shi, P.2
  • 113
    • 33646509357 scopus 로고    scopus 로고
    • Combining active learning and boosting for Naïve Bayes text classifiers
    • Kim, H. J.; Kim, J. U. Combining active learning and boosting for Naïve Bayes text classifiers Lect. Notes Comput. Sci. 2004, 3129, 519-527
    • (2004) Lect. Notes Comput. Sci. , vol.3129 , pp. 519-527
    • Kim, H.J.1    Kim, J.U.2
  • 114
    • 78249243073 scopus 로고    scopus 로고
    • Bayesian active learning using arbitrary binary valued queries
    • Yang, L.; Hanneke, S.; Carbonell, J. Bayesian active learning using arbitrary binary valued queries Lect. Notes Comput. Sci. 2010, 6331, 50-58
    • (2010) Lect. Notes Comput. Sci. , vol.6331 , pp. 50-58
    • Yang, L.1    Hanneke, S.2    Carbonell, J.3
  • 115
    • 38949099732 scopus 로고    scopus 로고
    • Active learning by spherical subdivision
    • Henrich, F. F.; Obermayer, K. Active learning by spherical subdivision J. Mach. Learn. Res. 2008, 9, 105-130
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 105-130
    • Henrich, F.F.1    Obermayer, K.2
  • 117
    • 0036798637 scopus 로고    scopus 로고
    • ND QSAR: A medicinal chemist's point of view
    • Müller, G. nD QSAR: A medicinal chemist's point of view Quant. Struct.-Act. Relat. 2002, 21 (4) 391-396
    • (2002) Quant. Struct.-Act. Relat. , vol.21 , Issue.4 , pp. 391-396
    • Müller, G.1
  • 118
    • 0032161105 scopus 로고    scopus 로고
    • Four-dimensional quantitative structure: Activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists
    • Albuquerque, M. G.; Hopfinger, A. J.; Barreiro, E. J.; De Alencastro, R. B. Four-dimensional quantitative structure: Activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists J. Chem. Inf. Comput. Sci. 1998, 38 (5) 925-938
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , Issue.5 , pp. 925-938
    • Albuquerque, M.G.1    Hopfinger, A.J.2    Barreiro, E.J.3    De Alencastro, R.B.4
  • 119
    • 0031918488 scopus 로고    scopus 로고
    • Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis
    • Klein, C. D. P.; Hopfinger, A. J. Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis Pharm. Res. 1998, 15 (2) 303-311
    • (1998) Pharm. Res. , vol.15 , Issue.2 , pp. 303-311
    • Klein, C.D.P.1    Hopfinger, A.J.2
  • 120
    • 0001609280 scopus 로고    scopus 로고
    • Construction of a virtual high throughput screen by 4D-QSAR analysis: Application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b
    • Hopfinger, A. J.; Reaka, A.; Venkatarangan, P.; Duca, J. S.; Wang, S. Construction of a virtual high throughput screen by 4D-QSAR analysis: Application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b J. Chem. Inf. Comput. Sci. 1999, 39 (6) 1151-1160
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , Issue.6 , pp. 1151-1160
    • Hopfinger, A.J.1    Reaka, A.2    Venkatarangan, P.3    Duca, J.S.4    Wang, S.5
  • 121
    • 0035470284 scopus 로고    scopus 로고
    • Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation
    • Duca, J. S.; Hopfinger, A. J. Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation J. Chem. Inf. Comput. Sci. 2001, 41 (3-6) 1367-1387
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.3-6 , pp. 1367-1387
    • Duca, J.S.1    Hopfinger, A.J.2
  • 122
    • 0035498341 scopus 로고    scopus 로고
    • 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling
    • Ravi, M.; Hopfinger, A. J.; Hormann, R. E.; Dinan, L. 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling J. Chem. Inf. Comput. Sci. 2001, 41 (6) 1587-1604
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.6 , pp. 1587-1604
    • Ravi, M.1    Hopfinger, A.J.2    Hormann, R.E.3    Dinan, L.4
  • 123
    • 0035146602 scopus 로고    scopus 로고
    • A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors
    • Santos-Filho, O. A.; Hopfinger, A. J. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors J. Comput.-Aided Mol. Des. 2001, 15 (1) 1-12
    • (2001) J. Comput.-Aided Mol. Des. , vol.15 , Issue.1 , pp. 1-12
    • Santos-Filho, O.A.1    Hopfinger, A.J.2
  • 124
    • 0036794599 scopus 로고    scopus 로고
    • Multidimensional QSAR: Moving from three- to five-dimensional concepts
    • Vedani, A.; Dobler, M. Multidimensional QSAR: Moving from three- to five-dimensional concepts Quant. Struct.-Act. Relat. 2002, 21 (4) 382-390
    • (2002) Quant. Struct.-Act. Relat. , vol.21 , Issue.4 , pp. 382-390
    • Vedani, A.1    Dobler, M.2
  • 125
    • 0037161586 scopus 로고    scopus 로고
    • 5D-QSAR: The key for simulating induced fit?
    • Vedani, A.; Dobler, M. 5D-QSAR: the key for simulating induced fit? J. Med. Chem. 2002, 45 (11) 2139-49
    • (2002) J. Med. Chem. , vol.45 , Issue.11 , pp. 2139-2149
    • Vedani, A.1    Dobler, M.2
  • 126
    • 20144371130 scopus 로고    scopus 로고
    • Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor
    • Vedani, A.; Dobler, M.; Lill, M. A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor J. Med. Chem. 2005, 48 (11) 3700-3703
    • (2005) J. Med. Chem. , vol.48 , Issue.11 , pp. 3700-3703
    • Vedani, A.1    Dobler, M.2    Lill, M.A.3
  • 127
    • 33845791138 scopus 로고    scopus 로고
    • Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes
    • Bonachera, F.; Parent, B.; Barbosa, F.; Froloff, N.; Horvath, D. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes J. Chem. Inf. Model. 2006, 46 (6) 2457-2477
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.6 , pp. 2457-2477
    • Bonachera, F.1    Parent, B.2    Barbosa, F.3    Froloff, N.4    Horvath, D.5
  • 128
    • 79958834912 scopus 로고    scopus 로고
    • Property-labelled fragment descriptors
    • Ruggiu, F.; Marcou, G.; Varnek, A.; Horvath, D. I. Property-labelled fragment descriptors Mol. Inf. 2010, 29 (12) 855-868
    • (2010) Mol. Inf. , vol.29 , Issue.12 , pp. 855-868
    • Ruggiu, F.1    Marcou, G.2    Varnek, A.3    Horvath, D.I.4
  • 129
    • 84862892485 scopus 로고    scopus 로고
    • version 5.9; ChemAxon: Budapest, Hungary, (accessed April 04, 2012).
    • JChem, version 5.9; ChemAxon: Budapest, Hungary, 2012. http://www.chemaxon.com/jchem/intro/index.html (accessed April 04, 2012).
    • (2012) JChem
  • 130
    • 34250796895 scopus 로고    scopus 로고
    • Stochastic versus stepwise strategies for quantitative structure-activity relationship generation: How much effort may the mining for successful QSAR models take?
    • Horvath, D.; Bonachera, F.; Solov'ev, V.; Gaudin, C.; Varnek, A. Stochastic versus stepwise strategies for quantitative structure-activity relationship generation: How much effort may the mining for successful QSAR models take? J. Chem. Inf. Mod 2007, 47 (3) 927-939
    • (2007) J. Chem. Inf. Mod , vol.47 , Issue.3 , pp. 927-939
    • Horvath, D.1    Bonachera, F.2    Solov'Ev, V.3    Gaudin, C.4    Varnek, A.5
  • 131
    • 0345117314 scopus 로고    scopus 로고
    • Multimode ligand binding in receptor site modeling: Implementation in CoMFA
    • Lukacova, V.; Balaz, S. Multimode ligand binding in receptor site modeling: Implementation in CoMFA J. Chem. Inf. Comput. Sci. 2003, 43 (6) 2093-2105
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 2093-2105
    • Lukacova, V.1    Balaz, S.2
  • 132
    • 33846883939 scopus 로고    scopus 로고
    • Structural determinants of binding of aromates to extracellular matrix: A multi-species multi-mode CoMFA study
    • Zhang, Y.; Lukacova, V.; Bartus, V.; Balaz, S. Structural determinants of binding of aromates to extracellular matrix: A multi-species multi-mode CoMFA study Chem. Res. Toxicol. 2007, 20 (1) 11-19
    • (2007) Chem. Res. Toxicol. , vol.20 , Issue.1 , pp. 11-19
    • Zhang, Y.1    Lukacova, V.2    Bartus, V.3    Balaz, S.4
  • 134
    • 33750088958 scopus 로고    scopus 로고
    • Multi-instance learning from supervised view
    • Zhou, Z. H. Multi-instance learning from supervised view J. Comput. Sci. Tech. 2006, 21 (5) 800-809
    • (2006) J. Comput. Sci. Tech. , vol.21 , Issue.5 , pp. 800-809
    • Zhou, Z.H.1
  • 136
    • 84898935332 scopus 로고    scopus 로고
    • A Framework for Multiple-Instance Learning
    • In; Jordan, M. I. Kearns, M. J. Solla, S. A. MIT Press: Cambridge, Vol.
    • Maron, O.; Lozano-Perez, T. A Framework for Multiple-Instance Learning. In Advances in Neural Information Processing Systems 10; Jordan, M. I.; Kearns, M. J.; Solla, S. A., Eds.; MIT Press: Cambridge, 1998; Vol. 10, pp 570-576.
    • (1998) Advances in Neural Information Processing Systems 10 , vol.10 , pp. 570-576
    • Maron, O.1    Lozano-Perez, T.2
  • 141
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S. H.; De Raedt, L. Inductive logic programming: Theory and methods J. Logic Program. 1994, 19 (20) 629-679
    • (1994) J. Logic Program. , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.H.1    De Raedt, L.2
  • 144
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
    • King, R. D.; Muggleton, S. H.; Srinivasan, A.; Sternberg, M. J. E. Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (1) 438-442
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , Issue.1 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.J.E.4
  • 145
    • 0030212927 scopus 로고    scopus 로고
    • Theories for mutagenicity: A study in first-order and feature-based induction
    • Srinivasana, A.; Muggleton, S. H.; Sternberg, M. J. E.; King, R. D. Theories for mutagenicity: A study in first-order and feature-based induction Artif. Intell. 1996, 85 (1-2) 277-299
    • (1996) Artif. Intell. , vol.85 , Issue.1-2 , pp. 277-299
    • Srinivasana, A.1    Muggleton, S.H.2    Sternberg, M.J.E.3    King, R.D.4
  • 146
    • 34250876925 scopus 로고    scopus 로고
    • A novel logic-based approach for quantitative toxicology prediction
    • Amini, A.; Muggleton, S. H.; Lodhi, H.; Sternberg, M. J. E. A novel logic-based approach for quantitative toxicology prediction J. Chem. Inf. Model. 2007, 47 (3) 998-1006
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.3 , pp. 998-1006
    • Amini, A.1    Muggleton, S.H.2    Lodhi, H.3    Sternberg, M.J.E.4
  • 147
    • 0042672725 scopus 로고    scopus 로고
    • Structure activity relationships (SAR) and pharmacophore discovery using Inductive Logic Programming (ILP)
    • Sternberg, M. J. E.; Muggleton, S. H. Structure activity relationships (SAR) and pharmacophore discovery using Inductive Logic Programming (ILP) QSAR Comb. Sci. 2003, 22 (5) 527-532
    • (2003) QSAR Comb. Sci. , vol.22 , Issue.5 , pp. 527-532
    • Sternberg, M.J.E.1    Muggleton, S.H.2
  • 148
    • 34247386376 scopus 로고    scopus 로고
    • Support vector inductive logic programming outperforms the Naive Bayes Classifier and inductive logic programming for the classification of bioactive chemical compounds
    • Cannon, E. O.; Amini, A.; Bender, A.; Sternberg, M. J. E.; Muggleton, S. H.; Glen, R. C.; Mitchell, J. B. O. Support vector inductive logic programming outperforms the Naive Bayes Classifier and inductive logic programming for the classification of bioactive chemical compounds J. Comput.-Aided Mol. Des. 2007, 21 (5) 269-280
    • (2007) J. Comput.-Aided Mol. Des. , vol.21 , Issue.5 , pp. 269-280
    • Cannon, E.O.1    Amini, A.2    Bender, A.3    Sternberg, M.J.E.4    Muggleton, S.H.5    Glen, R.C.6    Mitchell, J.B.O.7
  • 149
    • 45749130703 scopus 로고    scopus 로고
    • Scaffold hopping in drug discovery using inductive logic programming
    • Tsunoyama, K.; Amini, A.; Sternberg, M. J. E.; Muggleton, S. H. Scaffold hopping in drug discovery using inductive logic programming J. Chem. Inf. Model. 2008, 48 (5) 949-957
    • (2008) J. Chem. Inf. Model. , vol.48 , Issue.5 , pp. 949-957
    • Tsunoyama, K.1    Amini, A.2    Sternberg, M.J.E.3    Muggleton, S.H.4
  • 150
    • 0031261477 scopus 로고    scopus 로고
    • The discovery of indicator variables for QSAR using inductive logic programming
    • King, R. D.; Srinivasan, A. The discovery of indicator variables for QSAR using inductive logic programming J. Comput.-Aided Mol. Des. 1997, 11 (6) 571-580
    • (1997) J. Comput.-Aided Mol. Des. , vol.11 , Issue.6 , pp. 571-580
    • King, R.D.1    Srinivasan, A.2
  • 151
    • 0037122709 scopus 로고    scopus 로고
    • New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors
    • Marchand-Geneste, N.; Watson, K. A.; Alsberg, B. K.; King, R. D. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors J. Med. Chem. 2002, 45 (2) 399-409
    • (2002) J. Med. Chem. , vol.45 , Issue.2 , pp. 399-409
    • Marchand-Geneste, N.1    Watson, K.A.2    Alsberg, B.K.3    King, R.D.4
  • 152
    • 38949193230 scopus 로고    scopus 로고
    • An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming
    • Buttingsrud, B.; King, R. D.; Alsberg, B. K. An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming J. Chemom. 2007, 21 (12) 509-519
    • (2007) J. Chemom. , vol.21 , Issue.12 , pp. 509-519
    • Buttingsrud, B.1    King, R.D.2    Alsberg, B.K.3
  • 153
    • 61949280507 scopus 로고    scopus 로고
    • Inductive transfer of knowledge: Application of multi-task learning and feature net approaches to model tissue-air partition coefficients
    • Varnek, A.; Gaudin, C.; Marcou, G.; Baskin, I.; Pandey, A. K.; Tetko, I. V. Inductive transfer of knowledge: Application of multi-task learning and feature net approaches to model tissue-air partition coefficients J. Chem. Inf. Model. 2009, 49 (1) 133-144
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.1 , pp. 133-144
    • Varnek, A.1    Gaudin, C.2    Marcou, G.3    Baskin, I.4    Pandey, A.K.5    Tetko, I.V.6
  • 154
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. Multitask learning Mach. Learn. 1997, 28 (1) 41-75
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 156
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • Markou, M.; Singh, S. Novelty detection: A review-Part 1: Statistical approaches Signal Process. 2003, 83 (12) 2481-2497
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 157
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 2:: Neural network based approaches
    • Markou, M.; Singh, S. Novelty detection: A review-Part 2:: Neural network based approaches Signal Process. 2003, 83 (12) 2499-2521
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 158
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J.; Duin, R. P. W. Support vector data description Mach. Learn. 2004, 54 (1) 45-66
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 159
    • 37249061630 scopus 로고    scopus 로고
    • Ligand-based virtual screening by novelty detection with self-organizing maps
    • Hristozov, D.; Oprea, T. I.; Gasteiger, J. Ligand-based virtual screening by novelty detection with self-organizing maps J. Chem. Inf. Model. 2007, 47 (6) 2044-2062
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.6 , pp. 2044-2062
    • Hristozov, D.1    Oprea, T.I.2    Gasteiger, J.3
  • 160
    • 79955950286 scopus 로고    scopus 로고
    • Virtual screening based on one-class classification
    • Karpov, P. V.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Virtual screening based on one-class classification Dokl. Chem. 2011, 437 (2) 107-111
    • (2011) Dokl. Chem. , vol.437 , Issue.2 , pp. 107-111
    • Karpov, P.V.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 161
    • 80054751602 scopus 로고    scopus 로고
    • One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3OI inhibitors
    • Karpov, P. V.; Osolodkin, D. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3OI inhibitors Bioorg. Med. Chem. Lett. 2011, 21 (22) 6728-6731
    • (2011) Bioorg. Med. Chem. Lett. , vol.21 , Issue.22 , pp. 6728-6731
    • Karpov, P.V.1    Osolodkin, D.I.2    Baskin, I.I.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 162
    • 83455253406 scopus 로고    scopus 로고
    • Method of continuous molecular fields in the one-class classification task
    • Karpov, P. V.; Baskin, I. I.; Zhokhova, N. I.; Zefirov, N. S. Method of continuous molecular fields in the one-class classification task Dokl. Chem. 2011, 440 (2) 263-265
    • (2011) Dokl. Chem. , vol.440 , Issue.2 , pp. 263-265
    • Karpov, P.V.1    Baskin, I.I.2    Zhokhova, N.I.3    Zefirov, N.S.4
  • 163
    • 77955514045 scopus 로고    scopus 로고
    • Fast support vector data descriptions for novelty detection
    • Liu, Y. H.; Liu, Y. C.; Chen, Y. J. Fast support vector data descriptions for novelty detection IEEE Trans. Neural Networks 2010, 21 (8) 1296-1313
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.8 , pp. 1296-1313
    • Liu, Y.H.1    Liu, Y.C.2    Chen, Y.J.3
  • 166
    • 36048938087 scopus 로고    scopus 로고
    • Condensed nearest neighbor data domain description
    • Angiulli, F. Condensed nearest neighbor data domain description IEEE Trans. Pattern Anal. 2007, 29 (10) 1746-1758
    • (2007) IEEE Trans. Pattern Anal. , vol.29 , Issue.10 , pp. 1746-1758
    • Angiulli, F.1
  • 167
    • 70350627210 scopus 로고    scopus 로고
    • Active and semi-supervised data domain description
    • Görnitz, N.; Kloft, M.; Brefeld, U. Active and semi-supervised data domain description Lect. Notes Comput. Sci. 2009, 5781, 407-422
    • (2009) Lect. Notes Comput. Sci. , vol.5781 , pp. 407-422
    • Görnitz, N.1    Kloft, M.2    Brefeld, U.3
  • 168
    • 26444595523 scopus 로고    scopus 로고
    • SOM-based novelty detection using novel data
    • Lee, H. J.; Cho, S. SOM-based novelty detection using novel data Lect. Notes Comput. Sci. 2005, 3578, 359-366
    • (2005) Lect. Notes Comput. Sci. , vol.3578 , pp. 359-366
    • Lee, H.J.1    Cho, S.2
  • 169
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • Hoffmann, H. Kernel PCA for novelty detection Pattern Recogn. 2007, 40 (3) 863-874
    • (2007) Pattern Recogn. , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 170
    • 34248637068 scopus 로고    scopus 로고
    • A class of single-class minimax probability machines for novelty detection
    • Kwok, J. T.; Tsang, I. W. H.; Zurada, J. M. A class of single-class minimax probability machines for novelty detection IEEE Trans. Neural Networks 2007, 18 (3) 778-785
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.3 , pp. 778-785
    • Kwok, J.T.1    Tsang, I.W.H.2    Zurada, J.M.3
  • 171
    • 44349143433 scopus 로고    scopus 로고
    • Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections
    • Cohen, G.; Sax, H.; Geissbuhler, A. Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections Stud. Health Technol. Inform. 2008, 136, 21-26
    • (2008) Stud. Health Technol. Inform. , vol.136 , pp. 21-26
    • Cohen, G.1    Sax, H.2    Geissbuhler, A.3
  • 172
    • 77955378338 scopus 로고    scopus 로고
    • Novelty detection on metallic surfaces by GMM learning in Gabor space
    • Savran, Y.; Gunsel, B. Novelty detection on metallic surfaces by GMM learning in Gabor space Lect. Notes Comput. Sci. 2010, 6112, 325-334
    • (2010) Lect. Notes Comput. Sci. , vol.6112 , pp. 325-334
    • Savran, Y.1    Gunsel, B.2
  • 174
    • 0036709275 scopus 로고    scopus 로고
    • Constructing boosting algorithms from SVMs: An application to one-class classification
    • Rätsch, G.; Mika, S.; Schölkopf, B.; Müller, K. R. Constructing boosting algorithms from SVMs: An application to one-class classification IEEE Trans. Pattern Anal. 2002, 24 (9) 1184-1199
    • (2002) IEEE Trans. Pattern Anal. , vol.24 , Issue.9 , pp. 1184-1199
    • Rätsch, G.1    Mika, S.2    Schölkopf, B.3    Müller, K.R.4
  • 175
    • 59449095425 scopus 로고    scopus 로고
    • Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data
    • Kassab, R.; Alexandre, F. Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data Mach. Learn. 2009, 74 (2) 191-234
    • (2009) Mach. Learn. , vol.74 , Issue.2 , pp. 191-234
    • Kassab, R.1    Alexandre, F.2
  • 176
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicability domain estimation by projection of the training set in descriptor space: A review
    • Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review Altern. Lab. Anim. 2005, 33 (5) 445-459
    • (2005) Altern. Lab. Anim. , vol.33 , Issue.5 , pp. 445-459
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3
  • 177
    • 78650201311 scopus 로고    scopus 로고
    • The one-class classification approach to data description and to models applicability domain
    • Baskin, I. I.; Kireeva, N.; Varnek, A. The one-class classification approach to data description and to models applicability domain Mol. Inf. 2010, 29 (8-9) 581-587
    • (2010) Mol. Inf. , vol.29 , Issue.8-9 , pp. 581-587
    • Baskin, I.I.1    Kireeva, N.2    Varnek, A.3
  • 179
    • 77951270486 scopus 로고    scopus 로고
    • Estimation of the applicability domain of kernel-based machine learning models for virtual screening
    • Fechner, N.; Jahn, A.; Hinselmann, G.; Zell, A. Estimation of the applicability domain of kernel-based machine learning models for virtual screening J. Cheminf. 2010, 2, 1
    • (2010) J. Cheminf. , vol.2 , pp. 1
    • Fechner, N.1    Jahn, A.2    Hinselmann, G.3    Zell, A.4
  • 180
    • 80052912494 scopus 로고    scopus 로고
    • Target-driven subspace mapping methods and their applicability domain estimation
    • Soto, A. J.; Vazquez, G. E.; Strickert, M.; Ponzoni, I. Target-driven subspace mapping methods and their applicability domain estimation Mol. Inf. 2011, 30 (9) 779-789
    • (2011) Mol. Inf. , vol.30 , Issue.9 , pp. 779-789
    • Soto, A.J.1    Vazquez, G.E.2    Strickert, M.3    Ponzoni, I.4
  • 181
    • 34249047899 scopus 로고    scopus 로고
    • Covariate shift adaptation by importance weighted cross validation
    • Sugiyama, M.; Krauledat, M.; Mueller, K.-R. Covariate shift adaptation by importance weighted cross validation J. Mach. Learn. Res. 2007, 8, 985-1005
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 985-1005
    • Sugiyama, M.1    Krauledat, M.2    Mueller, K.-R.3
  • 182
    • 33749028480 scopus 로고    scopus 로고
    • Domain adaptation for statistical classifiers
    • Daume, H.; Marcu, D. Domain adaptation for statistical classifiers J. Artif. Intell. Res. 2006, 26, 101-126
    • (2006) J. Artif. Intell. Res. , vol.26 , pp. 101-126
    • Daume, H.1    Marcu, D.2
  • 183
    • 38049120269 scopus 로고    scopus 로고
    • Domain adaptation of conditional probability models via feature subsetting
    • Satpal, S.; Sarawagi, S. Domain adaptation of conditional probability models via feature subsetting Lect. Notes Comput. Sci. 2007, 4702, 224-235
    • (2007) Lect. Notes Comput. Sci. , vol.4702 , pp. 224-235
    • Satpal, S.1    Sarawagi, S.2
  • 184
    • 45449084206 scopus 로고    scopus 로고
    • Domain adaptation for conditional random fields
    • Zhang, Q.; Qiu, X.; Huang, X.; Wu, L. Domain adaptation for conditional random fields Lect. Notes Comput. Sci. 2008, 4993, 192-202
    • (2008) Lect. Notes Comput. Sci. , vol.4993 , pp. 192-202
    • Zhang, Q.1    Qiu, X.2    Huang, X.3    Wu, L.4
  • 185
    • 57949113459 scopus 로고    scopus 로고
    • A Two-Stage Approach to Domain Adaptation for Statistical Classifiers
    • In; ACM: New York
    • Jiang, J.; Zha, C. A Two-Stage Approach to Domain Adaptation for Statistical Classifiers. In 16th ACM Conference on Information and Knowledge Management; ACM: New York, 2007; pp 401-410.
    • (2007) 16th ACM Conference on Information and Knowledge Management , pp. 401-410
    • Jiang, J.1    Zha, C.2
  • 186
    • 70349243800 scopus 로고    scopus 로고
    • Intra-Document Structural Frequency Features for Semi-Supervised Domain Adaptation
    • In; ACM: New York
    • Arnold, A.; Cohen, W. W. Intra-Document Structural Frequency Features for Semi-Supervised Domain Adaptation. In 17th ACM Conference on Information and Knowledge Management; ACM: New York, 2008; pp 1291-1299.
    • (2008) 17th ACM Conference on Information and Knowledge Management , pp. 1291-1299
    • Arnold, A.1    Cohen, W.W.2
  • 187
    • 63749100269 scopus 로고    scopus 로고
    • Domain adaptation of information extraction models
    • Gupta, R.; Sarawagi, S. Domain adaptation of information extraction models SIGMOD Record 2008, 37 (4) 35-40
    • (2008) SIGMOD Record , vol.37 , Issue.4 , pp. 35-40
    • Gupta, R.1    Sarawagi, S.2
  • 188
    • 66149108701 scopus 로고    scopus 로고
    • Influence relevance voting: An accurate and interpretable virtual high throughput screening method
    • Swamidass, S. J.; Azencott, C. A.; Lin, T. W.; Gramajo, H.; Tsai, S. C.; Baldi, P. Influence relevance voting: An accurate and interpretable virtual high throughput screening method J. Chem. Inf. Model. 2009, 49 (4) 756-766
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.4 , pp. 756-766
    • Swamidass, S.J.1    Azencott, C.A.2    Lin, T.W.3    Gramajo, H.4    Tsai, S.C.5    Baldi, P.6
  • 190
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf, G. S.; Wahba, G. Some results on Tchebycheffian spline functions J. Math. Anal. Appl. 1971, 33, 82-95
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 192
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in machine learning Ann. Stat. 2008, 36 (3) 1171-1220
    • (2008) Ann. Stat. , vol.36 , Issue.3 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 194
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen, M.; Alpaydin, E. Multiple kernel learning algorithms J. Mach. Learn. Res. 2011, 12, 2211-2268
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 198
    • 70849129149 scopus 로고    scopus 로고
    • Method of continuous molecular fields in the search for quantitative structure-activity relationships
    • Zhokhova, N. I.; Baskin, I. I.; Bakhronov, D. K.; Palyulin, V. A.; Zefirov, N. S. Method of continuous molecular fields in the search for quantitative structure-activity relationships Dokl. Chem. 2009, 429 (1) 273-276
    • (2009) Dokl. Chem. , vol.429 , Issue.1 , pp. 273-276
    • Zhokhova, N.I.1    Baskin, I.I.2    Bakhronov, D.K.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 199
    • 79955830804 scopus 로고    scopus 로고
    • A family of simple non-parametric kernel learning algorithms
    • Zhuang, J.; Tsang, I. W.; Hoi, S. C. H. A family of simple non-parametric kernel learning algorithms J. Mach. Learn. Res. 2011, 12, 1313-1347
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1313-1347
    • Zhuang, J.1    Tsang, I.W.2    Hoi, S.C.H.3
  • 200
    • 61749094150 scopus 로고    scopus 로고
    • Low-rank kernel learning with bregman matrix divergences
    • Kulis, B.; Sustik, M. A.; Dhillon, I. S. Low-rank kernel learning with bregman matrix divergences J. Mach. Learn. Res. 2009, 10, 341-376
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 341-376
    • Kulis, B.1    Sustik, M.A.2    Dhillon, I.S.3
  • 201
    • 38349114023 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning and spectral kernel design
    • Johnson, R.; Zhang, T. Graph-based semi-supervised learning and spectral kernel design IEEE Trans. Inf. Theory 2008, 54 (1) 275-288
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.1 , pp. 275-288
    • Johnson, R.1    Zhang, T.2
  • 202
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger, K. Q.; Saul, L. K. Distance metric learning for large margin nearest neighbor classification J. Mach. Learn. Res. 2009, 10, 207-244
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 203
    • 79959516014 scopus 로고    scopus 로고
    • Generalized sparse metric learning with relative comparisons
    • Huang, K. Z.; Ying, Y. M.; Campbell, C. Generalized sparse metric learning with relative comparisons Knowl. Inf. Syst. 2011, 28 (1) 25-45
    • (2011) Knowl. Inf. Syst. , vol.28 , Issue.1 , pp. 25-45
    • Huang, K.Z.1    Ying, Y.M.2    Campbell, C.3
  • 204
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: A descriptor- and alignment-free quantitative structure-activity relationship approach
    • Mohr, J. A.; Jain, B. J.; Obermayer, K. Molecule kernels: A descriptor- and alignment-free quantitative structure-activity relationship approach J. Chem. Inf. Model. 2008, 48 (9) 1868-1881
    • (2008) J. Chem. Inf. Model. , vol.48 , Issue.9 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 205
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo, H.; Vert, J. P.; Ueda, N.; Akutsu, T. Protein homology detection using string alignment kernels Bioinformatics 2004, 20 (11) 1682-1689
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1682-1689
    • Saigo, H.1    Vert, J.P.2    Ueda, N.3    Akutsu, T.4
  • 206
    • 77950423796 scopus 로고    scopus 로고
    • A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: Application to ligand prediction
    • Art. No. 99.
    • Hoffmann, B.; Zaslavskiy, M.; Vert, J. P.; Stoven, V. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: Application to ligand prediction. BMC Bioinf. 2010, 11, Art. No. 99.
    • (2010) BMC Bioinf. , vol.11
    • Hoffmann, B.1    Zaslavskiy, M.2    Vert, J.P.3    Stoven, V.4
  • 207
    • 17144429687 scopus 로고    scopus 로고
    • Feature space interpretation of SVMs with indefinite kernels
    • Haasdonk, B. Feature space interpretation of SVMs with indefinite kernels IEEE Trans. Pattern Anal. 2005, 27 (4) 482-492
    • (2005) IEEE Trans. Pattern Anal. , vol.27 , Issue.4 , pp. 482-492
    • Haasdonk, B.1
  • 208
    • 65549157171 scopus 로고    scopus 로고
    • Kernel discriminant analysis for positive definite and indefinite kernels
    • Pekalska, E.; Haasdonk, B. Kernel discriminant analysis for positive definite and indefinite kernels IEEE Trans. Pattern Anal. 2009, 31 (6) 1017-1031
    • (2009) IEEE Trans. Pattern Anal. , vol.31 , Issue.6 , pp. 1017-1031
    • Pekalska, E.1    Haasdonk, B.2
  • 209
    • 78649308061 scopus 로고    scopus 로고
    • Least square regression with indefinite kernels and coefficient regularization
    • Sun, H. W.; Wu, Q. A. Least square regression with indefinite kernels and coefficient regularization Appl. Comput. Harmon. Anal. 2011, 30 (1) 96-109
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , Issue.1 , pp. 96-109
    • Sun, H.W.1    Wu, Q.A.2
  • 211
    • 68149122551 scopus 로고    scopus 로고
    • Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening
    • In; Varnek, A. Tropsha, A. RSC Publishing: Cambridge
    • Baskin, I.; Varnek, A. Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening. In Chemoinformatics Approaches to Virtual Screening; Varnek, A.; Tropsha, A., Eds.; RSC Publishing: Cambridge, 2008; pp 1-43.
    • (2008) Chemoinformatics Approaches to Virtual Screening , pp. 1-43
    • Baskin, I.1    Varnek, A.2
  • 215
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis, I.; Joachims, T.; Hofmann, T.; Altun, Y. Large margin methods for structured and interdependent output variables J. Mach. Learn. Res. 2005, 6, 1453-1484
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 217
    • 84880874770 scopus 로고    scopus 로고
    • The Levelwise Version Space Algorithm and its Application to Molecular Fragment Finding
    • In; Morgan Kaufmann: San Francisco
    • De Raedt, L.; Kramer, S. The Levelwise Version Space Algorithm and its Application to Molecular Fragment Finding. In The Seventeenth International Joint Conference on Articial Intelligence; Morgan Kaufmann: San Francisco, 2001; pp 853-862.
    • (2001) The Seventeenth International Joint Conference on Articial Intelligence , pp. 853-862
    • De Raedt, L.1    Kramer, S.2
  • 218
    • 1942483107 scopus 로고    scopus 로고
    • Feature Construction with Version Spaces for Biochemical Applications
    • In; Morgan Kaufmann: San Francisco
    • Kramer, S.; De Raedt, L. Feature Construction with Version Spaces for Biochemical Applications. In The Eighteenth International Conference on Machine Learning; Morgan Kaufmann: San Francisco, 2001; pp 258-265.
    • (2001) The Eighteenth International Conference on Machine Learning , pp. 258-265
    • Kramer, S.1    De Raedt, L.2
  • 220
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-Based Substructure Pattern Mining
    • In; Kumar, V. Tsumoto, S. Zhong, N. Yu, P. S. Wu, X. D. IEEE Computer Soc. Los Alamitos
    • Yan, X. F.; Han, J. W. gSpan: Graph-Based Substructure Pattern Mining. In 2002 IEEE International Conference on Data Mining, Proceedings; Kumar, V.; Tsumoto, S.; Zhong, N.; Yu, P. S.; Wu, X. D., Eds.; IEEE Computer Soc.: Los Alamitos, 2002; pp 721-724.
    • (2002) 2002 IEEE International Conference on Data Mining, Proceedings , pp. 721-724
    • Yan, X.F.1    Han, J.W.2
  • 221
    • 24044517207 scopus 로고    scopus 로고
    • Frequent subtree mining - An overview
    • Chi, Y.; Muntz, R. R.; Nijssen, S.; Kok, J. N. Frequent subtree mining - an overview Fundam. Inform. 2005, 66 (1-2) 161-198
    • (2005) Fundam. Inform. , vol.66 , Issue.1-2 , pp. 161-198
    • Chi, Y.1    Muntz, R.R.2    Nijssen, S.3    Kok, J.N.4
  • 223
    • 67249148148 scopus 로고    scopus 로고
    • Additive inductive learning in QSAR/QSPR studies and molecular modeling
    • Baskin, I. I.; Zhokhova, N. I.; Palyulin, V. A.; Zefirov, N. S. Additive inductive learning in QSAR/QSPR studies and molecular modeling Chem. Central J. 2009, 3, 1-1
    • (2009) Chem. Central J. , vol.3 , pp. 1-1
    • Baskin, I.I.1    Zhokhova, N.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 224
    • 33646251586 scopus 로고    scopus 로고
    • Collaborative filtering on a family of biological targets
    • Erhan, D.; L'Heureux, P.-J.; Yue, S. Y.; Bengio, Y. Collaborative filtering on a family of biological targets J. Chem. Inf. Model. 2006, 46 (2) 626-635
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.2 , pp. 626-635
    • Erhan, D.1    L'Heureux, P.-J.2    Yue, S.Y.3    Bengio, Y.4
  • 225
    • 38349114038 scopus 로고    scopus 로고
    • Genome scale enzyme - Metabolite and drug - Target interaction predictions using the signature molecular descriptor
    • Faulon, J. L.; Misra, M.; Martin, S.; Sale, K.; Sapra, R. Genome scale enzyme-Metabolite and drug-Target interaction predictions using the signature molecular descriptor Bioinformatics 2008, 24 (2) 225-233
    • (2008) Bioinformatics , vol.24 , Issue.2 , pp. 225-233
    • Faulon, J.L.1    Misra, M.2    Martin, S.3    Sale, K.4    Sapra, R.5
  • 226
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob, L.; Vert, J. P. Protein-ligand interaction prediction: An improved chemogenomics approach Bioinformatics 2008, 24 (19) 2149-2156
    • (2008) Bioinformatics , vol.24 , Issue.19 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 227
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • Geppert, H.; Humrich, J.; Stumpfe, D.; Gaertner, T.; Bajorath, J. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors J. Chem. Inf. Model. 2009, 49 (4) 767-779
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.4 , pp. 767-779
    • Geppert, H.1    Humrich, J.2    Stumpfe, D.3    Gaertner, T.4    Bajorath, J.5
  • 232
    • 51349120683 scopus 로고    scopus 로고
    • Support vector training of protein alignment models
    • Yu, C. N. J.; Joachims, T.; Elber, R.; Pillardy, J. Support vector training of protein alignment models J. Comput. Biol. 2008, 15 (7) 867-880
    • (2008) J. Comput. Biol. , vol.15 , Issue.7 , pp. 867-880
    • Yu, C.N.J.1    Joachims, T.2    Elber, R.3    Pillardy, J.4
  • 233
    • 34249855548 scopus 로고    scopus 로고
    • Inferring biological networks with output kernel trees
    • Geurts, P.; Touleimat, N.; Dutreix, M.; d'Alché-Buc, F. Inferring biological networks with output kernel trees BMC Bioinf. 2007, 8 (Suppl. 2) S4
    • (2007) BMC Bioinf. , vol.8 , Issue.SUPPL. 2 , pp. 4
    • Geurts, P.1    Touleimat, N.2    Dutreix, M.3    D'Alché-Buc, F.4
  • 234
    • 79952593481 scopus 로고    scopus 로고
    • StructRank: A new approach for ligand-based virtual screening
    • Rathke, F.; Hansen, K.; Brefeld, U.; Muller, K.-R. StructRank: A new approach for ligand-based virtual screening J. Chem. Inf. Model. 2010, 51 (1) 83-92
    • (2010) J. Chem. Inf. Model. , vol.51 , Issue.1 , pp. 83-92
    • Rathke, F.1    Hansen, K.2    Brefeld, U.3    Muller, K.-R.4
  • 235
    • 42249087646 scopus 로고    scopus 로고
    • Transductive Inference and Semi-Supervised Learning
    • In; Chapelle, O. Schoelkopf, B. Zien, A. MIT Press: Cambridge, MA
    • Vapnik, V. Transductive Inference and Semi-Supervised Learning. In Semi-Supervised Learning; Chapelle, O.; Schoelkopf, B.; Zien, A., Eds.; MIT Press: Cambridge, MA, 2006; pp 453-472.
    • (2006) Semi-Supervised Learning , pp. 453-472
    • Vapnik, V.1
  • 236
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins J. Am. Chem. Soc. 1988, 110 (18) 5959-5967
    • (1988) J. Am. Chem. Soc. , vol.110 , Issue.18 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 237
    • 0027944195 scopus 로고
    • Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
    • Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity J. Med. Chem. 1994, 37 (24) 4130-46
    • (1994) J. Med. Chem. , vol.37 , Issue.24 , pp. 4130-4146
    • Klebe, G.1    Abraham, U.2    Mietzner, T.3
  • 239
    • 0029977466 scopus 로고    scopus 로고
    • Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition
    • Silverman, B. D.; Platt, D. E. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition J. Med. Chem. 1996, 39 (11) 2129-40
    • (1996) J. Med. Chem. , vol.39 , Issue.11 , pp. 2129-2140
    • Silverman, B.D.1    Platt, D.E.2
  • 240
    • 0030641914 scopus 로고    scopus 로고
    • MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids
    • Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids J. Comput.-Aided Mol. Des. 1997, 11 (1) 79-92
    • (1997) J. Comput.-Aided Mol. Des. , vol.11 , Issue.1 , pp. 79-92
    • Bravi, G.1    Gancia, E.2    Mascagni, P.3    Pegna, M.4    Todeschini, R.5    Zaliani, A.6
  • 241
    • 0034710718 scopus 로고    scopus 로고
    • GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors
    • Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors J. Med. Chem. 2000, 43 (17) 3233-43
    • (2000) J. Med. Chem. , vol.43 , Issue.17 , pp. 3233-3243
    • Pastor, M.1    Cruciani, G.2    McLay, I.3    Pickett, S.4    Clementi, S.5
  • 242
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds Eur. J. Pharm. Sci. 2000, 11 (Suppl. 2) S29-S39
    • (2000) Eur. J. Pharm. Sci. , vol.11 , Issue.SUPPL. 2
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 244
    • 0036267718 scopus 로고    scopus 로고
    • Construction of neural-network structure-conditions-property relationships: Modeling of the physicochemical properties of hydrocarbons
    • Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Construction of neural-network structure-conditions-property relationships: Modeling of the physicochemical properties of hydrocarbons Dokl. Chem. 2002, 384 (1-3) 140-143
    • (2002) Dokl. Chem. , vol.384 , Issue.1-3 , pp. 140-143
    • Halberstam, N.M.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 245
    • 84862858909 scopus 로고    scopus 로고
    • QSPR approaches to predict non-additive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquid
    • accepted for publication.
    • Oprisiu, I.; Varlamova, E.; Muratov, E.; Artemenko, A.; Marcou, G.; Polishchuk, P.; Kuz'min, V. QSPR approaches to predict non-additive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquid. Mol. Inf.. 2012, 31, accepted for publication.
    • (2012) Mol. Inf. , vol.31
    • Oprisiu, I.1    Varlamova, E.2    Muratov, E.3    Artemenko, A.4    Marcou, G.5    Polishchuk, P.6    Kuz'Min, V.7
  • 248
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y. Learning deep architectures for AI Found. Trends Mach. Learn. 2009, 2 (1) 1-127
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 249
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu, T.-F.; Lin, C.-J.; Weng, R. C. Probability estimates for multi-class classification by pairwise coupling J. Mach. Learn. Res. 2004, 5, 975-1005
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 251
    • 33845343255 scopus 로고    scopus 로고
    • Iterative single data algorithm for kernel machines from huge data sets: Theory and performance
    • Huang, T. M.; Kecman, V.; Kopriva, I. Iterative single data algorithm for kernel machines from huge data sets: Theory and performance Stud. Comput. Intell. 2006, 17, 61-95
    • (2006) Stud. Comput. Intell. , vol.17 , pp. 61-95
    • Huang, T.M.1    Kecman, V.2    Kopriva, I.3
  • 252
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; Cotter, A. Pegasos: primal estimated sub-gradient solver for SVM Math. Program. 2011, 127 (1) 3-30
    • (2011) Math. Program. , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 255
    • 80053326969 scopus 로고    scopus 로고
    • Virtual libraries of tetrapyrrole macrocycles: Combinatorics, isomers, product distributions, and data mining
    • Taniguchi, M.; Du, H.; Lindsey, J. S. Virtual libraries of tetrapyrrole macrocycles: Combinatorics, isomers, product distributions, and data mining J. Chem. Inf. Model. 2011, 51 (9) 2233-2247
    • (2011) J. Chem. Inf. Model. , vol.51 , Issue.9 , pp. 2233-2247
    • Taniguchi, M.1    Du, H.2    Lindsey, J.S.3
  • 258
    • 71049120675 scopus 로고    scopus 로고
    • Learning and domain adaptation
    • Mansour, Y. Learning and domain adaptation Lect. Notes Comput. Sci. 2009, 5808, 32-34
    • (2009) Lect. Notes Comput. Sci. , vol.5808 , pp. 32-34
    • Mansour, Y.1
  • 259
    • 77952024019 scopus 로고    scopus 로고
    • Learning and domain adaptation
    • Mansour, Y. Learning and domain adaptation Lect. Notes Comput. Sci. 2009, 5809, 4-6
    • (2009) Lect. Notes Comput. Sci. , vol.5809 , pp. 4-6
    • Mansour, Y.1
  • 260
    • 70549101263 scopus 로고    scopus 로고
    • Learning algorithms for domain adaptation
    • Pathak, M. A.; Nyberg, E. H. Learning algorithms for domain adaptation Lect. Notes Comput. Sci. 2009, 5828, 293-307
    • (2009) Lect. Notes Comput. Sci. , vol.5828 , pp. 293-307
    • Pathak, M.A.1    Nyberg, E.H.2
  • 261
    • 0032076721 scopus 로고    scopus 로고
    • The effect of heteroscedastic noise on the chemometric modelling of frequency domain data
    • Woodward, A. M.; Alsberg, B. K.; Kell, D. B. The effect of heteroscedastic noise on the chemometric modelling of frequency domain data Chemom. Intell. Lab. Syst. 1998, 40 (1) 101-107
    • (1998) Chemom. Intell. Lab. Syst. , vol.40 , Issue.1 , pp. 101-107
    • Woodward, A.M.1    Alsberg, B.K.2    Kell, D.B.3
  • 262
    • 80054982784 scopus 로고    scopus 로고
    • Heteroscedastic normal-exponential mixture models: Bayesian and classical approaches
    • Lopera, L. G.; Cepeda-Cuervo, E.; Achcar, J. A. Heteroscedastic normal-exponential mixture models: Bayesian and classical approaches Appl. Math. Comput. 2011, 218 (7) 3635-3648
    • (2011) Appl. Math. Comput. , vol.218 , Issue.7 , pp. 3635-3648
    • Lopera, L.G.1    Cepeda-Cuervo, E.2    Achcar, J.A.3
  • 264
    • 80052886632 scopus 로고    scopus 로고
    • Probabilistic substructure mining from small-molecule screens
    • Ranu, S.; Calhoun, B. T.; Singh, A. K.; Swamidass, S. J. Probabilistic substructure mining from small-molecule screens Mol. Inf 2011, 30 (9) 809-815
    • (2011) Mol. Inf , vol.30 , Issue.9 , pp. 809-815
    • Ranu, S.1    Calhoun, B.T.2    Singh, A.K.3    Swamidass, S.J.4
  • 265
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks, A.; Jo, T.; Japkowicz, N. A multiple resampling method for learning from imbalanced data sets Comput. Intell. 2004, 20 (1) 18-36
    • (2004) Comput. Intell. , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 266
    • 77953560676 scopus 로고    scopus 로고
    • Fragmental descriptors in (Q)SAR: Prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach
    • Kondratovich, E. P.; Zhokhova, N. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Fragmental descriptors in (Q)SAR: Prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach Russ. Chem. Bull. 2009, 58 (4) 657-662
    • (2009) Russ. Chem. Bull. , vol.58 , Issue.4 , pp. 657-662
    • Kondratovich, E.P.1    Zhokhova, N.I.2    Baskin, I.I.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 267
    • 78751660908 scopus 로고    scopus 로고
    • Bridging the gap between neural network and kernel methods: Applications to drug discovery
    • Baldi, P.; Azencott, C.; Swamidass, S. J. Bridging the gap between neural network and kernel methods: Applications to drug discovery Front. Artif. Intell. Appl. 2011, 226, 3-13
    • (2011) Front. Artif. Intell. Appl. , vol.226 , pp. 3-13
    • Baldi, P.1    Azencott, C.2    Swamidass, S.J.3
  • 268
    • 0035438401 scopus 로고    scopus 로고
    • Protocols for bridging the peptide to nonpeptide gap in topological similarity searches
    • Sheridan, R. P.; Singh, S. B.; Fluder, E. M.; Kearsley, S. K. Protocols for bridging the peptide to nonpeptide gap in topological similarity searches J. Chem. Inf. Comput. Sci. 2001, 41 (5) 1395-1406
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.5 , pp. 1395-1406
    • Sheridan, R.P.1    Singh, S.B.2    Fluder, E.M.3    Kearsley, S.K.4
  • 269
    • 34247272948 scopus 로고    scopus 로고
    • Evaluating virtual screening methods: Good and bad metrics for the "early recognition" problem
    • Truchon, J. F.; Bayly, C. I. Evaluating virtual screening methods: Good and bad metrics for the "early recognition" problem J. Chem. Inf. Model. 2007, 47 (2) 488-508
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.2 , pp. 488-508
    • Truchon, J.F.1    Bayly, C.I.2
  • 270
    • 77952832818 scopus 로고    scopus 로고
    • A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval
    • Swamidass, S. J.; Azencott, C. A.; Daily, K.; Baldi, P. A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval Bioinformatics 2010, 26 (10) 1348-1356
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1348-1356
    • Swamidass, S.J.1    Azencott, C.A.2    Daily, K.3    Baldi, P.4
  • 272
    • 75149114722 scopus 로고    scopus 로고
    • Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique
    • Bhardwaj, N.; Gerstein, M.; Lu, H. Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique. BMC Bioinf.. 2010, 11 (SUPPL.1).
    • (2010) BMC Bioinf. , vol.11 , Issue.SUPPL.1
    • Bhardwaj, N.1    Gerstein, M.2    Lu, H.3
  • 274
    • 56049095031 scopus 로고    scopus 로고
    • On the interpretation and interpretability of quantitative structure-activity relationship models
    • Guha, R. On the interpretation and interpretability of quantitative structure-activity relationship models J. Comput.-Aided Mol. Des. 2008, 22 (12) 857-871
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , Issue.12 , pp. 857-871
    • Guha, R.1
  • 275
    • 0005910987 scopus 로고
    • The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients
    • Hansch, C.; Muir, R. M.; Fujita, T.; Maloney, P. P.; Geiger, F.; Streich, M. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients J. Am. Chem. Soc. 1963, 85 (18) 2817-2824
    • (1963) J. Am. Chem. Soc. , vol.85 , Issue.18 , pp. 2817-2824
    • Hansch, C.1    Muir, R.M.2    Fujita, T.3    Maloney, P.P.4    Geiger, F.5    Streich, M.6
  • 276
    • 0036490199 scopus 로고    scopus 로고
    • An approach to the interpretation of backpropagation neural network models in QSAR studies
    • Baskin, I. I.; Ait, A. O.; Halberstam, N. M.; Palyulin, V. A.; Zefirov, N. S. An approach to the interpretation of backpropagation neural network models in QSAR studies SAR QSAR Environ. Res. 2002, 13 (1) 35-41
    • (2002) SAR QSAR Environ. Res. , vol.13 , Issue.1 , pp. 35-41
    • Baskin, I.I.1    Ait, A.O.2    Halberstam, N.M.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 277
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR Models: A measure of descriptor importance
    • Guha, R.; Jurs, P. C. Interpreting computational neural network QSAR Models: A measure of descriptor importance J. Chem. Inf. Model. 2005, 45 (3) 800-806
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.3 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 278
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases
    • Guha, R.; Stanton, D. T.; Jurs, P. C. Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases J. Chem. Inf. Model. 2005, 45 (4) 1109-1121
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.4 , pp. 1109-1121
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 280
    • 80052913976 scopus 로고    scopus 로고
    • Visual interpretation of kernel-based prediction models
    • Hansen, K.; Baehrens, D.; Schroeter, T.; Rupp, M.; Müller, K. R. Visual interpretation of kernel-based prediction models Mol. Inf. 2011, 30 (9) 817-826
    • (2011) Mol. Inf. , vol.30 , Issue.9 , pp. 817-826
    • Hansen, K.1    Baehrens, D.2    Schroeter, T.3    Rupp, M.4    Müller, K.R.5
  • 281
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S. J.; Yang, Q. A survey on transfer learning IEEE Trans. Knowl. Data Eng. 2010, 22 (10) 1345-1359
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 283
    • 78650080782 scopus 로고    scopus 로고
    • A survey of recent trends in one class classification
    • Khan, S. S.; Madden, M. G. A survey of recent trends in one class classification Lect. Notes Comput. Sci. 2010, 6206, 188-197
    • (2010) Lect. Notes Comput. Sci. , vol.6206 , pp. 188-197
    • Khan, S.S.1    Madden, M.G.2
  • 284
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning Mach. Learn. 1994, 15 (2) 201-221
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 285
    • 12244310470 scopus 로고    scopus 로고
    • Statistical asymptotic theory of active learning
    • Kanamori, T. Statistical asymptotic theory of active learning Ann. I. Stat. Math. 2002, 54 (3) 459-475
    • (2002) Ann. I. Stat. Math. , vol.54 , Issue.3 , pp. 459-475
    • Kanamori, T.1
  • 286
    • 3342952938 scopus 로고    scopus 로고
    • Does active learning work? A review of the research
    • Prince, M. Does active learning work? A review of the research J. Eng. Educ. 2004, 93 (3) 223-231
    • (2004) J. Eng. Educ. , vol.93 , Issue.3 , pp. 223-231
    • Prince, M.1
  • 289
    • 75149162532 scopus 로고    scopus 로고
    • Active learning for human protein-protein interaction prediction
    • Art. No. S57.
    • Mohamed, T. P.; Carbonell, J. G.; Ganapathiraju, M. K. Active learning for human protein-protein interaction prediction. BMC Bioinf. 2010, 11 (Suppl.1), Art. No. S57.
    • (2010) BMC Bioinf. , vol.11 , Issue.SUPPL.1
    • Mohamed, T.P.1    Carbonell, J.G.2    Ganapathiraju, M.K.3
  • 290
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • Bayarri, M. J.; Berger, J. O. The interplay of Bayesian and frequentist analysis Stat. Sci. 2004, 19 (1) 58-80
    • (2004) Stat. Sci. , vol.19 , Issue.1 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 291
    • 84862876830 scopus 로고    scopus 로고
    • Tutorial on Ensemble Learning. (accessed April 5).
    • Baskin, I.; Marcou, G.; Varnek, A. Tutorial on Ensemble Learning. http://infochim.u-strasbg.fr/new/CS3-2010/Tutorial/Ensemble/EnsembleModeling. pdf (accessed April 5, 2012).
    • (2012)
    • Baskin, I.1    Marcou, G.2    Varnek, A.3
  • 294
    • 70450051249 scopus 로고    scopus 로고
    • Transductive Support Vector Machines
    • In; Chapelle, O. Schoelkopf, B. Zien, A. MIT Press: Cambridge, MA
    • Joachims, T. Transductive Support Vector Machines. In Semi-Supervised Learning; Chapelle, O.; Schoelkopf, B.; Zien, A., Eds.; MIT Press: Cambridge, MA, 2006; pp 105-117.
    • (2006) Semi-Supervised Learning , pp. 105-117
    • Joachims, T.1
  • 295
    • 67649218524 scopus 로고    scopus 로고
    • Protein-protein interaction extraction based on combining TSVM and active learning
    • Liu, J.; Wang, H.; Zhao, T. Protein-protein interaction extraction based on combining TSVM and active learning Gaojishu Tongxin/Chinese High Technol. Lett. 2009, 19 (5) 480-486
    • (2009) Gaojishu Tongxin/Chinese High Technol. Lett. , vol.19 , Issue.5 , pp. 480-486
    • Liu, J.1    Wang, H.2    Zhao, T.3
  • 296
    • 84862885524 scopus 로고    scopus 로고
    • SVMlight, version 6.02; 2008. (accessed April 4).
    • Joachims, T. SVMlight, version 6.02; 2008. http://svmlight.joachims.org/ (accessed April 4, 2012).
    • (2012)
    • Joachims, T.1
  • 297
    • 84862887967 scopus 로고    scopus 로고
    • SGTlight, version 1.00; 2003. (accessed April 4).
    • Joachims, T. SGTlight, version 1.00; 2003. http://sgt.joachims.org/ (accessed April 4, 2012).
    • (2012)
    • Joachims, T.1
  • 298
    • 84862906233 scopus 로고    scopus 로고
    • 2005. (accessed April 4).
    • Huang, T.-M.; Kecman, V. SemiL, 2005. http://www.learning-from-data.com/ te-ming/semil.htm (accessed April 4, 2012).
    • (2012) SemiL
    • Huang, T.-M.1    Kecman, V.2
  • 299
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M.; Niyogi, P.; Sindhwani, V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 2006, 7, 2399-2434
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 302
    • 84862851580 scopus 로고    scopus 로고
    • version 4.3. (accessed April 4).
    • Stuttgart Neural Network Simulator (SNNS), version 4.3. http://www.ra.cs.uni-tuebingen.de/SNNS/ (accessed April 4, 2012).
    • (2012) Stuttgart Neural Network Simulator (SNNS)
  • 303
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker, B.; Heskes, T. Task clustering and gating for Bayesian multitask learning J. Mach. Learn. Res. 2004, 4 (1) 83-99
    • (2004) J. Mach. Learn. Res. , vol.4 , Issue.1 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 304
    • 73849084587 scopus 로고    scopus 로고
    • Bayesian online multitask learning of Gaussian processes
    • Pillonetto, G.; Dinuzzo, F.; De Nicolao, G. Bayesian online multitask learning of Gaussian processes IEEE Trans. Pattern Anal. 2010, 32 (2) 193-205
    • (2010) IEEE Trans. Pattern Anal. , vol.32 , Issue.2 , pp. 193-205
    • Pillonetto, G.1    Dinuzzo, F.2    De Nicolao, G.3
  • 305
    • 6344258571 scopus 로고    scopus 로고
    • Multitask Learning Using Partial Least Squares Method
    • In; Svensson, P. Schubert, J. International Society of Information Fusion: Stockholm, Sweden, Vol.
    • Lu, W. C.; Chen, N. Y.; Li, G. Z.; Yang, J. Multitask Learning Using Partial Least Squares Method. In Proceedings of the Seventh International Conference on Information Fusion; Svensson, P.; Schubert, J., Ed.; International Society of Information Fusion: Stockholm, Sweden, 2004; Vol. 1, pp 79-84.
    • (2004) Proceedings of the Seventh International Conference on Information Fusion , vol.1 , pp. 79-84
    • Lu, W.C.1    Chen, N.Y.2    Li, G.Z.3    Yang, J.4
  • 310
    • 78049457405 scopus 로고    scopus 로고
    • Inferring latent task structure for Multitask Learning by Multiple Kernel Learning
    • Art. No. S5.
    • Widmer, C.; Toussaint, N. C.; Altun, Y.; Rätsch, G. Inferring latent task structure for Multitask Learning by Multiple Kernel Learning. BMC Bioinf. 2010, 11 (Suppl. 8), Art. No. S5.
    • (2010) BMC Bioinf. , vol.11 , Issue.SUPPL. 8
    • Widmer, C.1    Toussaint, N.C.2    Altun, Y.3    Rätsch, G.4
  • 311
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks Mach. Learn. 1995, 20 (3) 273-297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 312
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. N. An overview of statistical learning theory IEEE Trans. Neural Networks 1999, 10 (5) 988-999
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 313
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines ACM Trans. Intel. Syst. Technol. 2001, 2 (3) 27:1-27:27
    • (2001) ACM Trans. Intel. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 314
    • 84942487147 scopus 로고
    • Risge regression: Application to nonorthogonal problems
    • Hoerl, A. E.; Kennard, R. W. Risge regression: Application to nonorthogonal problems Technometrics 1970, 12 (1) 69-82
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 316
    • 62249204357 scopus 로고    scopus 로고
    • Least angle regression and LASSO for large datasets
    • Fraley, C.; Hesterberg, T. Least angle regression and LASSO for large datasets Stat. Anal. Data Mining 2009, 1 (4) 251-259
    • (2009) Stat. Anal. Data Mining , vol.1 , Issue.4 , pp. 251-259
    • Fraley, C.1    Hesterberg, T.2
  • 317
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. Regression shrinkage and selection via the lasso J. Roy. Stat. Soc. B 1996, 58 (1) 267-288
    • (1996) J. Roy. Stat. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 318
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • Tibshirani, R. The lasso method for variable selection in the cox model Stat. Med. 1997, 16 (4) 385-395
    • (1997) Stat. Med. , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 319
    • 84878078972 scopus 로고    scopus 로고
    • Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning
    • In; Clifton, C. W. Zhong, N. Liu, J. M. Wah, B. W. Wu, X. D. IEEE Computer Soc. Los Alamitos
    • Wang, L.; Gordon, M. D.; Zhu, J. Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning. In ICDM 2006: Sixth International Conference on Data Mining, Proceedings; Clifton, C. W.; Zhong, N.; Liu, J. M.; Wah, B. W.; Wu, X. D., Eds.; IEEE Computer Soc.: Los Alamitos, 2006; pp 690-700.
    • (2006) ICDM 2006: Sixth International Conference on Data Mining, Proceedings , pp. 690-700
    • Wang, L.1    Gordon, M.D.2    Zhu, J.3
  • 320
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D. M.; Tibshirani, R.; Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis Biostatistics 2009, 10 (3) 515-534
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 321
    • 68249115586 scopus 로고    scopus 로고
    • Extensions of sparse canonical correlation analysis with applications to genomic data
    • Art. No. 28.
    • Witten, D. M.; Tibshirani, R. J. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol, 2009, 8 (1), Art. No. 28.
    • (2009) Stat. Appl. Genet. Mol , vol.8 , Issue.1
    • Witten, D.M.1    Tibshirani, R.J.2
  • 322
    • 84862906232 scopus 로고    scopus 로고
    • 2006. (accessed April 4).
    • Huang, T.-M.; Kecman, V.; Kopriva, I. ISDA, 2006. http://www.learning- from-data.com/download.htm (accessed April 4, 2012).
    • (2012) ISDA
    • Huang, T.-M.1    Kecman, V.2    Kopriva, I.3
  • 324
    • 84862887966 scopus 로고    scopus 로고
    • SHOGUN, version 1.1.0; 2011. (accessed April 4).
    • SHOGUN, version 1.1.0; 2011. http://www.shogun-toolbox.org/ (accessed April 4, 2012).
    • (2012)
  • 325
    • 84862906230 scopus 로고    scopus 로고
    • LIBLINEAR, version 1.8; 2011. (accessed April 4).
    • LIBLINEAR, version 1.8; 2011. http://www.csie.ntu.edu.tw/∼cjlin/ liblinear/ (accessed April 4, 2012).
    • (2012)
  • 326
    • 84862850508 scopus 로고    scopus 로고
    • LinearSVM, version 3.0; 2009. (accessed January 24).
    • Huang, T.-M.; Kecman, V. LinearSVM, version 3.0; 2009. http://www.linearsvm.com/ (accessed January 24, 2012).
    • (2012)
    • Huang, T.-M.1    Kecman, V.2
  • 328
    • 84862906231 scopus 로고    scopus 로고
    • (accessed January 12).
    • Wang, L.; Froehlich, H.; Rieck, K.; Tsai, C.-T.; Lin, T.-J. SVDD. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#libsvm-for-svdd-and-finding- the-smallest-sphere-containing-all-data (accessed January 12, 2012).
    • (2012) SVDD
    • Wang, L.1    Froehlich, H.2    Rieck, K.3    Tsai, C.-T.4    Lin, T.-J.5
  • 329
    • 33745205042 scopus 로고    scopus 로고
    • Condensed nearest neighbor data domain description
    • Angiulli, F. Condensed nearest neighbor data domain description Lect. Notes Comput. Sci. 2005, 3646, 12-23
    • (2005) Lect. Notes Comput. Sci. , vol.3646 , pp. 12-23
    • Angiulli, F.1
  • 330
    • 34247532343 scopus 로고    scopus 로고
    • Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots
    • Angelov, P.; Zhou, X. Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots Stud. Comput. Intell. 2007, 50, 89-118
    • (2007) Stud. Comput. Intell. , vol.50 , pp. 89-118
    • Angelov, P.1    Zhou, X.2
  • 331
    • 78650870327 scopus 로고    scopus 로고
    • A two-stage algorithm for domain adaptation with application to sentiment transfer problems
    • Wu, Q.; Tan, S.; Duan, M.; Cheng, X. A two-stage algorithm for domain adaptation with application to sentiment transfer problems Lect. Notes Comput. Sci. 2010, 6458, 443-453
    • (2010) Lect. Notes Comput. Sci. , vol.6458 , pp. 443-453
    • Wu, Q.1    Tan, S.2    Duan, M.3    Cheng, X.4
  • 333
    • 33749635812 scopus 로고    scopus 로고
    • A spectral generative model for graph structure
    • Xiao, B.; Hancock, E. R. A spectral generative model for graph structure Lect. Notes Comput. Sci. 2006, 4109, 173-181
    • (2006) Lect. Notes Comput. Sci. , vol.4109 , pp. 173-181
    • Xiao, B.1    Hancock, E.R.2
  • 339
    • 7444242202 scopus 로고    scopus 로고
    • CMTreeMiner: Mining both closed and maximal frequent subtrees
    • Chi, Y.; Yang, Y.; Xia, Y.; Muntz, R. R. CMTreeMiner: Mining both closed and maximal frequent subtrees Lect. Notes Comput. Sci. 2004, 3056, 63-73
    • (2004) Lect. Notes Comput. Sci. , vol.3056 , pp. 63-73
    • Chi, Y.1    Yang, Y.2    Xia, Y.3    Muntz, R.R.4
  • 340
    • 0027698735 scopus 로고
    • A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks
    • Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks Dokl. Akad. Nauk 1993, 333 (2) 176-179
    • (1993) Dokl. Akad. Nauk , vol.333 , Issue.2 , pp. 176-179
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 342
    • 33750018888 scopus 로고    scopus 로고
    • Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data
    • Goulon, A.; Duprat, A.; Dreyfus, G. Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data Lect. Notes Comput. Sci. 2006, 4135, 1-19
    • (2006) Lect. Notes Comput. Sci. , vol.4135 , pp. 1-19
    • Goulon, A.1    Duprat, A.2    Dreyfus, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.