-
1
-
-
85012688561
-
-
Princeton University Press: Princeton, NJ.
-
Bellman, R. E. Dynamic Programming; Princeton University Press: Princeton, NJ, 1957.
-
(1957)
Dynamic Programming
-
-
Bellman, R.E.1
-
2
-
-
0003890671
-
-
2 nd ed. John Wiley & Sons, Inc. Hoboken, NJ.
-
Cherkassky, V. and Mulier, F. Learning from Data: Concept, Theory and Methods, 2 nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
-
(2007)
Learning from Data: Concept, Theory and Methods
-
-
Cherkassky, V.1
Mulier, F.2
-
3
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci. U.S.A. 1982, 79 (8) 2554-2558
-
(1982)
Proc. Natl. Acad. Sci. U.S.A.
, vol.79
, Issue.8
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
7
-
-
0021518106
-
A Theory of the Learnable
-
Valiant, L. G. A Theory of the Learnable Commun. ACM 1984, 27 (11) 1134-1142
-
(1984)
Commun. ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
8
-
-
0001098776
-
A universal prior for the integers and estimation by minimum description length
-
Rissanen, J. A universal prior for the integers and estimation by minimum description length Ann. Stat. 1983, 11 (2) 416-431
-
(1983)
Ann. Stat.
, vol.11
, Issue.2
, pp. 416-431
-
-
Rissanen, J.1
-
9
-
-
29144521676
-
Chemoinformatics: A new field with a long tradition
-
Gasteiger, J. Chemoinformatics: A new field with a long tradition Anal. Bioanal. Chem. 2006, 384 (1) 57-64
-
(2006)
Anal. Bioanal. Chem.
, vol.384
, Issue.1
, pp. 57-64
-
-
Gasteiger, J.1
-
12
-
-
33845780212
-
Basic overview of chemoinformatics
-
Engel, T. Basic overview of chemoinformatics J. Chem. Inf. Model. 2006, 46 (6) 2267-2277
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.6
, pp. 2267-2277
-
-
Engel, T.1
-
13
-
-
79954511288
-
Chemoinformatics as a theoretical chemistry discipline
-
Varnek, A.; Baskin, I. I. Chemoinformatics as a theoretical chemistry discipline Mol. Inf. 2011, 30 (1) 20-32
-
(2011)
Mol. Inf.
, vol.30
, Issue.1
, pp. 20-32
-
-
Varnek, A.1
Baskin, I.I.2
-
14
-
-
84901022772
-
Chemoinformatics: An introduction for computer scientists
-
Brown, N. Chemoinformatics: An introduction for computer scientists ACM Comput. Surv. 2009, 41 (2) 1-38
-
(2009)
ACM Comput. Surv.
, vol.41
, Issue.2
, pp. 1-38
-
-
Brown, N.1
-
15
-
-
33746931581
-
On outliers and activity cliffs why QSAR often disappoints
-
Maggiora, G. M. On outliers and activity cliffs why QSAR often disappoints J. Chem. Inf. Model. 2006, 46 (4) 1535-1535
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.4
, pp. 1535-1535
-
-
Maggiora, G.M.1
-
16
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
Dietterich, T. G.; Lathrop, R. H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 1997, 89 (1-2) 31-71
-
(1997)
Artif. Intell.
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Pérez, T.3
-
17
-
-
0000573398
-
Solving the inverse problem of structure-property relations for the case of topological indexes
-
Baskin, I. I.; Gordeeva, E. V.; Devdariani, R. O.; Zefirov, N. S.; Palyulin, V. A.; Stankevich, M. I. Solving the inverse problem of structure-property relations for the case of topological indexes Dokl. Akad. Nauk SSSR 1989, 307 (3) 613-17
-
(1989)
Dokl. Akad. Nauk SSSR
, vol.307
, Issue.3
, pp. 613-617
-
-
Baskin, I.I.1
Gordeeva, E.V.2
Devdariani, R.O.3
Zefirov, N.S.4
Palyulin, V.A.5
Stankevich, M.I.6
-
18
-
-
0001746237
-
General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Solution of the inverse problem in QSAR/QSPR
-
Gordeeva, E. V.; Molchanova, M. S.; Zefirov, N. S. General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Solution of the inverse problem in QSAR/QSPR Tetrahedron Comput. Methodol. 1990, 3 (6) 389-415
-
(1990)
Tetrahedron Comput. Methodol.
, vol.3
, Issue.6
, pp. 389-415
-
-
Gordeeva, E.V.1
Molchanova, M.S.2
Zefirov, N.S.3
-
19
-
-
0013490610
-
Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices)
-
Skvortsova, M. I.; Baskin, I. I.; Slovokhotova, O. L.; Palyulin, V. A.; Zefirov, N. S. Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices) J. Chem. Inf. Comput. Sci. 1993, 33 (4) 630-634
-
(1993)
J. Chem. Inf. Comput. Sci.
, vol.33
, Issue.4
, pp. 630-634
-
-
Skvortsova, M.I.1
Baskin, I.I.2
Slovokhotova, O.L.3
Palyulin, V.A.4
Zefirov, N.S.5
-
20
-
-
0000672441
-
Design of molecules from quantitative structure-activity relationship models. 1. Information transfer between path and vertex degree counts
-
Kier, L. B.; Hall, L. H.; Frazer, J. W. Design of molecules from quantitative structure-activity relationship models. 1. Information transfer between path and vertex degree counts J. Chem. Inf. Comput. Sci. 1993, 33 (1) 143-147
-
(1993)
J. Chem. Inf. Comput. Sci.
, vol.33
, Issue.1
, pp. 143-147
-
-
Kier, L.B.1
Hall, L.H.2
Frazer, J.W.3
-
21
-
-
0007233697
-
Structural design. Inverse Problems for Topological Indices in QSAR/QSPR Studies
-
In, Nancy, France, Bernardi, F. Rivail, J.-L. Eds. AIP Press: Woodbury, NY
-
Skvortsova, M. I.; Baskin, I. I.; Palyulin, V. A.; Slovokhotova, O. L.; Zefirov, N. S. Structural design. Inverse Problems for Topological Indices in QSAR/QSPR Studies. In AIP Conf. Proc. 330. E.C.C.C.1 Comput. Chem. F.E.C.S. Conf., Nancy, France, Bernardi, F.; Rivail, J.-L., Eds. AIP Press: Woodbury, NY, 1995; pp 486-499.
-
(1995)
AIP Conf. Proc. 330. E.C.C.C.1 Comput. Chem. F.E.C.S. Conf.
, pp. 486-499
-
-
Skvortsova, M.I.1
Baskin, I.I.2
Palyulin, V.A.3
Slovokhotova, O.L.4
Zefirov, N.S.5
-
22
-
-
10044267953
-
QSPR using MOLGEN-QSPR: The example of haloalkane boiling points
-
Rücker, C.; Meringer, M.; Kerber, A. QSPR using MOLGEN-QSPR: The example of haloalkane boiling points J. Chem. Inf. Comput. Sci. 2004, 44 (6) 2070-2076
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.6
, pp. 2070-2076
-
-
Rücker, C.1
Meringer, M.2
Kerber, A.3
-
23
-
-
0842332242
-
The signature molecular descriptor. 3. Inverse-quantitative structure-activity relationship of ICAM-1 inhibitory peptides
-
Churchwell, C. J.; Rintoul, M. D.; Martin, S.; Visco, D. P., Jr.; Kotu, A.; Larson, R. S.; Sillerud, L. O.; Brown, D. C.; Faulon, J. L. The signature molecular descriptor. 3. Inverse-quantitative structure-activity relationship of ICAM-1 inhibitory peptides J. Mol. Graphics Modell. 2004, 22 (4) 263-73
-
(2004)
J. Mol. Graphics Modell.
, vol.22
, Issue.4
, pp. 263-273
-
-
Churchwell, C.J.1
Rintoul, M.D.2
Martin, S.3
Visco Jr., D.P.4
Kotu, A.5
Larson, R.S.6
Sillerud, L.O.7
Brown, D.C.8
Faulon, J.L.9
-
24
-
-
74049144437
-
A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem
-
Wong, W.; Burkowski, F. A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem J. Cheminf. 2009, 1 (1) 4
-
(2009)
J. Cheminf.
, vol.1
, Issue.1
, pp. 4
-
-
Wong, W.1
Burkowski, F.2
-
25
-
-
77952651054
-
Exhaustive structure generation for inverse-QSPR/QSAR
-
Miyao, T.; Arakawa, M.; Funatsu, K. Exhaustive structure generation for inverse-QSPR/QSAR Mol. Inf. 2010, 29 (1-2) 111-125
-
(2010)
Mol. Inf.
, vol.29
, Issue.1-2
, pp. 111-125
-
-
Miyao, T.1
Arakawa, M.2
Funatsu, K.3
-
26
-
-
78049448019
-
Generative models for chemical structures
-
White, D.; Wilson, R. C. Generative models for chemical structures J. Chem. Inf. Model. 2010, 50 (7) 1257-1274
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.7
, pp. 1257-1274
-
-
White, D.1
Wilson, R.C.2
-
27
-
-
0001022357
-
A neural device for searching direct correlations between structures and properties of chemical compounds
-
Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A neural device for searching direct correlations between structures and properties of chemical compounds J. Chem. Inf. Comput. Sci. 1997, 37 (4) 715-721
-
(1997)
J. Chem. Inf. Comput. Sci.
, vol.37
, Issue.4
, pp. 715-721
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefirov, N.S.3
-
28
-
-
0029277327
-
ChemNet: A novel neural network based method for graph/property mapping
-
Kireev, D. B. ChemNet: A novel neural network based method for graph/property mapping J. Chem. Inf. Comput. Sci. 1995, 35 (2) 175-80
-
(1995)
J. Chem. Inf. Comput. Sci.
, vol.35
, Issue.2
, pp. 175-180
-
-
Kireev, D.B.1
-
29
-
-
84857726149
-
Molecular structure encoding into artificial neural networks topology
-
Ivanciuc, O. Molecular structure encoding into artificial neural networks topology Rom. Chem. Q. Rev. 2001, 8, 197-220
-
(2001)
Rom. Chem. Q. Rev.
, vol.8
, pp. 197-220
-
-
Ivanciuc, O.1
-
30
-
-
0033878122
-
Application of cascade correlation networks for structures to chemistry
-
Bianucci, A. M.; Micheli, A.; Sperduti, A.; Starita, A. Application of cascade correlation networks for structures to chemistry Appl. Intell. 2000, 12 (1-2) 117-146
-
(2000)
Appl. Intell.
, vol.12
, Issue.1-2
, pp. 117-146
-
-
Bianucci, A.M.1
Micheli, A.2
Sperduti, A.3
Starita, A.4
-
31
-
-
0035221306
-
Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
-
Micheli, A.; Sperduti, A.; Starita, A.; Bianucci, A. M. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines J. Chem. Inf. Comput. Sci. 2001, 41 (1) 202-218
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.1
, pp. 202-218
-
-
Micheli, A.1
Sperduti, A.2
Starita, A.3
Bianucci, A.M.4
-
32
-
-
33847047522
-
Predicting activities without computing descriptors: Graph machines for QSAR
-
Goulon, A.; Picot, T.; Duprat, A.; Dreyfus, G. Predicting activities without computing descriptors: Graph machines for QSAR SAR QSAR Environ. Res. 2007, 18 (1-2) 141-153
-
(2007)
SAR QSAR Environ. Res.
, vol.18
, Issue.1-2
, pp. 141-153
-
-
Goulon, A.1
Picot, T.2
Duprat, A.3
Dreyfus, G.4
-
33
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L.; Swamidass, S. J.; Saigo, H.; Baldi, P. Graph kernels for chemical informatics Neural Netw. 2005, 18 (8) 1093-1110
-
(2005)
Neural Netw.
, vol.18
, Issue.8
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
34
-
-
23844458045
-
Graph kernels for molecular structure-activity relationship analysis with support vector machines
-
Mahé, P.; Ueda, N.; Akutsu, T.; Perret, J.-L.; Vert, J.-P. Graph kernels for molecular structure-activity relationship analysis with support vector machines J. Chem. Inf. Model. 2005, 45 (4) 939-951
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.4
, pp. 939-951
-
-
Mahé, P.1
Ueda, N.2
Akutsu, T.3
Perret, J.-L.4
Vert, J.-P.5
-
35
-
-
33750294461
-
The pharmacophore kernel for virtual screening with support vector machines
-
Mahe, P.; Ralaivola, L.; Stoven, V.; Vert, J.-P. The pharmacophore kernel for virtual screening with support vector machines J. Chem. Inf. Model. 2006, 46 (5) 2003-2014
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.5
, pp. 2003-2014
-
-
Mahe, P.1
Ralaivola, L.2
Stoven, V.3
Vert, J.-P.4
-
36
-
-
1942516986
-
Marginalized Kernels between Labeled Graphs
-
In, AAAI Press: Washington, DC, Vol.
-
Kashima, H.; Tsuda, K.; Inokuchi, A. Marginalized Kernels Between Labeled Graphs. In Proceedings, Twentieth International Conference on Machine Learning, AAAI Press: Washington, DC, 2003; Vol. 1, pp 321-328.
-
(2003)
Proceedings, Twentieth International Conference on Machine Learning
, vol.1
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
37
-
-
26944486424
-
Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
-
Swamidass, S. J.; Chen, J.; Phung, P.; Ralaivola, L.; Baldi, P. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity Bioinformatics 2005, 21, I359-I368
-
(2005)
Bioinformatics
, vol.21
-
-
Swamidass, S.J.1
Chen, J.2
Phung, P.3
Ralaivola, L.4
Baldi, P.5
-
38
-
-
33646246986
-
Kernel functions for attributed molecular graphs - A new similarity based approach to ADME prediction inclassification and regression
-
Fröhlich, H.; Wegner, J.; Sieker, F.; Zell, Z. Kernel functions for attributed molecular graphs - A new similarity based approach to ADME prediction inclassification and regression QSAR Comb. Sci. 2006, 25 (4) 317-326
-
(2006)
QSAR Comb. Sci.
, vol.25
, Issue.4
, pp. 317-326
-
-
Fröhlich, H.1
Wegner, J.2
Sieker, F.3
Zell, Z.4
-
39
-
-
84900285860
-
Optimal Assignment Kernels for ADME in Silico Prediction
-
In; Lodhi, H. Yamanishi, Y. IGI Global: Hershey, PA
-
Fröhlich, H. Optimal Assignment Kernels for ADME in Silico Prediction. In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques; Lodhi, H.; Yamanishi, Y., Eds.; IGI Global: Hershey, PA, 2011; pp 16-34.
-
(2011)
Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques
, pp. 16-34
-
-
Fröhlich, H.1
-
40
-
-
77952616341
-
Graph kernels for molecular similarity
-
Rupp, M.; Schneider, G. Graph kernels for molecular similarity Mol. Inf. 2010, 29 (4) 266-273
-
(2010)
Mol. Inf.
, vol.29
, Issue.4
, pp. 266-273
-
-
Rupp, M.1
Schneider, G.2
-
41
-
-
79955711312
-
Predicting the pKa of small molecules
-
Rupp, M.; Körner, R.; Tetko, I. V. Predicting the pKa of small molecules Comb. Chem. High T. Scr. 2011, 14 (5) 307-327
-
(2011)
Comb. Chem. High T. Scr.
, vol.14
, Issue.5
, pp. 307-327
-
-
Rupp, M.1
Körner, R.2
Tetko, I.V.3
-
42
-
-
77951950367
-
Graph kernels
-
Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.; Borgwardt, K. M. Graph kernels J. Mach. Learn. Res. 2010, 11, 1201-1242
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1201-1242
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Kondor, R.3
Borgwardt, K.M.4
-
43
-
-
84955693483
-
Multivariate Data Analysis in Chemistry
-
In; Gasteiger, J. Wiley-VCH: Weinheim
-
Varmuza, K., Multivariate Data Analysis in Chemistry. In Handbook of Chemoinformatics. From Data to Knowledge; Gasteiger, J., Ed.; Wiley-VCH: Weinheim, 2003; pp 1098-1133.
-
(2003)
Handbook of Chemoinformatics. from Data to Knowledge
, pp. 1098-1133
-
-
Varmuza, K.1
-
45
-
-
34848824629
-
Applications of Support Vector Machines in Chemistry
-
In; Lipkowitz, K. B. Cundari, T. R. John Wiley & Sons, Inc. Hoboken, NJ, Vol.
-
Ivanciuc, O. Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Cundari, T. R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; Vol. 23, pp 291-400.
-
(2007)
Reviews in Computational Chemistry
, vol.23
, pp. 291-400
-
-
Ivanciuc, O.1
-
46
-
-
58149386885
-
Neural networks in building QSAR models
-
Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Neural networks in building QSAR models Methods Mol. Biol. 2008, 458, 137-158
-
(2008)
Methods Mol. Biol.
, vol.458
, pp. 137-158
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefirov, N.S.3
-
47
-
-
33748373826
-
Neural networks as a method for elucidating structure-property relationships for organic compounds
-
Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Neural networks as a method for elucidating structure-property relationships for organic compounds Russ. Chem. Rev. 2003, 72 (7) 629-649
-
(2003)
Russ. Chem. Rev.
, vol.72
, Issue.7
, pp. 629-649
-
-
Halberstam, N.M.1
Baskin, I.I.2
Palyulin, V.A.3
Zefirov, N.S.4
-
48
-
-
77649220192
-
Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
-
Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Mod 2010, 50 (2) 205-216
-
(2010)
J. Chem. Inf. Mod
, vol.50
, Issue.2
, pp. 205-216
-
-
Geppert, H.1
Vogt, M.2
Bajorath, J.3
-
49
-
-
33847207834
-
Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
-
Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches Drug Discovery Today 2007, 12 (5-6) 225-33
-
(2007)
Drug Discovery Today
, vol.12
, Issue.5-6
, pp. 225-233
-
-
Eckert, H.1
Bajorath, J.2
-
53
-
-
18344383728
-
Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols
-
Farkas, O.; Heberger, K. Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols J. Chem. Inf. Model. 2005, 45 (2) 339-346
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.2
, pp. 339-346
-
-
Farkas, O.1
Heberger, K.2
-
54
-
-
0035350283
-
QSAR with few compounds and many features
-
Hawkins, D. M.; Basak, S. C.; Shi, X. QSAR with few compounds and many features J. Chem. Inf. Comput. Sci. 2001, 41 (3) 663-670
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.3
, pp. 663-670
-
-
Hawkins, D.M.1
Basak, S.C.2
Shi, X.3
-
55
-
-
10044239599
-
Ensemble methods for classification in cheminformatics
-
Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, M.; Lengauer, T. Ensemble methods for classification in cheminformatics J. Chem. Inf. Comput. Sci. 2004, 44 (6) 1971-1978
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.6
, pp. 1971-1978
-
-
Merkwirth, C.1
Mauser, H.2
Schulz-Gasch, T.3
Roche, O.4
Stahl, M.5
Lengauer, T.6
-
56
-
-
13844318087
-
Use of structure descriptors to discriminate between modes of toxic action of phenols
-
Spycher, S.; Pellegrini, E.; Gasteiger, J. Use of structure descriptors to discriminate between modes of toxic action of phenols J. Chem. Inf. Model. 2005, 45 (1) 200-8
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.1
, pp. 200-208
-
-
Spycher, S.1
Pellegrini, E.2
Gasteiger, J.3
-
61
-
-
0033549850
-
Robust QSAR models using Bayesian regularized neural networks
-
Burden, F. R.; Winkler, D. A. Robust QSAR models using Bayesian regularized neural networks J. Med. Chem. 1999, 42 (16) 3183-3187
-
(1999)
J. Med. Chem.
, vol.42
, Issue.16
, pp. 3183-3187
-
-
Burden, F.R.1
Winkler, D.A.2
-
62
-
-
0035526164
-
Search for predictive generic model of aqueous solubility using Bayesian neural nets
-
Bruneau, P. Search for predictive generic model of aqueous solubility using Bayesian neural nets J. Chem. Inf. Comput. Sci. 2001, 41 (6) 1605-1616
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.6
, pp. 1605-1616
-
-
Bruneau, P.1
-
63
-
-
0001245212
-
Use of automatic relevance determination in QSAR studies using Bayesian neural networks
-
Burden, F. R.; Ford, M. G.; Whitley, D. C.; Winkler, D. A. Use of automatic relevance determination in QSAR studies using Bayesian neural networks J. Chem. Inf. Comput. Sci. 2000, 40 (6) 1423-1430
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, Issue.6
, pp. 1423-1430
-
-
Burden, F.R.1
Ford, M.G.2
Whitley, D.C.3
Winkler, D.A.4
-
64
-
-
0036827082
-
Bayesian neural networks for aroma classification
-
Klocker, J.; Wailzer, B.; Buchbauer, G.; Wolschann, P. Bayesian neural networks for aroma classification J. Chem. Inf. Comput. Sci. 2002, 42 (6) 1443-1449
-
(2002)
J. Chem. Inf. Comput. Sci.
, vol.42
, Issue.6
, pp. 1443-1449
-
-
Klocker, J.1
Wailzer, B.2
Buchbauer, G.3
Wolschann, P.4
-
65
-
-
0035353660
-
Quantitative structure-activity relationship studies using Gaussian processes
-
Burden, F. R. Quantitative structure-activity relationship studies using Gaussian processes J. Chem. Inf. Comput. Sci. 2001, 41 (3) 830-835
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.3
, pp. 830-835
-
-
Burden, F.R.1
-
66
-
-
5444224314
-
Nonlinear prediction of quantitative structure-activity relationships
-
Tino, P.; Nabney, I. T.; Williams, B. S.; Losel, J.; Sun, Y. Nonlinear prediction of quantitative structure-activity relationships J. Chem. Inf. Comput. Sci. 2004, 44 (5) 1647-1653
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.5
, pp. 1647-1653
-
-
Tino, P.1
Nabney, I.T.2
Williams, B.S.3
Losel, J.4
Sun, Y.5
-
67
-
-
35248832636
-
Gaussian processes: A method for automatic QSAR modeling of ADME properties
-
Obrezanova, O.; Csanyi, G.; Gola, J. M. R.; Segall, M. D. Gaussian processes: A method for automatic QSAR modeling of ADME properties J. Chem. Inf. Model. 2007, 47 (5) 1847-1857
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.5
, pp. 1847-1857
-
-
Obrezanova, O.1
Csanyi, G.2
Gola, J.M.R.3
Segall, M.D.4
-
68
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron, B. Bootstrap methods: Another look at the jackknife Ann. Stat. 1979, 7, 1-26
-
(1979)
Ann. Stat.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
69
-
-
33745821727
-
Can we estimate the accuracy of ADMET predictions?
-
Tetko, I. V.; Bruneau, P.; Mewes, H.-W.; Rohrer, D. C.; Poda, G. I. Can we estimate the accuracy of ADMET predictions? Drug Discovery Today 2006, 11 (15/16) 700-707
-
(2006)
Drug Discovery Today
, vol.11
, Issue.15-16
, pp. 700-707
-
-
Tetko, I.V.1
Bruneau, P.2
Mewes, H.-W.3
Rohrer, D.C.4
Poda, G.I.5
-
70
-
-
78650714907
-
Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set
-
Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A. K.; Cherkasov, A.; Li, J.; Gramatica, P.; Hansen, K.; Schroeter, T.; Muller, K. R.; Xi, L.; Liu, H.; Yao, X.; Oberg, T.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Todeschini, R.; Polishchuk, P.; Artemenko, A.; Kuz'min, V.; Martin, T. M.; Young, D. M.; Fourches, D.; Muratov, E.; Tropsha, A.; Baskin, I.; Horvath, D.; Marcou, G.; Muller, C.; Varnek, A.; Prokopenko, V. V.; Tetko, I. V. Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set J. Chem. Inf. Model. 2010, 50 (12) 2094-2111
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.12
, pp. 2094-2111
-
-
Sushko, I.1
Novotarskyi, S.2
Korner, R.3
Pandey, A.K.4
Cherkasov, A.5
Li, J.6
Gramatica, P.7
Hansen, K.8
Schroeter, T.9
Muller, K.R.10
Xi, L.11
Liu, H.12
Yao, X.13
Oberg, T.14
Hormozdiari, F.15
Dao, P.16
Sahinalp, C.17
Todeschini, R.18
Polishchuk, P.19
Artemenko, A.20
Kuz'Min, V.21
Martin, T.M.22
Young, D.M.23
Fourches, D.24
Muratov, E.25
Tropsha, A.26
Baskin, I.27
Horvath, D.28
Marcou, G.29
Muller, C.30
Varnek, A.31
Prokopenko, V.V.32
Tetko, I.V.33
more..
-
71
-
-
0003243224
-
Probabilities for SV Machines
-
In; Smola, A. J. Bartlett, P. L. Schölkopf, B. Schuurmans, D. MIT Press: Cambridge, MA
-
Platt, J. Probabilities for SV Machines. In Advances in Large Margin Classifiers; Smola, A. J.; Bartlett, P. L.; Schölkopf, B.; Schuurmans, D., Eds.; MIT Press: Cambridge, MA, 2000; pp 61-74.
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
72
-
-
9244258603
-
The pre-image problem in kernel methods
-
Kwok, J. T. Y.; Tsang, I. W. H. The pre-image problem in kernel methods IEEE Trans. Neural Netw. 2004, 15 (6) 1517-1525
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.6
, pp. 1517-1525
-
-
Kwok, J.T.Y.1
Tsang, I.W.H.2
-
73
-
-
0036557849
-
Neural network studies. 4. Introduction to associative neural networks
-
Tetko, I. V. Neural network studies. 4. Introduction to associative neural networks J. Chem. Inf. Comput. Sci. 2002, 42 (3) 717-728
-
(2002)
J. Chem. Inf. Comput. Sci.
, vol.42
, Issue.3
, pp. 717-728
-
-
Tetko, I.V.1
-
74
-
-
0028106835
-
HIV-1 reverse transcriptase inhibitor design using artificial neural networks
-
Tetko, I. V.; Tanchuk, V.; Chentsova, N. P.; Antonenko, S. V.; Poda, G. I.; Kukhar, V. P.; Luik, A. I. HIV-1 reverse transcriptase inhibitor design using artificial neural networks J. Med. Chem. 1994, 37 (16) 2520-6
-
(1994)
J. Med. Chem.
, vol.37
, Issue.16
, pp. 2520-2526
-
-
Tetko, I.V.1
Tanchuk, V.2
Chentsova, N.P.3
Antonenko, S.V.4
Poda, G.I.5
Kukhar, V.P.6
Luik, A.I.7
-
75
-
-
0037287399
-
Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds
-
Artemenko, N. V.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds Russ. Chem. Bull. 2003, 52 (1) 20-29
-
(2003)
Russ. Chem. Bull.
, vol.52
, Issue.1
, pp. 20-29
-
-
Artemenko, N.V.1
Baskin, I.I.2
Palyulin, V.A.3
Zefirov, N.S.4
-
76
-
-
37649009464
-
Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies
-
Zhokhova, N. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, A. N.; Zefirov, N. S. Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies Dokl. Chem. 2007, 417 (2) 282-284
-
(2007)
Dokl. Chem.
, vol.417
, Issue.2
, pp. 282-284
-
-
Zhokhova, N.I.1
Baskin, I.I.2
Palyulin, V.A.3
Zefirov, A.N.4
Zefirov, N.S.5
-
77
-
-
44449173096
-
Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis
-
Zhu, H.; Tropsha, A.; Fourches, D.; Varnek, A.; Papa, E.; Gramatical, P.; Öberg, T.; Dao, P.; Cherkasov, A.; Tetko, I. V. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis J. Chem. Inf. Model. 2008, 48 (4) 766-784
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.4
, pp. 766-784
-
-
Zhu, H.1
Tropsha, A.2
Fourches, D.3
Varnek, A.4
Papa, E.5
Gramatical, P.6
Öberg, T.7
Dao, P.8
Cherkasov, A.9
Tetko, I.V.10
-
78
-
-
54749103171
-
ISIDA: Platform for virtual screening based on fragment and pharmacophoric descriptors
-
Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; Vayer, P.; Solov'ev, V.; Hoonakker, F.; Tetko, I. V.; Marcou, G. ISIDA: Platform for virtual screening based on fragment and pharmacophoric descriptors Curr. Comput.-Aided Drug Des. 2008, 4 (3) 191-198
-
(2008)
Curr. Comput.-Aided Drug Des.
, vol.4
, Issue.3
, pp. 191-198
-
-
Varnek, A.1
Fourches, D.2
Horvath, D.3
Klimchuk, O.4
Gaudin, C.5
Vayer, P.6
Solov'Ev, V.7
Hoonakker, F.8
Tetko, I.V.9
Marcou, G.10
-
79
-
-
0030211964
-
Bagging predictors
-
Breiman, L. Bagging predictors Mach. Learn. 1996, 24 (2) 123-140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
80
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Mach. Learn. 2001, 45 (1) 5-32
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
81
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1947-1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
82
-
-
10044227497
-
Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors
-
Guha, R.; Jurs, P. C. Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors J. Chem. Inf. Comput. Sci. 2004, 44 (6) 2179-2189
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.6
, pp. 2179-2189
-
-
Guha, R.1
Jurs, P.C.2
-
83
-
-
23844503717
-
Application of the random forest method in studies of local lymph node assay based skin sensitization data
-
Li, S.; Fedorowicz, A.; Singh, H.; Soderholm, S. C. Application of the random forest method in studies of local lymph node assay based skin sensitization data J. Chem. Inf. Model. 2005, 45 (4) 952-964
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.4
, pp. 952-964
-
-
Li, S.1
Fedorowicz, A.2
Singh, H.3
Soderholm, S.C.4
-
84
-
-
0040639069
-
Stacking Bagged and Dagged Models
-
In; Fisher, D. H. Morgan Kaufmann Publishers: San Francisco, CA
-
Ting, K. M.; Witten, I. H. Stacking Bagged and Dagged Models. In Fourteenth International Conference on Machine Learning; Fisher, D. H., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1997; pp 367-375.
-
(1997)
Fourteenth International Conference on Machine Learning
, pp. 367-375
-
-
Ting, K.M.1
Witten, I.H.2
-
85
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho, T. K. The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. 1998, 20 (8) 832-844
-
(1998)
IEEE Trans. Pattern Anal.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
86
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. H. Stacked generalization Neural Netw. 1992, 5 (2) 241-259
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
87
-
-
0030196364
-
Stacked regressions
-
Breiman, L. Stacked regressions Mach. Learn. 1996, 24 (1) 49-64
-
(1996)
Mach. Learn.
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
89
-
-
2942717219
-
Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA)
-
Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA) J. Chem. Inf. Comput. Sci. 2004, 44 (3) 931-939
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.3
, pp. 931-939
-
-
Wegner, J.K.1
Froehlich, H.2
Zell, A.3
-
90
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. H. Greedy function approximation: A gradient boosting machine Ann. Stat. 2001, 29 (5) 1189-1232
-
(2001)
Ann. Stat.
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
91
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman, J. H. Stochastic gradient boosting Comput. Stat. Data An. 2002, 38 (4) 367-378
-
(2002)
Comput. Stat. Data An.
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
92
-
-
20444399504
-
Boosting: An ensemble learning tool for compound classification and QSAR modeling
-
Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song, Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling J. Chem. Inf. Model. 2005, 45 (3) 786-799
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.3
, pp. 786-799
-
-
Svetnik, V.1
Wang, T.2
Tong, C.3
Liaw, A.4
Sheridan, R.P.5
Song, Q.6
-
93
-
-
0036161257
-
Linear Programming boosting via column generation
-
Demiriz, A.; Bennett, K. P.; Shawe-Taylor, J. Linear Programming boosting via column generation Mach. Learn. 2002, 46 (1-3) 225-254
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
94
-
-
60949105177
-
GBoost: A mathematical programming approach to graph classification and regression
-
Saigo, H.; Nowozin, S.; Kadowaki, T.; Kudo, T.; Tsuda, K. GBoost: A mathematical programming approach to graph classification and regression Mach. Learn. 2009, 75 (1) 69-89
-
(2009)
Mach. Learn.
, vol.75
, Issue.1
, pp. 69-89
-
-
Saigo, H.1
Nowozin, S.2
Kadowaki, T.3
Kudo, T.4
Tsuda, K.5
-
95
-
-
34547984616
-
A Linear Programming Approach for Molecular QSAR Analysis
-
In; Gaertner, T. Garriga, G. C. Meinl, T. Berlin
-
Saigo, H.; Kadowaki, T.; Tsuda, K., A Linear Programming Approach for Molecular QSAR Analysis. In International Workshop on Mining and Learning with Graphs 2006; Gaertner, T.; Garriga, G. C.; Meinl, T., Eds.; Berlin, 2006; pp 85-96.
-
(2006)
International Workshop on Mining and Learning with Graphs 2006
, pp. 85-96
-
-
Saigo, H.1
Kadowaki, T.2
Tsuda, K.3
-
97
-
-
0001938951
-
Transductive Inference for Text Classification Using Support Vector Machines
-
In; Kaufmann, M. Bled, Slovenia
-
Joachims, T. Transductive Inference for Text Classification Using Support Vector Machines. In International conference on Machine Learning (ICML); Kaufmann, M., Ed.; Bled, Slovenia, 1999; pp 200-209.
-
(1999)
International Conference on Machine Learning (ICML)
, pp. 200-209
-
-
Joachims, T.1
-
98
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D. A.; Ghahramani, Z.; Jordan, M. I. Active learning with statistical models J. Artif. Intell. Res. 1996, 4, 129-145
-
(1996)
J. Artif. Intell. Res.
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
99
-
-
34548168342
-
Active learning for logistic regression: An evaluation
-
Schein, A. I.; Ungar, L. H. Active learning for logistic regression: An evaluation Mach. Learn. 2007, 68 (3) 235-265
-
(2007)
Mach. Learn.
, vol.68
, Issue.3
, pp. 235-265
-
-
Schein, A.I.1
Ungar, L.H.2
-
100
-
-
16644397567
-
An active learning approach for neural network ensemble
-
Wang, Z.; Chen, S.; Chen, Z. An active learning approach for neural network ensemble Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2005, 42 (3) 375-380
-
(2005)
Jisuanji Yanjiu Yu Fazhan/Computer Research and Development
, vol.42
, Issue.3
, pp. 375-380
-
-
Wang, Z.1
Chen, S.2
Chen, Z.3
-
101
-
-
34547875776
-
Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants
-
Danziger, S. A.; Zeng, J.; Wang, Y.; Brachmann, R. K.; Lathrop, R. H. Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants Bioinformatics 2007, 23 (13) i104-i114
-
(2007)
Bioinformatics
, vol.23
, Issue.13
-
-
Danziger, S.A.1
Zeng, J.2
Wang, Y.3
Brachmann, R.K.4
Lathrop, R.H.5
-
102
-
-
44449101219
-
Virtual screening system for finding structurally diverse hits by active learning
-
Fujiwara, Y.; Yamashita, Y.; Osoda, T.; Asogawa, M.; Fukushima, C.; Asao, M.; Shimadzu, H.; Nakao, K.; Shimizu, R. Virtual screening system for finding structurally diverse hits by active learning J. Chem. Inf. Model. 2008, 48 (4) 930-940
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.4
, pp. 930-940
-
-
Fujiwara, Y.1
Yamashita, Y.2
Osoda, T.3
Asogawa, M.4
Fukushima, C.5
Asao, M.6
Shimadzu, H.7
Nakao, K.8
Shimizu, R.9
-
103
-
-
0033640737
-
Statistical active learning in multilayer perceptrons
-
Fukumizu, K. Statistical active learning in multilayer perceptrons IEEE Trans. Neural Netw. 2000, 11 (1) 17-26
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.1
, pp. 17-26
-
-
Fukumizu, K.1
-
104
-
-
0033322116
-
Improving generalization ability through active learning
-
Vijayakumart, S.; Ogawa, H. Improving generalization ability through active learning IEICE Trans. Inf. Syst. 1999, E82-D (2) 480-487
-
(1999)
IEICE Trans. Inf. Syst.
, vol.E82-D
, Issue.2
, pp. 480-487
-
-
Vijayakumart, S.1
Ogawa, H.2
-
105
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth, M. K.; Liao, J.; Rätsch, G.; Mathieson, M.; Putta, S.; Lemmen, C. Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 2003, 43 (2) 667-673
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.2
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Rätsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
106
-
-
9444283161
-
Active learning support vector machines for optimal sample selection in classification
-
Zomer, S.; Del Nogal Sánchez, M.; Brereton, R. G.; Pérez Pavón, J. L. Active learning support vector machines for optimal sample selection in classification J. Chemom. 2004, 18 (6) 294-305
-
(2004)
J. Chemom.
, vol.18
, Issue.6
, pp. 294-305
-
-
Zomer, S.1
Del Nogal Sánchez, M.2
Brereton, R.G.3
Pérez Pavón, J.L.4
-
107
-
-
33749445935
-
Active learning for image retrieval with Co-SVM
-
Cheng, J.; Wang, K. Active learning for image retrieval with Co-SVM Pattern Recogn. 2007, 40 (1) 330-334
-
(2007)
Pattern Recogn.
, vol.40
, Issue.1
, pp. 330-334
-
-
Cheng, J.1
Wang, K.2
-
108
-
-
77952514780
-
A novel active learning approach for SVM in the presence of multi-views
-
Gu, P.; Zhu, Q.; Zhang, C. A novel active learning approach for SVM in the presence of multi-views J. Chem. Inf. Comput. Sci. 2010, 7 (2) 317-324
-
(2010)
J. Chem. Inf. Comput. Sci.
, vol.7
, Issue.2
, pp. 317-324
-
-
Gu, P.1
Zhu, Q.2
Zhang, C.3
-
109
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
Bordes, A.; Ertekin, S.; Weston, J.; Bottou, L. Fast kernel classifiers with online and active learning J. Mach. Learn. Res. 2005, 6, 1579-1619
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
110
-
-
38649118902
-
Second-order SMO improves SVM online and active learning
-
Glasmachers, T.; Igel, C. Second-order SMO improves SVM online and active learning Neural Comput. 2008, 20 (2) 374-382
-
(2008)
Neural Comput.
, vol.20
, Issue.2
, pp. 374-382
-
-
Glasmachers, T.1
Igel, C.2
-
111
-
-
0034592915
-
Active Learning Using Adaptive Resampling
-
In; Ramakrishnan, R. Stolfo, S. Bayardo, R. Parsa, I. Ramakrishnan, R. Stolfo, S. Bayardo, R. Parsa, I. ACM: Boston, MA
-
Iyengar, V. S.; Apte, C.; Zhang, T., Active Learning Using Adaptive Resampling. In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Ramakrishnan, R.; Stolfo, S.; Bayardo, R.; Parsa, I.; Ramakrishnan, R.; Stolfo, S.; Bayardo, R.; Parsa, I., Eds.; ACM: Boston, MA, 2000; pp 91-98.
-
(2000)
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 91-98
-
-
Iyengar, V.S.1
Apte, C.2
Zhang, T.3
-
112
-
-
13444292015
-
Active learning based on maximizing information gain for content-based image retrieval
-
Xu, J.; Shi, P. Active learning based on maximizing information gain for content-based image retrieval J. Southeast Univ. (Engl. Ed.) 2004, 20 (4) 431-435
-
(2004)
J. Southeast Univ. (Engl. Ed.)
, vol.20
, Issue.4
, pp. 431-435
-
-
Xu, J.1
Shi, P.2
-
113
-
-
33646509357
-
Combining active learning and boosting for Naïve Bayes text classifiers
-
Kim, H. J.; Kim, J. U. Combining active learning and boosting for Naïve Bayes text classifiers Lect. Notes Comput. Sci. 2004, 3129, 519-527
-
(2004)
Lect. Notes Comput. Sci.
, vol.3129
, pp. 519-527
-
-
Kim, H.J.1
Kim, J.U.2
-
114
-
-
78249243073
-
Bayesian active learning using arbitrary binary valued queries
-
Yang, L.; Hanneke, S.; Carbonell, J. Bayesian active learning using arbitrary binary valued queries Lect. Notes Comput. Sci. 2010, 6331, 50-58
-
(2010)
Lect. Notes Comput. Sci.
, vol.6331
, pp. 50-58
-
-
Yang, L.1
Hanneke, S.2
Carbonell, J.3
-
115
-
-
38949099732
-
Active learning by spherical subdivision
-
Henrich, F. F.; Obermayer, K. Active learning by spherical subdivision J. Mach. Learn. Res. 2008, 9, 105-130
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 105-130
-
-
Henrich, F.F.1
Obermayer, K.2
-
116
-
-
0030700312
-
Construction of 3D-QSAR models using the 4D-QSAR analysis formalism
-
Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism J. Am. Chem. Soc. 1997, 119 (43) 10509-10524
-
(1997)
J. Am. Chem. Soc.
, vol.119
, Issue.43
, pp. 10509-10524
-
-
Hopfinger, A.J.1
Wang, S.2
Tokarski, J.S.3
Jin, B.4
Albuquerque, M.5
Madhav, P.J.6
Duraiswami, C.7
-
117
-
-
0036798637
-
ND QSAR: A medicinal chemist's point of view
-
Müller, G. nD QSAR: A medicinal chemist's point of view Quant. Struct.-Act. Relat. 2002, 21 (4) 391-396
-
(2002)
Quant. Struct.-Act. Relat.
, vol.21
, Issue.4
, pp. 391-396
-
-
Müller, G.1
-
118
-
-
0032161105
-
Four-dimensional quantitative structure: Activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists
-
Albuquerque, M. G.; Hopfinger, A. J.; Barreiro, E. J.; De Alencastro, R. B. Four-dimensional quantitative structure: Activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists J. Chem. Inf. Comput. Sci. 1998, 38 (5) 925-938
-
(1998)
J. Chem. Inf. Comput. Sci.
, vol.38
, Issue.5
, pp. 925-938
-
-
Albuquerque, M.G.1
Hopfinger, A.J.2
Barreiro, E.J.3
De Alencastro, R.B.4
-
119
-
-
0031918488
-
Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis
-
Klein, C. D. P.; Hopfinger, A. J. Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis Pharm. Res. 1998, 15 (2) 303-311
-
(1998)
Pharm. Res.
, vol.15
, Issue.2
, pp. 303-311
-
-
Klein, C.D.P.1
Hopfinger, A.J.2
-
120
-
-
0001609280
-
Construction of a virtual high throughput screen by 4D-QSAR analysis: Application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b
-
Hopfinger, A. J.; Reaka, A.; Venkatarangan, P.; Duca, J. S.; Wang, S. Construction of a virtual high throughput screen by 4D-QSAR analysis: Application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b J. Chem. Inf. Comput. Sci. 1999, 39 (6) 1151-1160
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, Issue.6
, pp. 1151-1160
-
-
Hopfinger, A.J.1
Reaka, A.2
Venkatarangan, P.3
Duca, J.S.4
Wang, S.5
-
121
-
-
0035470284
-
Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation
-
Duca, J. S.; Hopfinger, A. J. Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation J. Chem. Inf. Comput. Sci. 2001, 41 (3-6) 1367-1387
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.3-6
, pp. 1367-1387
-
-
Duca, J.S.1
Hopfinger, A.J.2
-
122
-
-
0035498341
-
4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling
-
Ravi, M.; Hopfinger, A. J.; Hormann, R. E.; Dinan, L. 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling J. Chem. Inf. Comput. Sci. 2001, 41 (6) 1587-1604
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.6
, pp. 1587-1604
-
-
Ravi, M.1
Hopfinger, A.J.2
Hormann, R.E.3
Dinan, L.4
-
123
-
-
0035146602
-
A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors
-
Santos-Filho, O. A.; Hopfinger, A. J. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors J. Comput.-Aided Mol. Des. 2001, 15 (1) 1-12
-
(2001)
J. Comput.-Aided Mol. Des.
, vol.15
, Issue.1
, pp. 1-12
-
-
Santos-Filho, O.A.1
Hopfinger, A.J.2
-
124
-
-
0036794599
-
Multidimensional QSAR: Moving from three- to five-dimensional concepts
-
Vedani, A.; Dobler, M. Multidimensional QSAR: Moving from three- to five-dimensional concepts Quant. Struct.-Act. Relat. 2002, 21 (4) 382-390
-
(2002)
Quant. Struct.-Act. Relat.
, vol.21
, Issue.4
, pp. 382-390
-
-
Vedani, A.1
Dobler, M.2
-
125
-
-
0037161586
-
5D-QSAR: The key for simulating induced fit?
-
Vedani, A.; Dobler, M. 5D-QSAR: the key for simulating induced fit? J. Med. Chem. 2002, 45 (11) 2139-49
-
(2002)
J. Med. Chem.
, vol.45
, Issue.11
, pp. 2139-2149
-
-
Vedani, A.1
Dobler, M.2
-
126
-
-
20144371130
-
Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor
-
Vedani, A.; Dobler, M.; Lill, M. A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor J. Med. Chem. 2005, 48 (11) 3700-3703
-
(2005)
J. Med. Chem.
, vol.48
, Issue.11
, pp. 3700-3703
-
-
Vedani, A.1
Dobler, M.2
Lill, M.A.3
-
127
-
-
33845791138
-
Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes
-
Bonachera, F.; Parent, B.; Barbosa, F.; Froloff, N.; Horvath, D. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes J. Chem. Inf. Model. 2006, 46 (6) 2457-2477
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.6
, pp. 2457-2477
-
-
Bonachera, F.1
Parent, B.2
Barbosa, F.3
Froloff, N.4
Horvath, D.5
-
128
-
-
79958834912
-
Property-labelled fragment descriptors
-
Ruggiu, F.; Marcou, G.; Varnek, A.; Horvath, D. I. Property-labelled fragment descriptors Mol. Inf. 2010, 29 (12) 855-868
-
(2010)
Mol. Inf.
, vol.29
, Issue.12
, pp. 855-868
-
-
Ruggiu, F.1
Marcou, G.2
Varnek, A.3
Horvath, D.I.4
-
129
-
-
84862892485
-
-
version 5.9; ChemAxon: Budapest, Hungary, (accessed April 04, 2012).
-
JChem, version 5.9; ChemAxon: Budapest, Hungary, 2012. http://www.chemaxon.com/jchem/intro/index.html (accessed April 04, 2012).
-
(2012)
JChem
-
-
-
130
-
-
34250796895
-
Stochastic versus stepwise strategies for quantitative structure-activity relationship generation: How much effort may the mining for successful QSAR models take?
-
Horvath, D.; Bonachera, F.; Solov'ev, V.; Gaudin, C.; Varnek, A. Stochastic versus stepwise strategies for quantitative structure-activity relationship generation: How much effort may the mining for successful QSAR models take? J. Chem. Inf. Mod 2007, 47 (3) 927-939
-
(2007)
J. Chem. Inf. Mod
, vol.47
, Issue.3
, pp. 927-939
-
-
Horvath, D.1
Bonachera, F.2
Solov'Ev, V.3
Gaudin, C.4
Varnek, A.5
-
131
-
-
0345117314
-
Multimode ligand binding in receptor site modeling: Implementation in CoMFA
-
Lukacova, V.; Balaz, S. Multimode ligand binding in receptor site modeling: Implementation in CoMFA J. Chem. Inf. Comput. Sci. 2003, 43 (6) 2093-2105
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 2093-2105
-
-
Lukacova, V.1
Balaz, S.2
-
132
-
-
33846883939
-
Structural determinants of binding of aromates to extracellular matrix: A multi-species multi-mode CoMFA study
-
Zhang, Y.; Lukacova, V.; Bartus, V.; Balaz, S. Structural determinants of binding of aromates to extracellular matrix: A multi-species multi-mode CoMFA study Chem. Res. Toxicol. 2007, 20 (1) 11-19
-
(2007)
Chem. Res. Toxicol.
, vol.20
, Issue.1
, pp. 11-19
-
-
Zhang, Y.1
Lukacova, V.2
Bartus, V.3
Balaz, S.4
-
133
-
-
52649150857
-
Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis
-
Zhang, Y.; Lukacova, V.; Bartus, V.; Nie, X.; Sun, G.; Manivannan, E.; Ghorpade, S. R.; Jin, X.; Manyem, S.; Sibi, M. P.; Cook, G. R.; Balaz, S. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis Chem. Biol. Drug. Des. 2008, 72 (4) 237-248
-
(2008)
Chem. Biol. Drug. Des.
, vol.72
, Issue.4
, pp. 237-248
-
-
Zhang, Y.1
Lukacova, V.2
Bartus, V.3
Nie, X.4
Sun, G.5
Manivannan, E.6
Ghorpade, S.R.7
Jin, X.8
Manyem, S.9
Sibi, M.P.10
Cook, G.R.11
Balaz, S.12
-
134
-
-
33750088958
-
Multi-instance learning from supervised view
-
Zhou, Z. H. Multi-instance learning from supervised view J. Comput. Sci. Tech. 2006, 21 (5) 800-809
-
(2006)
J. Comput. Sci. Tech.
, vol.21
, Issue.5
, pp. 800-809
-
-
Zhou, Z.H.1
-
135
-
-
0141830875
-
Multiple-instance learning of real-valued data
-
Dooly, D. R.; Zhang, Q.; Goldman, S. A.; Amar, R. A. Multiple-instance learning of real-valued data J. Mach. Learn. Res. 2003, 3 (4-5) 651-678
-
(2003)
J. Mach. Learn. Res.
, vol.3
, Issue.4-5
, pp. 651-678
-
-
Dooly, D.R.1
Zhang, Q.2
Goldman, S.A.3
Amar, R.A.4
-
136
-
-
84898935332
-
A Framework for Multiple-Instance Learning
-
In; Jordan, M. I. Kearns, M. J. Solla, S. A. MIT Press: Cambridge, Vol.
-
Maron, O.; Lozano-Perez, T. A Framework for Multiple-Instance Learning. In Advances in Neural Information Processing Systems 10; Jordan, M. I.; Kearns, M. J.; Solla, S. A., Eds.; MIT Press: Cambridge, 1998; Vol. 10, pp 570-576.
-
(1998)
Advances in Neural Information Processing Systems 10
, vol.10
, pp. 570-576
-
-
Maron, O.1
Lozano-Perez, T.2
-
137
-
-
0036923345
-
Multiple Instance Learning with Generalized Support Vector Machines
-
In; MIT Press: Cambridge, MA
-
Andrews, S.; Hofmann, T.; Tsochantaridis, I. Multiple Instance Learning with Generalized Support Vector Machines. In Eighteenth National Conference on Artificial Intelligence; MIT Press: Cambridge, MA, 2002; pp 943-944.
-
(2002)
Eighteenth National Conference on Artificial Intelligence
, pp. 943-944
-
-
Andrews, S.1
Hofmann, T.2
Tsochantaridis, I.3
-
141
-
-
0028429573
-
Inductive logic programming: Theory and methods
-
Muggleton, S. H.; De Raedt, L. Inductive logic programming: Theory and methods J. Logic Program. 1994, 19 (20) 629-679
-
(1994)
J. Logic Program.
, vol.19
, Issue.20
, pp. 629-679
-
-
Muggleton, S.H.1
De Raedt, L.2
-
142
-
-
52449101351
-
-
Springer: Berlin, Heidelberg.
-
De Raedt, L.; Frasconi, P.; Kersting, K.; Muggleton, S. Probabilistic Inductive Logoc Programming. Theory and Applications; Springer: Berlin, Heidelberg, 2008.
-
(2008)
Probabilistic Inductive Logoc Programming. Theory and Applications
-
-
De Raedt, L.1
Frasconi, P.2
Kersting, K.3
Muggleton, S.4
-
144
-
-
0030044168
-
Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
-
King, R. D.; Muggleton, S. H.; Srinivasan, A.; Sternberg, M. J. E. Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (1) 438-442
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, Issue.1
, pp. 438-442
-
-
King, R.D.1
Muggleton, S.H.2
Srinivasan, A.3
Sternberg, M.J.E.4
-
145
-
-
0030212927
-
Theories for mutagenicity: A study in first-order and feature-based induction
-
Srinivasana, A.; Muggleton, S. H.; Sternberg, M. J. E.; King, R. D. Theories for mutagenicity: A study in first-order and feature-based induction Artif. Intell. 1996, 85 (1-2) 277-299
-
(1996)
Artif. Intell.
, vol.85
, Issue.1-2
, pp. 277-299
-
-
Srinivasana, A.1
Muggleton, S.H.2
Sternberg, M.J.E.3
King, R.D.4
-
146
-
-
34250876925
-
A novel logic-based approach for quantitative toxicology prediction
-
Amini, A.; Muggleton, S. H.; Lodhi, H.; Sternberg, M. J. E. A novel logic-based approach for quantitative toxicology prediction J. Chem. Inf. Model. 2007, 47 (3) 998-1006
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.3
, pp. 998-1006
-
-
Amini, A.1
Muggleton, S.H.2
Lodhi, H.3
Sternberg, M.J.E.4
-
147
-
-
0042672725
-
Structure activity relationships (SAR) and pharmacophore discovery using Inductive Logic Programming (ILP)
-
Sternberg, M. J. E.; Muggleton, S. H. Structure activity relationships (SAR) and pharmacophore discovery using Inductive Logic Programming (ILP) QSAR Comb. Sci. 2003, 22 (5) 527-532
-
(2003)
QSAR Comb. Sci.
, vol.22
, Issue.5
, pp. 527-532
-
-
Sternberg, M.J.E.1
Muggleton, S.H.2
-
148
-
-
34247386376
-
Support vector inductive logic programming outperforms the Naive Bayes Classifier and inductive logic programming for the classification of bioactive chemical compounds
-
Cannon, E. O.; Amini, A.; Bender, A.; Sternberg, M. J. E.; Muggleton, S. H.; Glen, R. C.; Mitchell, J. B. O. Support vector inductive logic programming outperforms the Naive Bayes Classifier and inductive logic programming for the classification of bioactive chemical compounds J. Comput.-Aided Mol. Des. 2007, 21 (5) 269-280
-
(2007)
J. Comput.-Aided Mol. Des.
, vol.21
, Issue.5
, pp. 269-280
-
-
Cannon, E.O.1
Amini, A.2
Bender, A.3
Sternberg, M.J.E.4
Muggleton, S.H.5
Glen, R.C.6
Mitchell, J.B.O.7
-
149
-
-
45749130703
-
Scaffold hopping in drug discovery using inductive logic programming
-
Tsunoyama, K.; Amini, A.; Sternberg, M. J. E.; Muggleton, S. H. Scaffold hopping in drug discovery using inductive logic programming J. Chem. Inf. Model. 2008, 48 (5) 949-957
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.5
, pp. 949-957
-
-
Tsunoyama, K.1
Amini, A.2
Sternberg, M.J.E.3
Muggleton, S.H.4
-
150
-
-
0031261477
-
The discovery of indicator variables for QSAR using inductive logic programming
-
King, R. D.; Srinivasan, A. The discovery of indicator variables for QSAR using inductive logic programming J. Comput.-Aided Mol. Des. 1997, 11 (6) 571-580
-
(1997)
J. Comput.-Aided Mol. Des.
, vol.11
, Issue.6
, pp. 571-580
-
-
King, R.D.1
Srinivasan, A.2
-
151
-
-
0037122709
-
New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors
-
Marchand-Geneste, N.; Watson, K. A.; Alsberg, B. K.; King, R. D. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors J. Med. Chem. 2002, 45 (2) 399-409
-
(2002)
J. Med. Chem.
, vol.45
, Issue.2
, pp. 399-409
-
-
Marchand-Geneste, N.1
Watson, K.A.2
Alsberg, B.K.3
King, R.D.4
-
152
-
-
38949193230
-
An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming
-
Buttingsrud, B.; King, R. D.; Alsberg, B. K. An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming J. Chemom. 2007, 21 (12) 509-519
-
(2007)
J. Chemom.
, vol.21
, Issue.12
, pp. 509-519
-
-
Buttingsrud, B.1
King, R.D.2
Alsberg, B.K.3
-
153
-
-
61949280507
-
Inductive transfer of knowledge: Application of multi-task learning and feature net approaches to model tissue-air partition coefficients
-
Varnek, A.; Gaudin, C.; Marcou, G.; Baskin, I.; Pandey, A. K.; Tetko, I. V. Inductive transfer of knowledge: Application of multi-task learning and feature net approaches to model tissue-air partition coefficients J. Chem. Inf. Model. 2009, 49 (1) 133-144
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.1
, pp. 133-144
-
-
Varnek, A.1
Gaudin, C.2
Marcou, G.3
Baskin, I.4
Pandey, A.K.5
Tetko, I.V.6
-
154
-
-
0031189914
-
Multitask learning
-
Caruana, R. Multitask learning Mach. Learn. 1997, 28 (1) 41-75
-
(1997)
Mach. Learn.
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
156
-
-
0142063407
-
Novelty detection: A review - Part 1: Statistical approaches
-
Markou, M.; Singh, S. Novelty detection: A review-Part 1: Statistical approaches Signal Process. 2003, 83 (12) 2481-2497
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
157
-
-
0142126712
-
Novelty detection: A review - Part 2:: Neural network based approaches
-
Markou, M.; Singh, S. Novelty detection: A review-Part 2:: Neural network based approaches Signal Process. 2003, 83 (12) 2499-2521
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
158
-
-
0942266514
-
Support vector data description
-
Tax, D. M. J.; Duin, R. P. W. Support vector data description Mach. Learn. 2004, 54 (1) 45-66
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
159
-
-
37249061630
-
Ligand-based virtual screening by novelty detection with self-organizing maps
-
Hristozov, D.; Oprea, T. I.; Gasteiger, J. Ligand-based virtual screening by novelty detection with self-organizing maps J. Chem. Inf. Model. 2007, 47 (6) 2044-2062
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.6
, pp. 2044-2062
-
-
Hristozov, D.1
Oprea, T.I.2
Gasteiger, J.3
-
160
-
-
79955950286
-
Virtual screening based on one-class classification
-
Karpov, P. V.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Virtual screening based on one-class classification Dokl. Chem. 2011, 437 (2) 107-111
-
(2011)
Dokl. Chem.
, vol.437
, Issue.2
, pp. 107-111
-
-
Karpov, P.V.1
Baskin, I.I.2
Palyulin, V.A.3
Zefirov, N.S.4
-
161
-
-
80054751602
-
One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3OI inhibitors
-
Karpov, P. V.; Osolodkin, D. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. One-class classification as a novel method of ligand-based virtual screening: The case of glycogen synthase kinase 3OI inhibitors Bioorg. Med. Chem. Lett. 2011, 21 (22) 6728-6731
-
(2011)
Bioorg. Med. Chem. Lett.
, vol.21
, Issue.22
, pp. 6728-6731
-
-
Karpov, P.V.1
Osolodkin, D.I.2
Baskin, I.I.3
Palyulin, V.A.4
Zefirov, N.S.5
-
162
-
-
83455253406
-
Method of continuous molecular fields in the one-class classification task
-
Karpov, P. V.; Baskin, I. I.; Zhokhova, N. I.; Zefirov, N. S. Method of continuous molecular fields in the one-class classification task Dokl. Chem. 2011, 440 (2) 263-265
-
(2011)
Dokl. Chem.
, vol.440
, Issue.2
, pp. 263-265
-
-
Karpov, P.V.1
Baskin, I.I.2
Zhokhova, N.I.3
Zefirov, N.S.4
-
163
-
-
77955514045
-
Fast support vector data descriptions for novelty detection
-
Liu, Y. H.; Liu, Y. C.; Chen, Y. J. Fast support vector data descriptions for novelty detection IEEE Trans. Neural Networks 2010, 21 (8) 1296-1313
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.8
, pp. 1296-1313
-
-
Liu, Y.H.1
Liu, Y.C.2
Chen, Y.J.3
-
164
-
-
33947104275
-
Structured one-class classification
-
Wang, D.; Yeung, D. S.; Tsang, E. C. C. Structured one-class classification IEEE Trans. Syst., Man, Cyber., Part B 2006, 36 (6) 1283-1294
-
(2006)
IEEE Trans. Syst., Man, Cyber., Part B
, vol.36
, Issue.6
, pp. 1283-1294
-
-
Wang, D.1
Yeung, D.S.2
Tsang, E.C.C.3
-
165
-
-
70450048040
-
OcVFDT: One-class very fast decision tree for one-class classification of data streams
-
In; ACM: New York, NY
-
Li, C.; Zhang, Y.; Li, X. OcVFDT: One-class very fast decision tree for one-class classification of data streams. In 3rd International Workshop on Knowledge Discovery from Sensor Data, SensorKDD'09 in Conjunction with the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD-09; ACM: New York, NY, 2009; pp 79-86.
-
(2009)
3rd International Workshop on Knowledge Discovery from Sensor Data, SensorKDD'09 in Conjunction with the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD-09
, pp. 79-86
-
-
Li, C.1
Zhang, Y.2
Li, X.3
-
166
-
-
36048938087
-
Condensed nearest neighbor data domain description
-
Angiulli, F. Condensed nearest neighbor data domain description IEEE Trans. Pattern Anal. 2007, 29 (10) 1746-1758
-
(2007)
IEEE Trans. Pattern Anal.
, vol.29
, Issue.10
, pp. 1746-1758
-
-
Angiulli, F.1
-
167
-
-
70350627210
-
Active and semi-supervised data domain description
-
Görnitz, N.; Kloft, M.; Brefeld, U. Active and semi-supervised data domain description Lect. Notes Comput. Sci. 2009, 5781, 407-422
-
(2009)
Lect. Notes Comput. Sci.
, vol.5781
, pp. 407-422
-
-
Görnitz, N.1
Kloft, M.2
Brefeld, U.3
-
168
-
-
26444595523
-
SOM-based novelty detection using novel data
-
Lee, H. J.; Cho, S. SOM-based novelty detection using novel data Lect. Notes Comput. Sci. 2005, 3578, 359-366
-
(2005)
Lect. Notes Comput. Sci.
, vol.3578
, pp. 359-366
-
-
Lee, H.J.1
Cho, S.2
-
169
-
-
33750522220
-
Kernel PCA for novelty detection
-
Hoffmann, H. Kernel PCA for novelty detection Pattern Recogn. 2007, 40 (3) 863-874
-
(2007)
Pattern Recogn.
, vol.40
, Issue.3
, pp. 863-874
-
-
Hoffmann, H.1
-
170
-
-
34248637068
-
A class of single-class minimax probability machines for novelty detection
-
Kwok, J. T.; Tsang, I. W. H.; Zurada, J. M. A class of single-class minimax probability machines for novelty detection IEEE Trans. Neural Networks 2007, 18 (3) 778-785
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, Issue.3
, pp. 778-785
-
-
Kwok, J.T.1
Tsang, I.W.H.2
Zurada, J.M.3
-
171
-
-
44349143433
-
Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections
-
Cohen, G.; Sax, H.; Geissbuhler, A. Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections Stud. Health Technol. Inform. 2008, 136, 21-26
-
(2008)
Stud. Health Technol. Inform.
, vol.136
, pp. 21-26
-
-
Cohen, G.1
Sax, H.2
Geissbuhler, A.3
-
172
-
-
77955378338
-
Novelty detection on metallic surfaces by GMM learning in Gabor space
-
Savran, Y.; Gunsel, B. Novelty detection on metallic surfaces by GMM learning in Gabor space Lect. Notes Comput. Sci. 2010, 6112, 325-334
-
(2010)
Lect. Notes Comput. Sci.
, vol.6112
, pp. 325-334
-
-
Savran, Y.1
Gunsel, B.2
-
174
-
-
0036709275
-
Constructing boosting algorithms from SVMs: An application to one-class classification
-
Rätsch, G.; Mika, S.; Schölkopf, B.; Müller, K. R. Constructing boosting algorithms from SVMs: An application to one-class classification IEEE Trans. Pattern Anal. 2002, 24 (9) 1184-1199
-
(2002)
IEEE Trans. Pattern Anal.
, vol.24
, Issue.9
, pp. 1184-1199
-
-
Rätsch, G.1
Mika, S.2
Schölkopf, B.3
Müller, K.R.4
-
175
-
-
59449095425
-
Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data
-
Kassab, R.; Alexandre, F. Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data Mach. Learn. 2009, 74 (2) 191-234
-
(2009)
Mach. Learn.
, vol.74
, Issue.2
, pp. 191-234
-
-
Kassab, R.1
Alexandre, F.2
-
176
-
-
27744590591
-
QSAR applicability domain estimation by projection of the training set in descriptor space: A review
-
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review Altern. Lab. Anim. 2005, 33 (5) 445-459
-
(2005)
Altern. Lab. Anim.
, vol.33
, Issue.5
, pp. 445-459
-
-
Jaworska, J.1
Nikolova-Jeliazkova, N.2
Aldenberg, T.3
-
177
-
-
78650201311
-
The one-class classification approach to data description and to models applicability domain
-
Baskin, I. I.; Kireeva, N.; Varnek, A. The one-class classification approach to data description and to models applicability domain Mol. Inf. 2010, 29 (8-9) 581-587
-
(2010)
Mol. Inf.
, vol.29
, Issue.8-9
, pp. 581-587
-
-
Baskin, I.I.1
Kireeva, N.2
Varnek, A.3
-
178
-
-
46249099027
-
-
MIT Press: Cambridge, MA; London.
-
Schölkopf, B.; Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA; London, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
179
-
-
77951270486
-
Estimation of the applicability domain of kernel-based machine learning models for virtual screening
-
Fechner, N.; Jahn, A.; Hinselmann, G.; Zell, A. Estimation of the applicability domain of kernel-based machine learning models for virtual screening J. Cheminf. 2010, 2, 1
-
(2010)
J. Cheminf.
, vol.2
, pp. 1
-
-
Fechner, N.1
Jahn, A.2
Hinselmann, G.3
Zell, A.4
-
180
-
-
80052912494
-
Target-driven subspace mapping methods and their applicability domain estimation
-
Soto, A. J.; Vazquez, G. E.; Strickert, M.; Ponzoni, I. Target-driven subspace mapping methods and their applicability domain estimation Mol. Inf. 2011, 30 (9) 779-789
-
(2011)
Mol. Inf.
, vol.30
, Issue.9
, pp. 779-789
-
-
Soto, A.J.1
Vazquez, G.E.2
Strickert, M.3
Ponzoni, I.4
-
181
-
-
34249047899
-
Covariate shift adaptation by importance weighted cross validation
-
Sugiyama, M.; Krauledat, M.; Mueller, K.-R. Covariate shift adaptation by importance weighted cross validation J. Mach. Learn. Res. 2007, 8, 985-1005
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 985-1005
-
-
Sugiyama, M.1
Krauledat, M.2
Mueller, K.-R.3
-
182
-
-
33749028480
-
Domain adaptation for statistical classifiers
-
Daume, H.; Marcu, D. Domain adaptation for statistical classifiers J. Artif. Intell. Res. 2006, 26, 101-126
-
(2006)
J. Artif. Intell. Res.
, vol.26
, pp. 101-126
-
-
Daume, H.1
Marcu, D.2
-
183
-
-
38049120269
-
Domain adaptation of conditional probability models via feature subsetting
-
Satpal, S.; Sarawagi, S. Domain adaptation of conditional probability models via feature subsetting Lect. Notes Comput. Sci. 2007, 4702, 224-235
-
(2007)
Lect. Notes Comput. Sci.
, vol.4702
, pp. 224-235
-
-
Satpal, S.1
Sarawagi, S.2
-
184
-
-
45449084206
-
Domain adaptation for conditional random fields
-
Zhang, Q.; Qiu, X.; Huang, X.; Wu, L. Domain adaptation for conditional random fields Lect. Notes Comput. Sci. 2008, 4993, 192-202
-
(2008)
Lect. Notes Comput. Sci.
, vol.4993
, pp. 192-202
-
-
Zhang, Q.1
Qiu, X.2
Huang, X.3
Wu, L.4
-
185
-
-
57949113459
-
A Two-Stage Approach to Domain Adaptation for Statistical Classifiers
-
In; ACM: New York
-
Jiang, J.; Zha, C. A Two-Stage Approach to Domain Adaptation for Statistical Classifiers. In 16th ACM Conference on Information and Knowledge Management; ACM: New York, 2007; pp 401-410.
-
(2007)
16th ACM Conference on Information and Knowledge Management
, pp. 401-410
-
-
Jiang, J.1
Zha, C.2
-
186
-
-
70349243800
-
Intra-Document Structural Frequency Features for Semi-Supervised Domain Adaptation
-
In; ACM: New York
-
Arnold, A.; Cohen, W. W. Intra-Document Structural Frequency Features for Semi-Supervised Domain Adaptation. In 17th ACM Conference on Information and Knowledge Management; ACM: New York, 2008; pp 1291-1299.
-
(2008)
17th ACM Conference on Information and Knowledge Management
, pp. 1291-1299
-
-
Arnold, A.1
Cohen, W.W.2
-
187
-
-
63749100269
-
Domain adaptation of information extraction models
-
Gupta, R.; Sarawagi, S. Domain adaptation of information extraction models SIGMOD Record 2008, 37 (4) 35-40
-
(2008)
SIGMOD Record
, vol.37
, Issue.4
, pp. 35-40
-
-
Gupta, R.1
Sarawagi, S.2
-
188
-
-
66149108701
-
Influence relevance voting: An accurate and interpretable virtual high throughput screening method
-
Swamidass, S. J.; Azencott, C. A.; Lin, T. W.; Gramajo, H.; Tsai, S. C.; Baldi, P. Influence relevance voting: An accurate and interpretable virtual high throughput screening method J. Chem. Inf. Model. 2009, 49 (4) 756-766
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.4
, pp. 756-766
-
-
Swamidass, S.J.1
Azencott, C.A.2
Lin, T.W.3
Gramajo, H.4
Tsai, S.C.5
Baldi, P.6
-
190
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
Kimeldorf, G. S.; Wahba, G. Some results on Tchebycheffian spline functions J. Math. Anal. Appl. 1971, 33, 82-95
-
(1971)
J. Math. Anal. Appl.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
191
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller, K. R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B. An introduction to kernel-based learning algorithms IEEE Trans. Neural Networks 2001, 12 (2) 181-201
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
192
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in machine learning Ann. Stat. 2008, 36 (3) 1171-1220
-
(2008)
Ann. Stat.
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
194
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gönen, M.; Alpaydin, E. Multiple kernel learning algorithms J. Mach. Learn. Res. 2011, 12, 2211-2268
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
195
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet, G. R. G.; Cristianini, N.; Bartlett, P.; El Ghaoui, L.; Jordan, M. I. Learning the kernel matrix with semidefinite programming J. Mach. Learn. Res. 2004, 5, 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
196
-
-
33845245626
-
On kernel target alignment
-
Cristianini, N.; Kandola, J.; Elisseeff, A.; Shawe-Taylor, J. On kernel target alignment Stud. Fuzziness Soft. Comput. 2006, 194, 205-256
-
(2006)
Stud. Fuzziness Soft. Comput.
, vol.194
, pp. 205-256
-
-
Cristianini, N.1
Kandola, J.2
Elisseeff, A.3
Shawe-Taylor, J.4
-
197
-
-
21844468979
-
Learning the kernel with hyperkernels
-
Ong, C. S.; Smola, A. J.; Williamson, R. C. Learning the kernel with hyperkernels J. Mach. Learn. Res. 2005, 6, 1043-4071
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1043-4071
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
198
-
-
70849129149
-
Method of continuous molecular fields in the search for quantitative structure-activity relationships
-
Zhokhova, N. I.; Baskin, I. I.; Bakhronov, D. K.; Palyulin, V. A.; Zefirov, N. S. Method of continuous molecular fields in the search for quantitative structure-activity relationships Dokl. Chem. 2009, 429 (1) 273-276
-
(2009)
Dokl. Chem.
, vol.429
, Issue.1
, pp. 273-276
-
-
Zhokhova, N.I.1
Baskin, I.I.2
Bakhronov, D.K.3
Palyulin, V.A.4
Zefirov, N.S.5
-
199
-
-
79955830804
-
A family of simple non-parametric kernel learning algorithms
-
Zhuang, J.; Tsang, I. W.; Hoi, S. C. H. A family of simple non-parametric kernel learning algorithms J. Mach. Learn. Res. 2011, 12, 1313-1347
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1313-1347
-
-
Zhuang, J.1
Tsang, I.W.2
Hoi, S.C.H.3
-
200
-
-
61749094150
-
Low-rank kernel learning with bregman matrix divergences
-
Kulis, B.; Sustik, M. A.; Dhillon, I. S. Low-rank kernel learning with bregman matrix divergences J. Mach. Learn. Res. 2009, 10, 341-376
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 341-376
-
-
Kulis, B.1
Sustik, M.A.2
Dhillon, I.S.3
-
201
-
-
38349114023
-
Graph-based semi-supervised learning and spectral kernel design
-
Johnson, R.; Zhang, T. Graph-based semi-supervised learning and spectral kernel design IEEE Trans. Inf. Theory 2008, 54 (1) 275-288
-
(2008)
IEEE Trans. Inf. Theory
, vol.54
, Issue.1
, pp. 275-288
-
-
Johnson, R.1
Zhang, T.2
-
202
-
-
61749090884
-
Distance metric learning for large margin nearest neighbor classification
-
Weinberger, K. Q.; Saul, L. K. Distance metric learning for large margin nearest neighbor classification J. Mach. Learn. Res. 2009, 10, 207-244
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 207-244
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
203
-
-
79959516014
-
Generalized sparse metric learning with relative comparisons
-
Huang, K. Z.; Ying, Y. M.; Campbell, C. Generalized sparse metric learning with relative comparisons Knowl. Inf. Syst. 2011, 28 (1) 25-45
-
(2011)
Knowl. Inf. Syst.
, vol.28
, Issue.1
, pp. 25-45
-
-
Huang, K.Z.1
Ying, Y.M.2
Campbell, C.3
-
204
-
-
54249156505
-
Molecule kernels: A descriptor- and alignment-free quantitative structure-activity relationship approach
-
Mohr, J. A.; Jain, B. J.; Obermayer, K. Molecule kernels: A descriptor- and alignment-free quantitative structure-activity relationship approach J. Chem. Inf. Model. 2008, 48 (9) 1868-1881
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.9
, pp. 1868-1881
-
-
Mohr, J.A.1
Jain, B.J.2
Obermayer, K.3
-
205
-
-
4444273377
-
Protein homology detection using string alignment kernels
-
Saigo, H.; Vert, J. P.; Ueda, N.; Akutsu, T. Protein homology detection using string alignment kernels Bioinformatics 2004, 20 (11) 1682-1689
-
(2004)
Bioinformatics
, vol.20
, Issue.11
, pp. 1682-1689
-
-
Saigo, H.1
Vert, J.P.2
Ueda, N.3
Akutsu, T.4
-
206
-
-
77950423796
-
A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: Application to ligand prediction
-
Art. No. 99.
-
Hoffmann, B.; Zaslavskiy, M.; Vert, J. P.; Stoven, V. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: Application to ligand prediction. BMC Bioinf. 2010, 11, Art. No. 99.
-
(2010)
BMC Bioinf.
, vol.11
-
-
Hoffmann, B.1
Zaslavskiy, M.2
Vert, J.P.3
Stoven, V.4
-
207
-
-
17144429687
-
Feature space interpretation of SVMs with indefinite kernels
-
Haasdonk, B. Feature space interpretation of SVMs with indefinite kernels IEEE Trans. Pattern Anal. 2005, 27 (4) 482-492
-
(2005)
IEEE Trans. Pattern Anal.
, vol.27
, Issue.4
, pp. 482-492
-
-
Haasdonk, B.1
-
208
-
-
65549157171
-
Kernel discriminant analysis for positive definite and indefinite kernels
-
Pekalska, E.; Haasdonk, B. Kernel discriminant analysis for positive definite and indefinite kernels IEEE Trans. Pattern Anal. 2009, 31 (6) 1017-1031
-
(2009)
IEEE Trans. Pattern Anal.
, vol.31
, Issue.6
, pp. 1017-1031
-
-
Pekalska, E.1
Haasdonk, B.2
-
209
-
-
78649308061
-
Least square regression with indefinite kernels and coefficient regularization
-
Sun, H. W.; Wu, Q. A. Least square regression with indefinite kernels and coefficient regularization Appl. Comput. Harmon. Anal. 2011, 30 (1) 96-109
-
(2011)
Appl. Comput. Harmon. Anal.
, vol.30
, Issue.1
, pp. 96-109
-
-
Sun, H.W.1
Wu, Q.A.2
-
211
-
-
68149122551
-
Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening
-
In; Varnek, A. Tropsha, A. RSC Publishing: Cambridge
-
Baskin, I.; Varnek, A. Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening. In Chemoinformatics Approaches to Virtual Screening; Varnek, A.; Tropsha, A., Eds.; RSC Publishing: Cambridge, 2008; pp 1-43.
-
(2008)
Chemoinformatics Approaches to Virtual Screening
, pp. 1-43
-
-
Baskin, I.1
Varnek, A.2
-
212
-
-
36849072723
-
-
The MIT Press: Cambridge, MA.
-
Bakir, G.; Hofmann, T.; Schoelkopf, B.; Smola, A. J.; Taskar, B.; Vishwanathan, S. V. N. Predicting Structured Data; The MIT Press: Cambridge, MA, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schoelkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
215
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; Altun, Y. Large margin methods for structured and interdependent output variables J. Mach. Learn. Res. 2005, 6, 1453-1484
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
217
-
-
84880874770
-
The Levelwise Version Space Algorithm and its Application to Molecular Fragment Finding
-
In; Morgan Kaufmann: San Francisco
-
De Raedt, L.; Kramer, S. The Levelwise Version Space Algorithm and its Application to Molecular Fragment Finding. In The Seventeenth International Joint Conference on Articial Intelligence; Morgan Kaufmann: San Francisco, 2001; pp 853-862.
-
(2001)
The Seventeenth International Joint Conference on Articial Intelligence
, pp. 853-862
-
-
De Raedt, L.1
Kramer, S.2
-
218
-
-
1942483107
-
Feature Construction with Version Spaces for Biochemical Applications
-
In; Morgan Kaufmann: San Francisco
-
Kramer, S.; De Raedt, L. Feature Construction with Version Spaces for Biochemical Applications. In The Eighteenth International Conference on Machine Learning; Morgan Kaufmann: San Francisco, 2001; pp 258-265.
-
(2001)
The Eighteenth International Conference on Machine Learning
, pp. 258-265
-
-
Kramer, S.1
De Raedt, L.2
-
220
-
-
78149333073
-
GSpan: Graph-Based Substructure Pattern Mining
-
In; Kumar, V. Tsumoto, S. Zhong, N. Yu, P. S. Wu, X. D. IEEE Computer Soc. Los Alamitos
-
Yan, X. F.; Han, J. W. gSpan: Graph-Based Substructure Pattern Mining. In 2002 IEEE International Conference on Data Mining, Proceedings; Kumar, V.; Tsumoto, S.; Zhong, N.; Yu, P. S.; Wu, X. D., Eds.; IEEE Computer Soc.: Los Alamitos, 2002; pp 721-724.
-
(2002)
2002 IEEE International Conference on Data Mining, Proceedings
, pp. 721-724
-
-
Yan, X.F.1
Han, J.W.2
-
221
-
-
24044517207
-
Frequent subtree mining - An overview
-
Chi, Y.; Muntz, R. R.; Nijssen, S.; Kok, J. N. Frequent subtree mining - an overview Fundam. Inform. 2005, 66 (1-2) 161-198
-
(2005)
Fundam. Inform.
, vol.66
, Issue.1-2
, pp. 161-198
-
-
Chi, Y.1
Muntz, R.R.2
Nijssen, S.3
Kok, J.N.4
-
222
-
-
84862850892
-
Graph Mining in Chemoinformatics
-
In; Lodhi, H. Yamanishi, Y. IGI Global: Hershey, PA
-
Saigo, H.; Tsuda, K. Graph Mining in Chemoinformatics. In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques; Lodhi, H.; Yamanishi, Y., Eds.; IGI Global: Hershey, PA, 2010; pp 95-128.
-
(2010)
Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques
, pp. 95-128
-
-
Saigo, H.1
Tsuda, K.2
-
223
-
-
67249148148
-
Additive inductive learning in QSAR/QSPR studies and molecular modeling
-
Baskin, I. I.; Zhokhova, N. I.; Palyulin, V. A.; Zefirov, N. S. Additive inductive learning in QSAR/QSPR studies and molecular modeling Chem. Central J. 2009, 3, 1-1
-
(2009)
Chem. Central J.
, vol.3
, pp. 1-1
-
-
Baskin, I.I.1
Zhokhova, N.I.2
Palyulin, V.A.3
Zefirov, N.S.4
-
224
-
-
33646251586
-
Collaborative filtering on a family of biological targets
-
Erhan, D.; L'Heureux, P.-J.; Yue, S. Y.; Bengio, Y. Collaborative filtering on a family of biological targets J. Chem. Inf. Model. 2006, 46 (2) 626-635
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.2
, pp. 626-635
-
-
Erhan, D.1
L'Heureux, P.-J.2
Yue, S.Y.3
Bengio, Y.4
-
225
-
-
38349114038
-
Genome scale enzyme - Metabolite and drug - Target interaction predictions using the signature molecular descriptor
-
Faulon, J. L.; Misra, M.; Martin, S.; Sale, K.; Sapra, R. Genome scale enzyme-Metabolite and drug-Target interaction predictions using the signature molecular descriptor Bioinformatics 2008, 24 (2) 225-233
-
(2008)
Bioinformatics
, vol.24
, Issue.2
, pp. 225-233
-
-
Faulon, J.L.1
Misra, M.2
Martin, S.3
Sale, K.4
Sapra, R.5
-
226
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
Jacob, L.; Vert, J. P. Protein-ligand interaction prediction: An improved chemogenomics approach Bioinformatics 2008, 24 (19) 2149-2156
-
(2008)
Bioinformatics
, vol.24
, Issue.19
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.P.2
-
227
-
-
66149090260
-
Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
-
Geppert, H.; Humrich, J.; Stumpfe, D.; Gaertner, T.; Bajorath, J. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors J. Chem. Inf. Model. 2009, 49 (4) 767-779
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.4
, pp. 767-779
-
-
Geppert, H.1
Humrich, J.2
Stumpfe, D.3
Gaertner, T.4
Bajorath, J.5
-
228
-
-
36849072723
-
-
MIT Press: Cambridge, Massachusetts, London.
-
Bakir, G.; Hofmann, T.; Schölkopf, B.; Smola, A. J.; Taskar, B.; Vishwanathan, S. V. N. Predicting Structured Data; MIT Press: Cambridge, Massachusetts, London, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
229
-
-
31844441189
-
A general regression technique for learning transductions
-
In; ACM: New York, NY, USA
-
Cortes, C.; Mohri, M.; Weston, J. A general regression technique for learning transductions.. In ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning; ACM: New York, NY, USA, 2005; pp 153-160.
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 153-160
-
-
Cortes, C.1
Mohri, M.2
Weston, J.3
-
230
-
-
34250755480
-
Kernelizing the Output of Tree-Based Methods
-
In; Vol.
-
Geurts, P.; Wehenkel, L.; D'Alché-Buc, F., Kernelizing the Output of Tree-Based Methods. In ACM International Conference Proceeding Series; 2006; Vol. 148, pp 345-352.
-
(2006)
ACM International Conference Proceeding Series
, vol.148
, pp. 345-352
-
-
Geurts, P.1
Wehenkel, L.2
D'Alché-Buc, F.3
-
231
-
-
34547970262
-
Gradient Boosting for Kernelized Output Spaces
-
In, Vol.
-
Geurts, P.; Wehenkel, L.; D'Alché-Buc, F., Gradient Boosting for Kernelized Output Spaces. In ACM International Conference Proceeding Series, 2007; Vol. 227, pp 289-296.
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 289-296
-
-
Geurts, P.1
Wehenkel, L.2
D'Alché-Buc, F.3
-
232
-
-
51349120683
-
Support vector training of protein alignment models
-
Yu, C. N. J.; Joachims, T.; Elber, R.; Pillardy, J. Support vector training of protein alignment models J. Comput. Biol. 2008, 15 (7) 867-880
-
(2008)
J. Comput. Biol.
, vol.15
, Issue.7
, pp. 867-880
-
-
Yu, C.N.J.1
Joachims, T.2
Elber, R.3
Pillardy, J.4
-
233
-
-
34249855548
-
Inferring biological networks with output kernel trees
-
Geurts, P.; Touleimat, N.; Dutreix, M.; d'Alché-Buc, F. Inferring biological networks with output kernel trees BMC Bioinf. 2007, 8 (Suppl. 2) S4
-
(2007)
BMC Bioinf.
, vol.8
, Issue.SUPPL. 2
, pp. 4
-
-
Geurts, P.1
Touleimat, N.2
Dutreix, M.3
D'Alché-Buc, F.4
-
234
-
-
79952593481
-
StructRank: A new approach for ligand-based virtual screening
-
Rathke, F.; Hansen, K.; Brefeld, U.; Muller, K.-R. StructRank: A new approach for ligand-based virtual screening J. Chem. Inf. Model. 2010, 51 (1) 83-92
-
(2010)
J. Chem. Inf. Model.
, vol.51
, Issue.1
, pp. 83-92
-
-
Rathke, F.1
Hansen, K.2
Brefeld, U.3
Muller, K.-R.4
-
235
-
-
42249087646
-
Transductive Inference and Semi-Supervised Learning
-
In; Chapelle, O. Schoelkopf, B. Zien, A. MIT Press: Cambridge, MA
-
Vapnik, V. Transductive Inference and Semi-Supervised Learning. In Semi-Supervised Learning; Chapelle, O.; Schoelkopf, B.; Zien, A., Eds.; MIT Press: Cambridge, MA, 2006; pp 453-472.
-
(2006)
Semi-Supervised Learning
, pp. 453-472
-
-
Vapnik, V.1
-
236
-
-
0023751431
-
Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
-
Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins J. Am. Chem. Soc. 1988, 110 (18) 5959-5967
-
(1988)
J. Am. Chem. Soc.
, vol.110
, Issue.18
, pp. 5959-5967
-
-
Cramer, R.D.1
Patterson, D.E.2
Bunce, J.D.3
-
237
-
-
0027944195
-
Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
-
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity J. Med. Chem. 1994, 37 (24) 4130-46
-
(1994)
J. Med. Chem.
, vol.37
, Issue.24
, pp. 4130-4146
-
-
Klebe, G.1
Abraham, U.2
Mietzner, T.3
-
239
-
-
0029977466
-
Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition
-
Silverman, B. D.; Platt, D. E. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition J. Med. Chem. 1996, 39 (11) 2129-40
-
(1996)
J. Med. Chem.
, vol.39
, Issue.11
, pp. 2129-2140
-
-
Silverman, B.D.1
Platt, D.E.2
-
240
-
-
0030641914
-
MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids
-
Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids J. Comput.-Aided Mol. Des. 1997, 11 (1) 79-92
-
(1997)
J. Comput.-Aided Mol. Des.
, vol.11
, Issue.1
, pp. 79-92
-
-
Bravi, G.1
Gancia, E.2
Mascagni, P.3
Pegna, M.4
Todeschini, R.5
Zaliani, A.6
-
241
-
-
0034710718
-
GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors
-
Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors J. Med. Chem. 2000, 43 (17) 3233-43
-
(2000)
J. Med. Chem.
, vol.43
, Issue.17
, pp. 3233-3243
-
-
Pastor, M.1
Cruciani, G.2
McLay, I.3
Pickett, S.4
Clementi, S.5
-
242
-
-
0033800498
-
VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
-
Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds Eur. J. Pharm. Sci. 2000, 11 (Suppl. 2) S29-S39
-
(2000)
Eur. J. Pharm. Sci.
, vol.11
, Issue.SUPPL. 2
-
-
Cruciani, G.1
Pastor, M.2
Guba, W.3
-
243
-
-
0003490549
-
-
Springer: Berlin, Heidelberg, New York.
-
Carbo-Dorca, R.; Robert, D.; Amat, L.; Girones, X.; Besalu, E. Molecular Quantum Similarity in QSAR and Drug Design; Springer: Berlin, Heidelberg, New York, 2000.
-
(2000)
Molecular Quantum Similarity in QSAR and Drug Design
-
-
Carbo-Dorca, R.1
Robert, D.2
Amat, L.3
Girones, X.4
Besalu, E.5
-
244
-
-
0036267718
-
Construction of neural-network structure-conditions-property relationships: Modeling of the physicochemical properties of hydrocarbons
-
Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Construction of neural-network structure-conditions-property relationships: Modeling of the physicochemical properties of hydrocarbons Dokl. Chem. 2002, 384 (1-3) 140-143
-
(2002)
Dokl. Chem.
, vol.384
, Issue.1-3
, pp. 140-143
-
-
Halberstam, N.M.1
Baskin, I.I.2
Palyulin, V.A.3
Zefirov, N.S.4
-
245
-
-
84862858909
-
QSPR approaches to predict non-additive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquid
-
accepted for publication.
-
Oprisiu, I.; Varlamova, E.; Muratov, E.; Artemenko, A.; Marcou, G.; Polishchuk, P.; Kuz'min, V. QSPR approaches to predict non-additive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquid. Mol. Inf.. 2012, 31, accepted for publication.
-
(2012)
Mol. Inf.
, vol.31
-
-
Oprisiu, I.1
Varlamova, E.2
Muratov, E.3
Artemenko, A.4
Marcou, G.5
Polishchuk, P.6
Kuz'Min, V.7
-
248
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y. Learning deep architectures for AI Found. Trends Mach. Learn. 2009, 2 (1) 1-127
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
249
-
-
51349159085
-
Probability estimates for multi-class classification by pairwise coupling
-
Wu, T.-F.; Lin, C.-J.; Weng, R. C. Probability estimates for multi-class classification by pairwise coupling J. Mach. Learn. Res. 2004, 5, 975-1005
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 975-1005
-
-
Wu, T.-F.1
Lin, C.-J.2
Weng, R.C.3
-
250
-
-
33845423521
-
-
Springer: Berlin, Heidelberg.
-
Huang, T.-M.; Kecman, V.; Kopriva, I. Kernel Based Algorithms for Mining Huge Data Sets. Supervised, Semi-Supervised, and Unsupervised Learning; Springer: Berlin, Heidelberg, 2006.
-
(2006)
Kernel Based Algorithms for Mining Huge Data Sets. Supervised, Semi-Supervised, and Unsupervised Learning
-
-
Huang, T.-M.1
Kecman, V.2
Kopriva, I.3
-
251
-
-
33845343255
-
Iterative single data algorithm for kernel machines from huge data sets: Theory and performance
-
Huang, T. M.; Kecman, V.; Kopriva, I. Iterative single data algorithm for kernel machines from huge data sets: Theory and performance Stud. Comput. Intell. 2006, 17, 61-95
-
(2006)
Stud. Comput. Intell.
, vol.17
, pp. 61-95
-
-
Huang, T.M.1
Kecman, V.2
Kopriva, I.3
-
252
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; Cotter, A. Pegasos: primal estimated sub-gradient solver for SVM Math. Program. 2011, 127 (1) 3-30
-
(2011)
Math. Program.
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
253
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A library for large linear classification J. Mach. Learn. Res. 2008, 9, 1871-1874
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
254
-
-
3543110224
-
Online learning with kernels
-
Kivinen, J.; Smola, A. J.; Williamson, R. C. Online learning with kernels IEEE Trans. Signal Process. 2004, 52 (8) 2165-2176
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
255
-
-
80053326969
-
Virtual libraries of tetrapyrrole macrocycles: Combinatorics, isomers, product distributions, and data mining
-
Taniguchi, M.; Du, H.; Lindsey, J. S. Virtual libraries of tetrapyrrole macrocycles: Combinatorics, isomers, product distributions, and data mining J. Chem. Inf. Model. 2011, 51 (9) 2233-2247
-
(2011)
J. Chem. Inf. Model.
, vol.51
, Issue.9
, pp. 2233-2247
-
-
Taniguchi, M.1
Du, H.2
Lindsey, J.S.3
-
256
-
-
67149129014
-
-
MIT Press: Cambridge, MA.
-
Quinonero-Candela, J.; Sugiyama, M.; Schwaighofer, A.; Lawrence, N. D. Dataset Shift in Machine Learning; MIT Press: Cambridge, MA, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quinonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
257
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J. W. A theory of learning from different domains Mach. Learn. 2010, 79 (1-2) 151-175
-
(2010)
Mach. Learn.
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
258
-
-
71049120675
-
Learning and domain adaptation
-
Mansour, Y. Learning and domain adaptation Lect. Notes Comput. Sci. 2009, 5808, 32-34
-
(2009)
Lect. Notes Comput. Sci.
, vol.5808
, pp. 32-34
-
-
Mansour, Y.1
-
259
-
-
77952024019
-
Learning and domain adaptation
-
Mansour, Y. Learning and domain adaptation Lect. Notes Comput. Sci. 2009, 5809, 4-6
-
(2009)
Lect. Notes Comput. Sci.
, vol.5809
, pp. 4-6
-
-
Mansour, Y.1
-
260
-
-
70549101263
-
Learning algorithms for domain adaptation
-
Pathak, M. A.; Nyberg, E. H. Learning algorithms for domain adaptation Lect. Notes Comput. Sci. 2009, 5828, 293-307
-
(2009)
Lect. Notes Comput. Sci.
, vol.5828
, pp. 293-307
-
-
Pathak, M.A.1
Nyberg, E.H.2
-
261
-
-
0032076721
-
The effect of heteroscedastic noise on the chemometric modelling of frequency domain data
-
Woodward, A. M.; Alsberg, B. K.; Kell, D. B. The effect of heteroscedastic noise on the chemometric modelling of frequency domain data Chemom. Intell. Lab. Syst. 1998, 40 (1) 101-107
-
(1998)
Chemom. Intell. Lab. Syst.
, vol.40
, Issue.1
, pp. 101-107
-
-
Woodward, A.M.1
Alsberg, B.K.2
Kell, D.B.3
-
262
-
-
80054982784
-
Heteroscedastic normal-exponential mixture models: Bayesian and classical approaches
-
Lopera, L. G.; Cepeda-Cuervo, E.; Achcar, J. A. Heteroscedastic normal-exponential mixture models: Bayesian and classical approaches Appl. Math. Comput. 2011, 218 (7) 3635-3648
-
(2011)
Appl. Math. Comput.
, vol.218
, Issue.7
, pp. 3635-3648
-
-
Lopera, L.G.1
Cepeda-Cuervo, E.2
Achcar, J.A.3
-
263
-
-
82455198837
-
Heteroscedastic Gaussian Process Regression Using Expectation Propagation
-
In; Tan, T. Katagiri, S. Tao, J. Nakamura, A. Larsen, J. IEEE: New York.
-
Munoz-Gonzalez, L.; Lazaro-Gredilla, M.; Figueiras-Vidal, A. R. Heteroscedastic Gaussian Process Regression Using Expectation Propagation. In 2011 IEEE International Workshop on Machine Learning for Signal Processing; Tan, T.; Katagiri, S.; Tao, J.; Nakamura, A.; Larsen, J., Eds.; IEEE: New York, 2011.
-
(2011)
2011 IEEE International Workshop on Machine Learning for Signal Processing
-
-
Munoz-Gonzalez, L.1
Lazaro-Gredilla, M.2
Figueiras-Vidal, A.R.3
-
264
-
-
80052886632
-
Probabilistic substructure mining from small-molecule screens
-
Ranu, S.; Calhoun, B. T.; Singh, A. K.; Swamidass, S. J. Probabilistic substructure mining from small-molecule screens Mol. Inf 2011, 30 (9) 809-815
-
(2011)
Mol. Inf
, vol.30
, Issue.9
, pp. 809-815
-
-
Ranu, S.1
Calhoun, B.T.2
Singh, A.K.3
Swamidass, S.J.4
-
265
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
Estabrooks, A.; Jo, T.; Japkowicz, N. A multiple resampling method for learning from imbalanced data sets Comput. Intell. 2004, 20 (1) 18-36
-
(2004)
Comput. Intell.
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
266
-
-
77953560676
-
Fragmental descriptors in (Q)SAR: Prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach
-
Kondratovich, E. P.; Zhokhova, N. I.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Fragmental descriptors in (Q)SAR: Prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach Russ. Chem. Bull. 2009, 58 (4) 657-662
-
(2009)
Russ. Chem. Bull.
, vol.58
, Issue.4
, pp. 657-662
-
-
Kondratovich, E.P.1
Zhokhova, N.I.2
Baskin, I.I.3
Palyulin, V.A.4
Zefirov, N.S.5
-
267
-
-
78751660908
-
Bridging the gap between neural network and kernel methods: Applications to drug discovery
-
Baldi, P.; Azencott, C.; Swamidass, S. J. Bridging the gap between neural network and kernel methods: Applications to drug discovery Front. Artif. Intell. Appl. 2011, 226, 3-13
-
(2011)
Front. Artif. Intell. Appl.
, vol.226
, pp. 3-13
-
-
Baldi, P.1
Azencott, C.2
Swamidass, S.J.3
-
268
-
-
0035438401
-
Protocols for bridging the peptide to nonpeptide gap in topological similarity searches
-
Sheridan, R. P.; Singh, S. B.; Fluder, E. M.; Kearsley, S. K. Protocols for bridging the peptide to nonpeptide gap in topological similarity searches J. Chem. Inf. Comput. Sci. 2001, 41 (5) 1395-1406
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, Issue.5
, pp. 1395-1406
-
-
Sheridan, R.P.1
Singh, S.B.2
Fluder, E.M.3
Kearsley, S.K.4
-
269
-
-
34247272948
-
Evaluating virtual screening methods: Good and bad metrics for the "early recognition" problem
-
Truchon, J. F.; Bayly, C. I. Evaluating virtual screening methods: Good and bad metrics for the "early recognition" problem J. Chem. Inf. Model. 2007, 47 (2) 488-508
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.2
, pp. 488-508
-
-
Truchon, J.F.1
Bayly, C.I.2
-
270
-
-
77952832818
-
A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval
-
Swamidass, S. J.; Azencott, C. A.; Daily, K.; Baldi, P. A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval Bioinformatics 2010, 26 (10) 1348-1356
-
(2010)
Bioinformatics
, vol.26
, Issue.10
, pp. 1348-1356
-
-
Swamidass, S.J.1
Azencott, C.A.2
Daily, K.3
Baldi, P.4
-
272
-
-
75149114722
-
Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique
-
Bhardwaj, N.; Gerstein, M.; Lu, H. Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique. BMC Bioinf.. 2010, 11 (SUPPL.1).
-
(2010)
BMC Bioinf.
, vol.11
, Issue.SUPPL.1
-
-
Bhardwaj, N.1
Gerstein, M.2
Lu, H.3
-
273
-
-
79551494881
-
Semi-supervised novelty detection
-
Blanchard, G.; Lee, G.; Scott, C. Semi-supervised novelty detection J. Mach. Learn. Res. 2010, 11, 2973-3009
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2973-3009
-
-
Blanchard, G.1
Lee, G.2
Scott, C.3
-
274
-
-
56049095031
-
On the interpretation and interpretability of quantitative structure-activity relationship models
-
Guha, R. On the interpretation and interpretability of quantitative structure-activity relationship models J. Comput.-Aided Mol. Des. 2008, 22 (12) 857-871
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, Issue.12
, pp. 857-871
-
-
Guha, R.1
-
275
-
-
0005910987
-
The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients
-
Hansch, C.; Muir, R. M.; Fujita, T.; Maloney, P. P.; Geiger, F.; Streich, M. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients J. Am. Chem. Soc. 1963, 85 (18) 2817-2824
-
(1963)
J. Am. Chem. Soc.
, vol.85
, Issue.18
, pp. 2817-2824
-
-
Hansch, C.1
Muir, R.M.2
Fujita, T.3
Maloney, P.P.4
Geiger, F.5
Streich, M.6
-
276
-
-
0036490199
-
An approach to the interpretation of backpropagation neural network models in QSAR studies
-
Baskin, I. I.; Ait, A. O.; Halberstam, N. M.; Palyulin, V. A.; Zefirov, N. S. An approach to the interpretation of backpropagation neural network models in QSAR studies SAR QSAR Environ. Res. 2002, 13 (1) 35-41
-
(2002)
SAR QSAR Environ. Res.
, vol.13
, Issue.1
, pp. 35-41
-
-
Baskin, I.I.1
Ait, A.O.2
Halberstam, N.M.3
Palyulin, V.A.4
Zefirov, N.S.5
-
277
-
-
20444409456
-
Interpreting computational neural network QSAR Models: A measure of descriptor importance
-
Guha, R.; Jurs, P. C. Interpreting computational neural network QSAR Models: A measure of descriptor importance J. Chem. Inf. Model. 2005, 45 (3) 800-806
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.3
, pp. 800-806
-
-
Guha, R.1
Jurs, P.C.2
-
278
-
-
23844539732
-
Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases
-
Guha, R.; Stanton, D. T.; Jurs, P. C. Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases J. Chem. Inf. Model. 2005, 45 (4) 1109-1121
-
(2005)
J. Chem. Inf. Model.
, vol.45
, Issue.4
, pp. 1109-1121
-
-
Guha, R.1
Stanton, D.T.2
Jurs, P.C.3
-
279
-
-
77954665728
-
How to explain individual classification decisions
-
Baehrens, D.; Schroeter, T.; Harmeling, S.; Kawanabe, M.; Hansen, K.; Müller, K. R. How to explain individual classification decisions J. Mach. Learn. Res. 2010, 11, 1803-1831
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1803-1831
-
-
Baehrens, D.1
Schroeter, T.2
Harmeling, S.3
Kawanabe, M.4
Hansen, K.5
Müller, K.R.6
-
280
-
-
80052913976
-
Visual interpretation of kernel-based prediction models
-
Hansen, K.; Baehrens, D.; Schroeter, T.; Rupp, M.; Müller, K. R. Visual interpretation of kernel-based prediction models Mol. Inf. 2011, 30 (9) 817-826
-
(2011)
Mol. Inf.
, vol.30
, Issue.9
, pp. 817-826
-
-
Hansen, K.1
Baehrens, D.2
Schroeter, T.3
Rupp, M.4
Müller, K.R.5
-
281
-
-
77956031473
-
A survey on transfer learning
-
Pan, S. J.; Yang, Q. A survey on transfer learning IEEE Trans. Knowl. Data Eng. 2010, 22 (10) 1345-1359
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
282
-
-
38449093918
-
A comparison of one-class classifiers for novelty detection in forensic case data
-
Ratle, F.; Kanevski, M.; Terrettaz-Zufferey, A. L.; Esseiva, P.; Ribaux, O. A comparison of one-class classifiers for novelty detection in forensic case data Lect. Notes Comput. Sci. 2007, 4881, 67-76
-
(2007)
Lect. Notes Comput. Sci.
, vol.4881
, pp. 67-76
-
-
Ratle, F.1
Kanevski, M.2
Terrettaz-Zufferey, A.L.3
Esseiva, P.4
Ribaux, O.5
-
283
-
-
78650080782
-
A survey of recent trends in one class classification
-
Khan, S. S.; Madden, M. G. A survey of recent trends in one class classification Lect. Notes Comput. Sci. 2010, 6206, 188-197
-
(2010)
Lect. Notes Comput. Sci.
, vol.6206
, pp. 188-197
-
-
Khan, S.S.1
Madden, M.G.2
-
284
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning Mach. Learn. 1994, 15 (2) 201-221
-
(1994)
Mach. Learn.
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
285
-
-
12244310470
-
Statistical asymptotic theory of active learning
-
Kanamori, T. Statistical asymptotic theory of active learning Ann. I. Stat. Math. 2002, 54 (3) 459-475
-
(2002)
Ann. I. Stat. Math.
, vol.54
, Issue.3
, pp. 459-475
-
-
Kanamori, T.1
-
286
-
-
3342952938
-
Does active learning work? A review of the research
-
Prince, M. Does active learning work? A review of the research J. Eng. Educ. 2004, 93 (3) 223-231
-
(2004)
J. Eng. Educ.
, vol.93
, Issue.3
, pp. 223-231
-
-
Prince, M.1
-
287
-
-
23744473328
-
Efficient drug screening using active learning
-
Asogawa, M.; Osoda, T.; Fujiwara, Y.; Yamashita, Y. Efficient drug screening using active learning NEC J. Adv. Technol. 2005, 2 (2) 145-148
-
(2005)
NEC J. Adv. Technol.
, vol.2
, Issue.2
, pp. 145-148
-
-
Asogawa, M.1
Osoda, T.2
Fujiwara, Y.3
Yamashita, Y.4
-
289
-
-
75149162532
-
Active learning for human protein-protein interaction prediction
-
Art. No. S57.
-
Mohamed, T. P.; Carbonell, J. G.; Ganapathiraju, M. K. Active learning for human protein-protein interaction prediction. BMC Bioinf. 2010, 11 (Suppl.1), Art. No. S57.
-
(2010)
BMC Bioinf.
, vol.11
, Issue.SUPPL.1
-
-
Mohamed, T.P.1
Carbonell, J.G.2
Ganapathiraju, M.K.3
-
290
-
-
4043150795
-
The interplay of Bayesian and frequentist analysis
-
Bayarri, M. J.; Berger, J. O. The interplay of Bayesian and frequentist analysis Stat. Sci. 2004, 19 (1) 58-80
-
(2004)
Stat. Sci.
, vol.19
, Issue.1
, pp. 58-80
-
-
Bayarri, M.J.1
Berger, J.O.2
-
291
-
-
84862876830
-
-
Tutorial on Ensemble Learning. (accessed April 5).
-
Baskin, I.; Marcou, G.; Varnek, A. Tutorial on Ensemble Learning. http://infochim.u-strasbg.fr/new/CS3-2010/Tutorial/Ensemble/EnsembleModeling. pdf (accessed April 5, 2012).
-
(2012)
-
-
Baskin, I.1
Marcou, G.2
Varnek, A.3
-
293
-
-
33845298000
-
Semi-supervised learning and applications
-
Huang, T. M.; Kecman, V.; Kopriva, I. Semi-supervised learning and applications Stud. Comput. Intell. 2006, 17, 125-173
-
(2006)
Stud. Comput. Intell.
, vol.17
, pp. 125-173
-
-
Huang, T.M.1
Kecman, V.2
Kopriva, I.3
-
294
-
-
70450051249
-
Transductive Support Vector Machines
-
In; Chapelle, O. Schoelkopf, B. Zien, A. MIT Press: Cambridge, MA
-
Joachims, T. Transductive Support Vector Machines. In Semi-Supervised Learning; Chapelle, O.; Schoelkopf, B.; Zien, A., Eds.; MIT Press: Cambridge, MA, 2006; pp 105-117.
-
(2006)
Semi-Supervised Learning
, pp. 105-117
-
-
Joachims, T.1
-
295
-
-
67649218524
-
Protein-protein interaction extraction based on combining TSVM and active learning
-
Liu, J.; Wang, H.; Zhao, T. Protein-protein interaction extraction based on combining TSVM and active learning Gaojishu Tongxin/Chinese High Technol. Lett. 2009, 19 (5) 480-486
-
(2009)
Gaojishu Tongxin/Chinese High Technol. Lett.
, vol.19
, Issue.5
, pp. 480-486
-
-
Liu, J.1
Wang, H.2
Zhao, T.3
-
296
-
-
84862885524
-
-
SVMlight, version 6.02; 2008. (accessed April 4).
-
Joachims, T. SVMlight, version 6.02; 2008. http://svmlight.joachims.org/ (accessed April 4, 2012).
-
(2012)
-
-
Joachims, T.1
-
297
-
-
84862887967
-
-
SGTlight, version 1.00; 2003. (accessed April 4).
-
Joachims, T. SGTlight, version 1.00; 2003. http://sgt.joachims.org/ (accessed April 4, 2012).
-
(2012)
-
-
Joachims, T.1
-
298
-
-
84862906233
-
-
2005. (accessed April 4).
-
Huang, T.-M.; Kecman, V. SemiL, 2005. http://www.learning-from-data.com/ te-ming/semil.htm (accessed April 4, 2012).
-
(2012)
SemiL
-
-
Huang, T.-M.1
Kecman, V.2
-
299
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin, M.; Niyogi, P.; Sindhwani, V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 2006, 7, 2399-2434
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
300
-
-
75349108210
-
Semi-supervised learning based on one-class classification
-
Miao, Z. M.; Zhao, L. W.; Hu, G. Y.; Wang, Q. Semi-supervised learning based on one-class classification Moshi Shibie yu Rengong Zhineng/Pattern Recognit. Artif. Intell. 2009, 22 (6) 924-930
-
(2009)
Moshi Shibie Yu Rengong Zhineng/Pattern Recognit. Artif. Intell.
, vol.22
, Issue.6
, pp. 924-930
-
-
Miao, Z.M.1
Zhao, L.W.2
Hu, G.Y.3
Wang, Q.4
-
301
-
-
77957798231
-
Semi-supervised learning based on one-class classification and ensemble learning
-
Pan, Z. S.; Yan, Y. S.; Miao, Z. M.; Ni, G. Q.; Zhang, H. Semi-supervised learning based on one-class classification and ensemble learning Jiefangjun Ligong Daxue Xuebao/J. PLA Univ. Sci. Technol. (Natural Science Ed.) 2010, 11 (4) 397-402
-
(2010)
Jiefangjun Ligong Daxue Xuebao/J. PLA Univ. Sci. Technol. (Natural Science Ed.)
, vol.11
, Issue.4
, pp. 397-402
-
-
Pan, Z.S.1
Yan, Y.S.2
Miao, Z.M.3
Ni, G.Q.4
Zhang, H.5
-
302
-
-
84862851580
-
-
version 4.3. (accessed April 4).
-
Stuttgart Neural Network Simulator (SNNS), version 4.3. http://www.ra.cs.uni-tuebingen.de/SNNS/ (accessed April 4, 2012).
-
(2012)
Stuttgart Neural Network Simulator (SNNS)
-
-
-
303
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
Bakker, B.; Heskes, T. Task clustering and gating for Bayesian multitask learning J. Mach. Learn. Res. 2004, 4 (1) 83-99
-
(2004)
J. Mach. Learn. Res.
, vol.4
, Issue.1
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
304
-
-
73849084587
-
Bayesian online multitask learning of Gaussian processes
-
Pillonetto, G.; Dinuzzo, F.; De Nicolao, G. Bayesian online multitask learning of Gaussian processes IEEE Trans. Pattern Anal. 2010, 32 (2) 193-205
-
(2010)
IEEE Trans. Pattern Anal.
, vol.32
, Issue.2
, pp. 193-205
-
-
Pillonetto, G.1
Dinuzzo, F.2
De Nicolao, G.3
-
305
-
-
6344258571
-
Multitask Learning Using Partial Least Squares Method
-
In; Svensson, P. Schubert, J. International Society of Information Fusion: Stockholm, Sweden, Vol.
-
Lu, W. C.; Chen, N. Y.; Li, G. Z.; Yang, J. Multitask Learning Using Partial Least Squares Method. In Proceedings of the Seventh International Conference on Information Fusion; Svensson, P.; Schubert, J., Ed.; International Society of Information Fusion: Stockholm, Sweden, 2004; Vol. 1, pp 79-84.
-
(2004)
Proceedings of the Seventh International Conference on Information Fusion
, vol.1
, pp. 79-84
-
-
Lu, W.C.1
Chen, N.Y.2
Li, G.Z.3
Yang, J.4
-
306
-
-
33746070785
-
Online multitask learning
-
Dekel, O.; Long, P. M.; Singer, Y. Online multitask learning Lect. Notes Comput. Sci. 2006, 4005, 453-467
-
(2006)
Lect. Notes Comput. Sci.
, vol.4005
, pp. 453-467
-
-
Dekel, O.1
Long, P.M.2
Singer, Y.3
-
307
-
-
38149039406
-
Multitask learning with data editing
-
Bueno-Crespo, A.; Sánchez-García, A.; Morales- Sánchez, J.; Sancho-Gómez, J. L. Multitask learning with data editing Lect. Notes Comput. Sci. 2007, 4527, 320-326
-
(2007)
Lect. Notes Comput. Sci.
, vol.4527
, pp. 320-326
-
-
Bueno-Crespo, A.1
Sánchez-García, A.2
Morales-Sánchez, J.3
Sancho-Gómez, J.L.4
-
308
-
-
65549146496
-
Semisupervised multitask learning
-
Liu, Q.; Liao, X.; Carin, H. L.; Stack, J. R.; Carin, L. Semisupervised multitask learning IEEE Trans. Pattern Anal. 2009, 31 (6) 1074-1086
-
(2009)
IEEE Trans. Pattern Anal.
, vol.31
, Issue.6
, pp. 1074-1086
-
-
Liu, Q.1
Liao, X.2
Carin, H.L.3
Stack, J.R.4
Carin, L.5
-
309
-
-
77952941542
-
Conic programming for multitask learning
-
Kato, T.; Kashima, H.; Sugiyama, M.; Asai, K. Conic programming for multitask learning IEEE Trans. Knowl. Data Eng. 2010, 22 (7) 957-968
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.7
, pp. 957-968
-
-
Kato, T.1
Kashima, H.2
Sugiyama, M.3
Asai, K.4
-
310
-
-
78049457405
-
Inferring latent task structure for Multitask Learning by Multiple Kernel Learning
-
Art. No. S5.
-
Widmer, C.; Toussaint, N. C.; Altun, Y.; Rätsch, G. Inferring latent task structure for Multitask Learning by Multiple Kernel Learning. BMC Bioinf. 2010, 11 (Suppl. 8), Art. No. S5.
-
(2010)
BMC Bioinf.
, vol.11
, Issue.SUPPL. 8
-
-
Widmer, C.1
Toussaint, N.C.2
Altun, Y.3
Rätsch, G.4
-
311
-
-
34249753618
-
Support-vector networks
-
Cortes, C.; Vapnik, V. Support-vector networks Mach. Learn. 1995, 20 (3) 273-297
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
312
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik, V. N. An overview of statistical learning theory IEEE Trans. Neural Networks 1999, 10 (5) 988-999
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
313
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines ACM Trans. Intel. Syst. Technol. 2001, 2 (3) 27:1-27:27
-
(2001)
ACM Trans. Intel. Syst. Technol.
, vol.2
, Issue.3
, pp. 271-2727
-
-
Chang, C.-C.1
Lin, C.-J.2
-
314
-
-
84942487147
-
Risge regression: Application to nonorthogonal problems
-
Hoerl, A. E.; Kennard, R. W. Risge regression: Application to nonorthogonal problems Technometrics 1970, 12 (1) 69-82
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 69-82
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
315
-
-
3242708140
-
Least angle regression
-
Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R.; Ishwaran, H.; Knight, K.; Loubes, J. M.; Massart, P.; Madigan, D.; Ridgeway, G.; Rosset, S.; Zhu, J. I.; Stine, R. A.; Turlach, B. A.; Weisberg, S. Least angle regression Ann. Stat 2004, 32 (2) 407-499
-
(2004)
Ann. Stat
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
Ishwaran, H.5
Knight, K.6
Loubes, J.M.7
Massart, P.8
Madigan, D.9
Ridgeway, G.10
Rosset, S.11
Zhu, J.I.12
Stine, R.A.13
Turlach, B.A.14
Weisberg, S.15
-
316
-
-
62249204357
-
Least angle regression and LASSO for large datasets
-
Fraley, C.; Hesterberg, T. Least angle regression and LASSO for large datasets Stat. Anal. Data Mining 2009, 1 (4) 251-259
-
(2009)
Stat. Anal. Data Mining
, vol.1
, Issue.4
, pp. 251-259
-
-
Fraley, C.1
Hesterberg, T.2
-
317
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. Regression shrinkage and selection via the lasso J. Roy. Stat. Soc. B 1996, 58 (1) 267-288
-
(1996)
J. Roy. Stat. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
318
-
-
0031015557
-
The lasso method for variable selection in the cox model
-
Tibshirani, R. The lasso method for variable selection in the cox model Stat. Med. 1997, 16 (4) 385-395
-
(1997)
Stat. Med.
, vol.16
, Issue.4
, pp. 385-395
-
-
Tibshirani, R.1
-
319
-
-
84878078972
-
Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning
-
In; Clifton, C. W. Zhong, N. Liu, J. M. Wah, B. W. Wu, X. D. IEEE Computer Soc. Los Alamitos
-
Wang, L.; Gordon, M. D.; Zhu, J. Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning. In ICDM 2006: Sixth International Conference on Data Mining, Proceedings; Clifton, C. W.; Zhong, N.; Liu, J. M.; Wah, B. W.; Wu, X. D., Eds.; IEEE Computer Soc.: Los Alamitos, 2006; pp 690-700.
-
(2006)
ICDM 2006: Sixth International Conference on Data Mining, Proceedings
, pp. 690-700
-
-
Wang, L.1
Gordon, M.D.2
Zhu, J.3
-
320
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
Witten, D. M.; Tibshirani, R.; Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis Biostatistics 2009, 10 (3) 515-534
-
(2009)
Biostatistics
, vol.10
, Issue.3
, pp. 515-534
-
-
Witten, D.M.1
Tibshirani, R.2
Hastie, T.3
-
321
-
-
68249115586
-
Extensions of sparse canonical correlation analysis with applications to genomic data
-
Art. No. 28.
-
Witten, D. M.; Tibshirani, R. J. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol, 2009, 8 (1), Art. No. 28.
-
(2009)
Stat. Appl. Genet. Mol
, vol.8
, Issue.1
-
-
Witten, D.M.1
Tibshirani, R.J.2
-
322
-
-
84862906232
-
-
2006. (accessed April 4).
-
Huang, T.-M.; Kecman, V.; Kopriva, I. ISDA, 2006. http://www.learning- from-data.com/download.htm (accessed April 4, 2012).
-
(2012)
ISDA
-
-
Huang, T.-M.1
Kecman, V.2
Kopriva, I.3
-
323
-
-
77954666305
-
The Shogun machine learning toolbox
-
Sonnenburg, S.; Rätsch, G.; Henschel, S.; Widmer, C.; Behr, J.; Zien, A.; De Bona, F.; Binder, A.; Gehl, C.; Franc, V. The Shogun machine learning toolbox J. Mach. Learn. Res. 2010, 11, 1799-1802
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1799-1802
-
-
Sonnenburg, S.1
Rätsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
Zien, A.6
De Bona, F.7
Binder, A.8
Gehl, C.9
Franc, V.10
-
324
-
-
84862887966
-
-
SHOGUN, version 1.1.0; 2011. (accessed April 4).
-
SHOGUN, version 1.1.0; 2011. http://www.shogun-toolbox.org/ (accessed April 4, 2012).
-
(2012)
-
-
-
325
-
-
84862906230
-
-
LIBLINEAR, version 1.8; 2011. (accessed April 4).
-
LIBLINEAR, version 1.8; 2011. http://www.csie.ntu.edu.tw/∼cjlin/ liblinear/ (accessed April 4, 2012).
-
(2012)
-
-
-
326
-
-
84862850508
-
-
LinearSVM, version 3.0; 2009. (accessed January 24).
-
Huang, T.-M.; Kecman, V. LinearSVM, version 3.0; 2009. http://www.linearsvm.com/ (accessed January 24, 2012).
-
(2012)
-
-
Huang, T.-M.1
Kecman, V.2
-
327
-
-
80051551297
-
Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information
-
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A. K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V. V.; Tanchuk, V. Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I. I.; Palyulin, V. A.; Radchenko, E. V.; Welsh, W. J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-De-Sousa, J.; Zhang, Q. Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I. V. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information J. Comput.-Aided Mol. Des. 2011, 25 (6) 533-554
-
(2011)
J. Comput.-Aided Mol. Des.
, vol.25
, Issue.6
, pp. 533-554
-
-
Sushko, I.1
Novotarskyi, S.2
Körner, R.3
Pandey, A.K.4
Rupp, M.5
Teetz, W.6
Brandmaier, S.7
Abdelaziz, A.8
Prokopenko, V.V.9
Tanchuk, V.Y.10
Todeschini, R.11
Varnek, A.12
Marcou, G.13
Ertl, P.14
Potemkin, V.15
Grishina, M.16
Gasteiger, J.17
Schwab, C.18
Baskin, I.I.19
Palyulin, V.A.20
Radchenko, E.V.21
Welsh, W.J.22
Kholodovych, V.23
Chekmarev, D.24
Cherkasov, A.25
Aires-De-Sousa, J.26
Zhang, Q.Y.27
Bender, A.28
Nigsch, F.29
Patiny, L.30
Williams, A.31
Tkachenko, V.32
Tetko, I.V.33
more..
-
328
-
-
84862906231
-
-
(accessed January 12).
-
Wang, L.; Froehlich, H.; Rieck, K.; Tsai, C.-T.; Lin, T.-J. SVDD. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#libsvm-for-svdd-and-finding- the-smallest-sphere-containing-all-data (accessed January 12, 2012).
-
(2012)
SVDD
-
-
Wang, L.1
Froehlich, H.2
Rieck, K.3
Tsai, C.-T.4
Lin, T.-J.5
-
329
-
-
33745205042
-
Condensed nearest neighbor data domain description
-
Angiulli, F. Condensed nearest neighbor data domain description Lect. Notes Comput. Sci. 2005, 3646, 12-23
-
(2005)
Lect. Notes Comput. Sci.
, vol.3646
, pp. 12-23
-
-
Angiulli, F.1
-
330
-
-
34247532343
-
Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots
-
Angelov, P.; Zhou, X. Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots Stud. Comput. Intell. 2007, 50, 89-118
-
(2007)
Stud. Comput. Intell.
, vol.50
, pp. 89-118
-
-
Angelov, P.1
Zhou, X.2
-
331
-
-
78650870327
-
A two-stage algorithm for domain adaptation with application to sentiment transfer problems
-
Wu, Q.; Tan, S.; Duan, M.; Cheng, X. A two-stage algorithm for domain adaptation with application to sentiment transfer problems Lect. Notes Comput. Sci. 2010, 6458, 443-453
-
(2010)
Lect. Notes Comput. Sci.
, vol.6458
, pp. 443-453
-
-
Wu, Q.1
Tan, S.2
Duan, M.3
Cheng, X.4
-
332
-
-
24644475842
-
A linear generative model for graph structure
-
Luo, B.; Wilson, R. C.; Hancock, E. R. A linear generative model for graph structure Lect. Notes Comput. Sci. 2005, 3434, 54-62
-
(2005)
Lect. Notes Comput. Sci.
, vol.3434
, pp. 54-62
-
-
Luo, B.1
Wilson, R.C.2
Hancock, E.R.3
-
333
-
-
33749635812
-
A spectral generative model for graph structure
-
Xiao, B.; Hancock, E. R. A spectral generative model for graph structure Lect. Notes Comput. Sci. 2006, 4109, 173-181
-
(2006)
Lect. Notes Comput. Sci.
, vol.4109
, pp. 173-181
-
-
Xiao, B.1
Hancock, E.R.2
-
339
-
-
7444242202
-
CMTreeMiner: Mining both closed and maximal frequent subtrees
-
Chi, Y.; Yang, Y.; Xia, Y.; Muntz, R. R. CMTreeMiner: Mining both closed and maximal frequent subtrees Lect. Notes Comput. Sci. 2004, 3056, 63-73
-
(2004)
Lect. Notes Comput. Sci.
, vol.3056
, pp. 63-73
-
-
Chi, Y.1
Yang, Y.2
Xia, Y.3
Muntz, R.R.4
-
340
-
-
0027698735
-
A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks
-
Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks Dokl. Akad. Nauk 1993, 333 (2) 176-179
-
(1993)
Dokl. Akad. Nauk
, vol.333
, Issue.2
, pp. 176-179
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefirov, N.S.3
-
341
-
-
26944497768
-
A novel approach to QSPR/QSAR based on neural networks for structures
-
Bianucci, A. M.; Micheli, A.; Sperduti, A.; Starita, A. A novel approach to QSPR/QSAR based on neural networks for structures Stud. Fuzziness Soft Comput. 2003, 120, 265-296
-
(2003)
Stud. Fuzziness Soft Comput.
, vol.120
, pp. 265-296
-
-
Bianucci, A.M.1
Micheli, A.2
Sperduti, A.3
Starita, A.4
-
342
-
-
33750018888
-
Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data
-
Goulon, A.; Duprat, A.; Dreyfus, G. Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data Lect. Notes Comput. Sci. 2006, 4135, 1-19
-
(2006)
Lect. Notes Comput. Sci.
, vol.4135
, pp. 1-19
-
-
Goulon, A.1
Duprat, A.2
Dreyfus, G.3
|