메뉴 건너뛰기




Volumn 45, Issue 4, 2005, Pages 1109-1121

Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; STATISTICAL METHODS; TRANSFER FUNCTIONS; TREES (MATHEMATICS);

EID: 23844539732     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci050110v     Document Type: Article
Times cited : (67)

References (43)
  • 1
    • 0141890762 scopus 로고    scopus 로고
    • On the physical interpretation of QSAR models
    • Stanton, D. T. On the physical interpretation of QSAR models. J. Chem. Inf. Comput. Sci. 2003, 43, 1423-1433.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1423-1433
    • Stanton, D.T.1
  • 2
    • 10044227497 scopus 로고    scopus 로고
    • The development of linear, ensemble and nonlinear models for the prediction and interpretation of the biological activity of a set of pdgfr inhibitors
    • Guha, R.; Jurs, P. C. The development of linear, ensemble and nonlinear models for the prediction and interpretation of the biological activity of a set of pdgfr inhibitors. J. Chem. Inf. Comput. Sci. 2004, 44, 2179-2189.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 2179-2189
    • Guha, R.1    Jurs, P.C.2
  • 3
    • 4043129529 scopus 로고    scopus 로고
    • The development of QSAR models to predict and interpret the biological activity of artemisinin analogues
    • Guha, R.; Jurs, P. C. The development of QSAR models to predict and interpret the biological activity of artemisinin analogues. J. Chem. Inf. Comput. Sci. 2004, 44, 1440-1449.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1440-1449
    • Guha, R.1    Jurs, P.C.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learning 2001, 45, 5-32.
    • (2001) Mach. Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0033217466 scopus 로고    scopus 로고
    • Analysis of a large structure/biological activity data set using recursive partitioning
    • Rusinko, A. I.; Farmen, M. W.; Lambert, C. G.; Brown, P. L.; Young, S. S. Analysis of a Large Structure/Biological Activity Data Set using Recursive Partitioning. J. Chem. Inf. Comput. Sci. 1999, 39, 1017-1026.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 1017-1026
    • Rusinko, A.I.1    Farmen, M.W.2    Lambert, C.G.3    Brown, P.L.4    Young, S.S.5
  • 7
    • 33645263075 scopus 로고    scopus 로고
    • One tree or a forest? Alternative dendrographics models
    • Hawkins, D. M.; Musser, B. J. One Tree or a Forest? Alternative Dendrographics Models. Comput. Sci. Stat. 1998, 30, 543-542.
    • (1998) Comput. Sci. Stat. , vol.30 , pp. 543-1542
    • Hawkins, D.M.1    Musser, B.J.2
  • 10
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Castro, J. L.; Mantas, C. J.; Benitez, J. M. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans. Neural Networks 2002, 13, 101-116.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.M.3
  • 11
    • 0028482883 scopus 로고
    • Rule generation from neural networks
    • Limin, F. Rule generation from neural networks. IEEE Trans. Syst., Man Cybernetics 1994, 24, 1114-1124.
    • (1994) IEEE Trans. Syst., Man Cybernetics , vol.24 , pp. 1114-1124
    • Limin, F.1
  • 13
    • 0030392348 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for extracting rules
    • Fuzzy Systems
    • Yao, S.; Wei, C.; He, Z. Evolving fuzzy neural networks for extracting rules. In Fuzzy Systems, Proc. Fifth IEEE Intl. Conf.; 1996.
    • (1996) Proc. Fifth IEEE Intl. Conf.
    • Yao, S.1    Wei, C.2    He, Z.3
  • 14
    • 0030691469 scopus 로고    scopus 로고
    • The truth is in there: Current issues in extracting rules from trained feedforward artificial neural networks
    • Tickle, A. B.; Golea, M.; Hayward, R.; Diederich, J. The truth is in there: current issues in extracting rules from trained feedforward artificial neural networks. In Neural networks, Intl. Conf.; 1997.
    • (1997) Neural Networks, Intl. Conf.
    • Tickle, A.B.1    Golea, M.2    Hayward, R.3    Diederich, J.4
  • 16
    • 0033325425 scopus 로고    scopus 로고
    • Generalized analytic rule extraction for feedforward neural networks
    • Gupta, A.; Park, S.; Lam, S. M. Generalized analytic rule extraction for feedforward neural networks. IEEE Trans. Knowledge Data Eng. 1999, 11, 985-991.
    • (1999) IEEE Trans. Knowledge Data Eng. , vol.11 , pp. 985-991
    • Gupta, A.1    Park, S.2    Lam, S.M.3
  • 17
    • 0028200748 scopus 로고
    • Structure-musk odor relationships for tetralins and indans using neural networks (on the contribution of descriptors to the classification)
    • Chastrette, M.; Zakarya, D.; Peyraud, J. F. Structure-musk odor relationships for tetralins and indans using neural networks (on the contribution of descriptors to the classification). Eur. J. Med. Chem. 1994, 29, 343-348.
    • (1994) Eur. J. Med. Chem. , vol.29 , pp. 343-348
    • Chastrette, M.1    Zakarya, D.2    Peyraud, J.F.3
  • 18
    • 5444271903 scopus 로고    scopus 로고
    • Heuristic extraction of rules in pruned artificial neural network models used for quantifying highly overlapping chromatographic peaks
    • Hervás, C.; Silva, M.; Serrano, J. M.; Orejuela, E. Heuristic extraction of rules in pruned artificial neural network models used for quantifying highly overlapping chromatographic peaks. J. Chem. Inf. Comput. Sci. 2004, 44, 1576-1584.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1576-1584
    • Hervás, C.1    Silva, M.2    Serrano, J.M.3    Orejuela, E.4
  • 19
    • 0032209028 scopus 로고    scopus 로고
    • An empirical measure of element contribution in neural networks
    • Mak, B.; Blanning, R. W. An empirical measure of element contribution in neural networks. IEEE Trans. Syst., Man Cybernetics C 1998, 28, 561-564.
    • (1998) IEEE Trans. Syst., Man Cybernetics C , vol.28 , pp. 561-564
    • Mak, B.1    Blanning, R.W.2
  • 21
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik, K. Some new results on neural network approximation. Neural Networks 1993, 6, 1069-1072.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 22
    • 0001867238 scopus 로고
    • Interpreting neural network connection strengths
    • Garson, D. Interpreting neural network connection strengths. AI Expert 1991, 47-51.
    • (1991) AI Expert , pp. 47-51
    • Garson, D.1
  • 23
    • 0028445055 scopus 로고
    • Integrating artificial neural networks with rule-based expert systems
    • Yoon, Y.; Guimaraes, T.; Swales, G. Integrating artificial neural networks with rule-based expert systems. Decis. Support Syst. 1994, 11, 497-507.
    • (1994) Decis. Support Syst. , vol.11 , pp. 497-507
    • Yoon, Y.1    Guimaraes, T.2    Swales, G.3
  • 24
    • 0029230341 scopus 로고
    • Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing
    • Sutter, J. M.; Dixon, S. L.; Jurs, P. C. Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing. J. Chem. Inf. Comput. Sci. 1995, 35, 77-84.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 26
    • 0001159626 scopus 로고    scopus 로고
    • Prediction of the normal boiling points of organic compounds from molecular structures with a computational neural network model
    • Goll, E. S.; Jurs, P. C. Prediction of the normal boiling points of organic compounds from molecular structures with a computational neural network model. J. Chem. Inf. Comput. Sci. 1999, 39, 974-983.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 974-983
    • Goll, E.S.1    Jurs, P.C.2
  • 27
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • Guha, R.; Jurs, P. C. Interpreting Computational Neural Network QSAR Models: A Measure of Descriptor Importance. J. Chem. Inf. Model. 2005, 45, 800-806.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 28
    • 2942717194 scopus 로고    scopus 로고
    • Development and use of hydrophobic surface area (HSA) descriptors for computer assisted quantitative structure-activity and structure-property relationships
    • Stanton, D. T.; Mattioni, B. E.; Knittel, J. J.; Jurs, P. C. Development and use of hydrophobic surface area (HSA) descriptors for computer assisted quantitative structure-activity and structure-property relationships. J. Chem. Inf. Comput. Sci. 2004, 44, 1010-1023.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1010-1023
    • Stanton, D.T.1    Mattioni, B.E.2    Knittel, J.J.3    Jurs, P.C.4
  • 29
    • 0036675501 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals
    • Patel, H.; Berge, W. T.; Cronin, M. T. D. Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere 2002, 48, 603-613.
    • (2002) Chemosphere , vol.48 , pp. 603-613
    • Patel, H.1    Berge, W.T.2    Cronin, M.T.D.3
  • 31
    • 0031464488 scopus 로고    scopus 로고
    • Molecular factors influencing drug transfer across the blood0brain barrier
    • Gratten, J. A.; Abraham, M. H.; Bradbury, M. W.; Chadha, H. S. Molecular factors influencing drug transfer across the blood0brain barrier. J. Pharm. Pharmacol. 1997, 49, 1211-1216.
    • (1997) J. Pharm. Pharmacol. , vol.49 , pp. 1211-1216
    • Gratten, J.A.1    Abraham, M.H.2    Bradbury, M.W.3    Chadha, H.S.4
  • 33
    • 0033281274 scopus 로고    scopus 로고
    • Fuzzy-arithmetic-based approach for extracting positive and negative linguistic rules from trained neural networks
    • Ishibuchi, H.; Nii, M.; Tanaka, K. Fuzzy-arithmetic-based approach for extracting positive and negative linguistic rules from trained neural networks. In Fuzzy Systems Conference Proc., IEEE International, 1999.
    • (1999) Fuzzy Systems Conference Proc., IEEE International
    • Ishibuchi, H.1    Nii, M.2    Tanaka, K.3
  • 37
    • 10344253046 scopus 로고
    • Development and use of charged partial surface area structural descriptors in computer assissted quantitative structure property relationship studies
    • Stanton, D. T.; Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer assissted quantitative structure property relationship studies. Anal. Chem. 1990, 62, 2323-2329.
    • (1990) Anal. Chem. , vol.62 , pp. 2323-2329
    • Stanton, D.T.1    Jurs, P.C.2
  • 38
    • 9444296174 scopus 로고
    • Higly discriminating distance based topological index
    • Balaban, A. T. Higly discriminating distance based topological index. Chem. Phys. Lett. 1982, 89, 399-404.
    • (1982) Chem. Phys. Lett. , vol.89 , pp. 399-404
    • Balaban, A.T.1
  • 42
    • 0017033395 scopus 로고
    • Molecular Connectivity VII: Specific treatment to heteroatoms
    • Kier, L. B.; Hall, L. H. Molecular Connectivity VII: specific treatment to heteroatoms. J. Pharm. Sci. 1976, 65, 1806-1809.
    • (1976) J. Pharm. Sci. , vol.65 , pp. 1806-1809
    • Kier, L.B.1    Hall, L.H.2
  • 43
    • 0021477860 scopus 로고
    • On molecular idenitification numbers
    • Randic, M. On molecular idenitification numbers. J. Chem. Inf. Comput. Sci. 1984, 24, 164-175.
    • (1984) J. Chem. Inf. Comput. Sci. , vol.24 , pp. 164-175
    • Randic, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.