메뉴 건너뛰기




Volumn 74, Issue 2, 2009, Pages 191-234

Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data

Author keywords

ILoNDF; Neural networks; Novelty detection; One class classification; Text categorization

Indexed keywords

CLASSIFIERS; EDUCATION; LEARNING SYSTEMS; NEURAL NETWORKS; PROGRAMMING THEORY; TEXT PROCESSING;

EID: 59449095425     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-008-5092-4     Document Type: Article
Times cited : (28)

References (52)
  • 1
    • 0142063787 scopus 로고
    • On the dynamic behaviour of the novelty detector and the novelty filter
    • B. Bonnard, B. Bride, J. P. Gauthier & I. Kupka (Eds.)
    • Aeyels, D. (1990). On the dynamic behaviour of the novelty detector and the novelty filter. In B. Bonnard, B. Bride, J. P. Gauthier & I. Kupka (Eds.), Analysis of controlled dynamical systems (pp. 1-10).
    • (1990) Analysis of Controlled Dynamical Systems , pp. 1-10
    • Aeyels, D.1
  • 4
    • 0031960607 scopus 로고    scopus 로고
    • Recognition memory: Neuronal substrates of the judgement of prior occurrence
    • M. W. Brown J. Z. Xiang 1998 Recognition memory: neuronal substrates of the judgement of prior occurrence Progress in Neurobiology 55 149 189
    • (1998) Progress in Neurobiology , vol.55 , pp. 149-189
    • Brown, M.W.1    Xiang, J.Z.2
  • 8
    • 34748873203 scopus 로고    scopus 로고
    • Plant-wide detection and diagnosis using correspondence analysis
    • 12
    • K. P. Detroja R. D. Gudi S. C. Patwardhan 2007 Plant-wide detection and diagnosis using correspondence analysis Control Engineering Practice 15 12 1468 1483
    • (2007) Control Engineering Practice , vol.15 , pp. 1468-1483
    • Detroja, K.P.1    Gudi, R.D.2    Patwardhan, S.C.3
  • 12
    • 0001837197 scopus 로고
    • Some applications of the pseudoinverse of a matrix
    • Greville, T. N. E. (1960). Some applications of the pseudoinverse of a matrix. SIAM Review.
    • (1960) SIAM Review
    • Greville, T.N.E.1
  • 13
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • 3
    • J. E. Jackson G. S. Mudholkar 1979 Control procedures for residuals associated with principal component analysis Technometrics 21 3 341 349
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 14
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • 1-2
    • N. Japkowicz 2001 Supervised versus unsupervised binary-learning by feedforward neural networks Machine Learning 42 1-2 97 122
    • (2001) Machine Learning , vol.42 , pp. 97-122
    • Japkowicz, N.1
  • 16
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • 3
    • N. Japkowicz S. J. Hanson M. A. Gluck 2000 Nonlinear autoassociation is not equivalent to PCA Neural Computing 12 3 531 545
    • (2000) Neural Computing , vol.12 , pp. 531-545
    • Japkowicz, N.1    Hanson, S.J.2    Gluck, M.A.3
  • 19
    • 0003317812 scopus 로고
    • Fast non-linear dimension reduction
    • J. D. Cowan, G. Tesauro & J. Alspector (Eds.)
    • Kambhaltla, N., & Leen, T. K. (1994). Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in neural information processing systems (Vol. 6, pp. 152-159).
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 152-159
    • Kambhaltla, N.1    Leen, T.K.2
  • 20
    • 84873633423 scopus 로고    scopus 로고
    • A new approach to intelligent text filtering based on novelty detection
    • Tasmania, Australia
    • Kassab, R., & Lamirel, J. C. (2006). A new approach to intelligent text filtering based on novelty detection. In The 17th Australian database conference (pp. 149-156), Tasmania, Australia.
    • (2006) The 17th Australian Database Conference , pp. 149-156
    • Kassab, R.1    Lamirel, J.C.2
  • 24
    • 0016907565 scopus 로고
    • Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements
    • T. Kohonen E. Oja 1976 Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements Biological Cybernetics 21 85 95
    • (1976) Biological Cybernetics , vol.21 , pp. 85-95
    • Kohonen, T.1    Oja, E.2
  • 25
    • 33745815656 scopus 로고    scopus 로고
    • Application of LVQ to novelty detection using outlier training data
    • 13
    • H. Lee S. Cho 2006 Application of LVQ to novelty detection using outlier training data Pattern Recognition Letters 27 13 1572 1579
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1572-1579
    • Lee, H.1    Cho, S.2
  • 30
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • 12
    • M. Markou S. Singh 2003 Novelty detection: a review-part 1: statistical approaches Signal Processing 83 12 2481 2497
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 31
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Neural network based approaches
    • 12
    • M. Markou S. Singh 2003 Novelty detection: a review-part 2: neural network based approaches Signal Processing 83 12 2499 2521
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 33
    • 59449088473 scopus 로고    scopus 로고
    • Algebraic methods for computing a generalized inverse
    • 3
    • M. T. Noda I. Makino T. Saito 1997 Algebraic methods for computing a generalized inverse ACM SIGSAM Bulletin 31 3 51 52
    • (1997) ACM SIGSAM Bulletin , vol.31 , pp. 51-52
    • Noda, M.T.1    Makino, I.2    Saito, T.3
  • 34
    • 0000621817 scopus 로고
    • Data compression, feature extraction, and autoassociation in feedforward neural networks
    • K. Kohonen, et al. (Eds.)
    • Oja, E. (1991). Data compression, feature extraction, and autoassociation in feedforward neural networks. In K. Kohonen, et al. (Eds.), Artificial neural networks (pp. 737-745).
    • (1991) Artificial Neural Networks , pp. 737-745
    • Oja, E.1
  • 39
    • 0141912837 scopus 로고    scopus 로고
    • Universitat Dortmund, Lehrstuhl Informatik VIII
    • Rüping, S. (2000). mySVM-Manual. Universitat Dortmund, Lehrstuhl Informatik VIII, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.
    • (2000) MySVM-Manual
    • Rüping, S.1
  • 44
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • 1
    • F. Sebastiani 2002 Machine learning in automated text categorization ACM Computing Surveys 34 1 1 47
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 45
    • 6944256695 scopus 로고    scopus 로고
    • An interacting systems model of infant habituation
    • 8
    • S. Sirois D. Mareshal 2004 An interacting systems model of infant habituation Journal of Cognitive Neuroscience 16 8 1352 1362
    • (2004) Journal of Cognitive Neuroscience , vol.16 , pp. 1352-1362
    • Sirois, S.1    Mareshal, D.2
  • 46
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. M. J. Tax R. P. W. Duin 2001 Uniform object generation for optimizing one-class classifiers Journal of Machine Learning Research 2 155 173
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 47
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • 11
    • S. Valle W. Li S. J. Qin 1999 Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods Industrial & Engineering Chemistry Research 38 11 4389 4401
    • (1999) Industrial & Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.