-
1
-
-
0001345179
-
Boosting performance in neural networks
-
H. Drucker, R. Schapire, and P.Y. Simard, "Boosting Performance in Neural Networks," Int'l J. Pattern Recognition and Artificial Intelligence, vol. 7, pp. 705-719, 1993.
-
(1993)
Int'l J. Pattern Recognition and Artificial Intelligence
, vol.7
, pp. 705-719
-
-
Drucker, H.1
Schapire, R.2
Simard, P.Y.3
-
2
-
-
0002331173
-
Comparison of learning algorithms for handwritten digit recognition
-
F. Fogelman-Soulié and P. Gallinari, eds.
-
Y.A. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, U.A. Müller, E. Säckinger, P.Y. Simard, and V.N. Vapnik, "Comparison of Learning Algorithms for Handwritten Digit Recognition," Proc. Int'l Conf. Artificial Neural Networks '95, F. Fogelman-Soulié and P. Gallinari, eds., vol. II, pp. 53-60, 1995.
-
(1995)
Proc. Int'l Conf. Artificial Neural Networks '95
, vol.2
, pp. 53-60
-
-
Lecun, Y.A.1
Jackel, L.D.2
Bottou, L.3
Brunot, A.4
Cortes, C.5
Denker, J.S.6
Drucker, H.7
Guyon, I.8
Müller, U.A.9
Säckinger, E.10
Simard, P.Y.11
Vapnik, V.N.12
-
4
-
-
84956609453
-
AdaBoosting neural networks
-
W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, eds.
-
H. Schwenk and Y. Bengio, "AdaBoosting Neural Networks," Proc. Int'l Conf. Artificial Neural Networks '97, W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, eds., vol. 1327, pp. 967-972, 1997.
-
(1997)
Proc. Int'l Conf. Artificial Neural Networks '97
, vol.1327
, pp. 967-972
-
-
Schwenk, H.1
Bengio, Y.2
-
5
-
-
0032645080
-
An empirical comparison of voting classification algorithm: Bagging, boosting and variants
-
E. Bauer and R. Kohavi, "An Empirical Comparison of Voting Classification Algorithm: Bagging, Boosting and Variants," Machine Learning, vol. 36, pp. 105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich, "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, vol. 40, no. 2, 1999.
-
(1999)
Machine Learning
, vol.40
, Issue.2
-
-
Dietterich, T.G.1
-
8
-
-
0000897188
-
Barrier boosting
-
G. Rátsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, and K.-R. Müller, "Barrier Boosting," Proc. 13th Ann. Conf. Computer Learning Theory, pp. 170-179, 2000.
-
(2000)
Proc. 13th Ann. Conf. Computer Learning Theory
, pp. 170-179
-
-
Rátsch, G.1
Warmuth, M.2
Mika, S.3
Onoda, T.4
Lemm, S.5
Müller, K.-R.6
-
9
-
-
0005008861
-
Linear programming boosting via column generation
-
special issue on support vector machines and kernel methods
-
A. Demiriz, K.P. Bennett, and J. Shawe-Taylor, "Linear Programming Boosting via Column Generation," J. Machine Learning Research, 2001 (special issue on support vector machines and kernel methods).
-
(2001)
J. Machine Learning Research
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
12
-
-
84872548900
-
Neural networks: Tricks of the trade
-
G. Orr, and K.-R.Müller, eds.
-
"Neural Networks: Tricks of the Trade," Lecture Notes in Computer Science, G. Orr, and K.-R.Müller, eds., vol. 1524, 1998.
-
(1998)
Lecture Notes in Computer Science
, vol.1524
-
-
-
13
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, ed.
-
B.E. Boser, I.M. Guyon, and V.N. Vapnik, "A Training Algorithm for Optimal Margin Classifiers," Proc. Fifth Ann. ACM Workshop Computational Learning Theory, D. Haussler, ed., pp. 144-152, 1992.
-
(1992)
Proc. Fifth Ann. ACM Workshop Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
19
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Knowledge Discovery and Data Mining, vol. 2, no. 2, pp. 121-167, 1998.
-
(1998)
Knowledge Discovery and Data Mining
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
20
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, "An Introduction to Kernel-Based Learning Algorithms," IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 181-201, 2001.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
22
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson, "Estimating the Support of a High-Dimensional Distribution," Neural Computation, vol. 13, no. 7, pp. 1443-1471, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
24
-
-
84898950762
-
A linear programming approach to novelty detection
-
T.K. Leen, T.G. Dietterich, and V. Tresp, eds.
-
C. Campbell and K.P. Bennett, "A Linear Programming Approach to Novelty Detection," Advances in Neural Information Processing Systems, T.K. Leen, T.G. Dietterich, and V. Tresp, eds., vol. 13, pp. 395-401, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 395-401
-
-
Campbell, C.1
Bennett, K.P.2
-
25
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Oct.
-
R.E. Schapire, Y. Freund, P.L. Bartlett, and W.S. Lee, "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods," The Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, Oct. 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
26
-
-
0001963082
-
A short introduction to boosting
-
Sept. (Appeared in Japanese, translation by Naoki Abe.)
-
Y. Freund and R.E. Schapire, "A Short Introduction to Boosting," J. Japanese Soc. Artificial Intelligence, vol. 14, no. 5, pp. 771-780, Sept. 1999. (Appeared in Japanese, translation by Naoki Abe.).
-
(1999)
J. Japanese Soc. Artificial Intelligence
, vol.14
, Issue.5
, pp. 771-780
-
-
Freund, Y.1
Schapire, R.E.2
-
28
-
-
0032686461
-
Arbitrary-norm separating plane
-
O.L. Mangasarian, "Arbitrary-Norm Separating Plane," Operation Research Letters, vol. 24, no. 1, pp. 15-23, 1999.
-
(1999)
Operation Research Letters
, vol.24
, Issue.1
, pp. 15-23
-
-
Mangasarian, O.L.1
-
29
-
-
0021518106
-
A theory of the learnable
-
Nov.
-
L.G. Valiant, "A Theory of the Learnable," Comm. ACM, vol. 27, no. 11, pp. 1134-1142, Nov. 1984.
-
(1984)
Comm. ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
32
-
-
0000275022
-
Prediction games and arcing algorithms
-
Also Technical Report 504, Statistics Dept., Univ. of Calif., Berkeley
-
L. Breiman, "Prediction Games and Arcing Algorithms," Neural Computation, vol. 11, no. 7, pp. 1493-1518, 1999. (Also Technical Report 504, Statistics Dept., Univ. of Calif., Berkeley.).
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1518
-
-
Breiman, L.1
-
33
-
-
84864036885
-
-
NeuroCOLT2 Technical Report 97, Royal Holloway College, London, July. (extended version accepted for COLT '02)
-
G. Rätsch and M.K. Warmuth, "Marginal Boosting," NeuroCOLT2 Technical Report 97, Royal Holloway College, London, July 2001. (extended version accepted for COLT '02).
-
(2001)
Marginal boosting
-
-
Rätsch, G.1
Warmuth, M.K.2
-
36
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K.P. Bennett and O.L. Mangasarian, "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets," Optimization Methods and Software, vol. 1, pp. 23-34, 1992.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
37
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
S. Chen, D. Donoho, and M. Saunders, "Atomic Decomposition by Basis Pursuit," SIAM J. Scientific Computing, vol. 20, no. 1, pp. 33-61, 1999.
-
(1999)
SIAM J. Scientific Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.1
Donoho, D.2
Saunders, M.3
-
38
-
-
0032187366
-
Parsimonious least norm approximation
-
P. Bradley, O. Mangasarian, and J. Rosen, "Parsimonious Least Norm Approximation," Computational Optimization and Applications, vol 11, no. 1, pp. 5-21, 1998.
-
(1998)
Computational Optimization and Applications
, vol.11
, Issue.1
, pp. 5-21
-
-
Bradley, P.1
Mangasarian, O.2
Rosen, J.3
-
39
-
-
0342502195
-
Soft margins for adaboost
-
Mar. (Also NeuroCOLT Technical Report NC-TR-1998-021.)
-
G. Ratsch, T. Onoda, and K.-R. Müller, "Soft Margins for AdaBoost," Machine Learning, vol. 42, no. 3, pp. 287-320, Mar. 2001. (Also NeuroCOLT Technical Report NC-TR-1998-021.).
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Müller, K.-R.3
-
40
-
-
21944433431
-
Mathematical programming in data mining
-
O.L. Mangasarian, "Mathematical Programming in Data Mining," Data Mining and Knowledge Discovery, vol. 42, no. 1, pp. 183-201, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.42
, Issue.1
, pp. 183-201
-
-
Mangasarian, O.L.1
-
41
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A.J. Smola, and K.-R. Müller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, vol. 10, pp. 1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.-R.3
-
42
-
-
0002829165
-
Robust ensemble learning
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, eds., Cambridge, Mass.: MIT Press
-
G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller, "Robust Ensemble Learning," Advances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, eds., pp. 207-219, Cambridge, Mass.: MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 207-219
-
-
Rätsch, G.1
Schölkopf, B.2
Smola, A.J.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
43
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire, "The Strength of Weak Learnability," Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
44
-
-
84947765278
-
A geometric approach to leveraging weak learners
-
P. Fischer and H.U. Simon, eds., Mar.
-
N. Duffy and D.P. Helmbold, "A Geometric Approach to Leveraging Weak Learners," Proc. Computational Learning Theory: Fourth European Conf. (EuroCOLT '99), P. Fischer and H.U. Simon, eds., pp. 18-33, Mar. 1999.
-
(1999)
Proc. Computational Learning Theory: Fourth European Conf. (EuroCOLT '99)
, pp. 18-33
-
-
Duffy, N.1
Helmbold, D.P.2
-
47
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
with discussion, pp. 375-407, also technical report, Dept. of Statistics, Sequoia Hall, Stanford Univ.
-
J. Friedman, T. Hastie, and R.J. Tibshirani, "Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, vol. 2, pp. 337-374, 2000. (with discussion, pp. 375-407, also technical report, Dept. of Statistics, Sequoia Hall, Stanford Univ.).
-
(2000)
Annals of Statistics
, vol.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.J.3
-
48
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, eds., Cambridge, Mass.: MIT Press
-
L. Mason, J. Baxter, P.L. Bartlett, and M. Frean, "Functional Gradient Techniques for Combining Hypotheses," Advances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, eds., pp. 221-247, Cambridge, Mass.: MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
49
-
-
0005011124
-
On the convergence of leveraging
-
Royal Holloway College, London, Aug. (a shorter version accepted for NIPS '01)
-
G. Rätsch, S. Mika, and M.K. Warmuth, "On the Convergence of Leveraging," NeuroCOLT2 Technical Report 98, Royal Holloway College, London, Aug. 2001. (a shorter version accepted for NIPS '01).
-
(2001)
NeuroCOLT2 Technical Report 98
-
-
Rätsch, G.1
Mika, S.2
Warmuth, M.K.3
-
50
-
-
0005085813
-
A general greedy approximation algorithm with applications
-
MIT Press, in press
-
T. Zhang, "A General Greedy Approximation Algorithm with Applications," Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2002 (in press).
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Zhang, T.1
-
51
-
-
49949144765
-
The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming
-
L.M. Bregman, "The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming," USSR Computational Math. and Math. Physics, vol. 7, pp. 200-127, 1967.
-
(1967)
USSR Computational Math. and Math. Physics
, vol.7
, pp. 200-127
-
-
Bregman, L.M.1
-
53
-
-
0001087620
-
Logistic regression, adaboost and bregman distances
-
M. Collins, R.E. Schapire, and Y. Singer, "Logistic Regression, Adaboost and Bregman Distances," Proc. Ann. Conf. Computer Learning Theory, pp. 158-169, 2000.
-
(2000)
Proc. Ann. Conf. Computer Learning Theory
, pp. 158-169
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
55
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
Also NeuroCOLT2 Technical Report NC-TR-2000-085
-
G. Rätsch, A. Demiriz, and K. Bennett, "Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces," Machine Learning, vol. 48, nos. 1-3, pp. 193-221, 2002. (Also NeuroCOLT2 Technical Report NC-TR-2000-085.).
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 193-221
-
-
Rätsch, G.1
Demiriz, A.2
Bennett, K.3
-
56
-
-
0028543354
-
A stable exponential penalty algorithm with superlinear convergence
-
Nov.
-
R. Cominetti and J.-P. Dussault, "A Stable Exponential Penalty Algorithm with Superlinear Convergence," J. Application Theory and Optimization, vol. 83, no. 2, Nov. 1994.
-
(1994)
J. Application Theory and Optimization
, vol.83
, Issue.2
-
-
Cominetti, R.1
Dussault, J.-P.2
-
57
-
-
0032251602
-
An interior proximal algorithm and the exponential multiplier method for semidefinite programming
-
M. Doljansky and M. Teboulle, "An Interior Proximal Algorithm and the Exponential Multiplier Method for Semidefinite Programming," SIAM J. Optimization, vol. 9, no. 1, pp. 1-13, 1998.
-
(1998)
SIAM J. Optimization
, vol.9
, Issue.1
, pp. 1-13
-
-
Doljansky, M.1
Teboulle, M.2
-
59
-
-
0026678659
-
On the convergence of coordinate descent method for convex differentiable minimization
-
Z.-Q. Luo and P. Tseng, "On the Convergence of Coordinate Descent Method for Convex Differentiable Minimization," J. Optimization Theory and Applications, vol. 72, no. 1, pp. 7-35, 1992.
-
(1992)
J. Optimization Theory and Applications
, vol.72
, Issue.1
, pp. 7-35
-
-
Luo, Z.-Q.1
Tseng, P.2
-
60
-
-
0031120321
-
Inducing features of random fields
-
Apr.
-
S. Delia Pietra, V. Delia Pietra, and J. Lafferty, "Inducing Features of Random Fields," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 380-393, Apr. 1997.
-
(1997)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Delia Pietra, S.1
Delia Pietra, V.2
Lafferty, J.3
-
62
-
-
0004094721
-
-
PhD thesis, Technische Universitát Berlin
-
A.J. Smola, "Learning with Kernels," PhD thesis, Technische Universitát Berlin, 1998.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
63
-
-
0030869663
-
A method for identifying splice sites and translational start sites in eukaryotic mRNA
-
S.L. Salzberg, "A Method for Identifying Splice Sites and Translational Start Sites in Eukaryotic mRNA," Computational Applied Bioscienee, vol. 13, no. 4, pp. 365-376, 1997.
-
(1997)
Computational Applied Bioscienee
, vol.13
, Issue.4
, pp. 365-376
-
-
Salzberg, S.L.1
-
64
-
-
84866585475
-
Splice-site recognition with support vector machines
-
S. Sonnenburg, G. Rätsch, A. Jagota, and K. -R. Müller, "Splice-Site Recognition with Support Vector Machines," to be published in Proc. Int'l Conf. Artificial Neural Networks '02, 2002.
-
(2002)
Proc. Int'l Conf. Artificial Neural Networks '02
-
-
Sonnenburg, S.1
Rätsch, G.2
Jagota, A.3
Müller, K.-R.4
-
65
-
-
84899013252
-
Support vector novelty detection applied to jet engine vibration spectra
-
T.K. Leen, T.G. Dietterich, and V. Tresp, eds.
-
P. Hayton, B. Schölkopf, L. Tarassenko, and P. Anuzis, "Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra," Advances in Neural Information Processing Systems, T.K. Leen, T.G. Dietterich, and V. Tresp, eds., vol. 13, pp. 946-952, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 946-952
-
-
Hayton, P.1
Schölkopf, B.2
Tarassenko, L.3
Anuzis, P.4
|