메뉴 건너뛰기




Volumn 52, Issue 8, 2004, Pages 2165-2176

Online learning with kernels

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION; RANDOM PROCESSES; REGRESSION ANALYSIS; THEOREM PROVING;

EID: 3543110224     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2004.830991     Document Type: Article
Times cited : (876)

References (35)
  • 2
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Nov
    • D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Processing, vol. 48, pp. 3217-3226, Nov. 2000.
    • (2000) IEEE Trans. Signal Processing , vol.48 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 3
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. S. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline functions," J. Math. Anal. Applic., vol. 33, pp. 82-95, 1971.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 5
    • 84943226219 scopus 로고    scopus 로고
    • Learning additive models online with fast evaluating kernels
    • Springer Lecture Notes in Computer Science D.P. Helmbold B. Williamson Eds
    • M. Herbster, "Learning additive models online with fast evaluating kernels," in Proc. Fourteenth Annu. Conf. Comput. Learning Theory, vol. 2111, Springer Lecture Notes in Computer Science, D. P. Helmbold and B. Williamson, Eds., 2001, pp. 444-460.
    • (2001) Proc. Fourteenth Annu. Conf. Comput. Learning Theory , vol.2111 , pp. 444-460
    • Herbster, M.1
  • 7
    • 80052866161 scopus 로고    scopus 로고
    • Incremental decremental support vector machine learning
    • T.K. Leen T.G. Dietterich V. Tresp Eds. Cambridge MA: MIT Press
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 409-415.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 8
    • 84898947911 scopus 로고    scopus 로고
    • Sparse representation for Gaussian process models
    • T.K. Leen T.G. Dietterich V. Tresp Eds. Cambridge MA: MIT Press
    • L. Csató and M. Opper, "Sparse representation for Gaussian process models," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 444-450.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 444-450
    • Csató, L.1    Opper, M.2
  • 9
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • Dec
    • C. Gentile, "A new approximate maximal margin classification algorithm," J. Machine Learning Res., vol. 2, pp. 213-242, Dec. 2001.
    • (2001) J. Machine Learning Res. , vol.2 , pp. 213-242
    • Gentile, C.1
  • 11
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Jan
    • Y. Li and P. M. Long, "The relaxed online maximum margin algorithm," Machine Learning, vol. 46, no. 1, pp. 361-387, Jan. 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 361-387
    • Li, Y.1    Long, P.M.2
  • 12
    • 0042496213 scopus 로고    scopus 로고
    • Tracking the best linear predictor
    • M. Herbster and M. Warmuth, "Tracking the best linear predictor," J. Machine Learning Res., vol. 1, pp. 281-309, 2001.
    • (2001) J. Machine Learning Res. , vol.1 , pp. 281-309
    • Herbster, M.1    Warmuth, M.2
  • 13
    • 0032140937 scopus 로고    scopus 로고
    • Tracking the best disjunction
    • P. Auer and M. Warmuth, "Tracking the best disjunction," Machine Learning J., vol. 32, no. 2, pp. 127-150, 1998.
    • (1998) Machine. Learning J. , vol.32 , Issue.2 , pp. 127-150
    • Auer, P.1    Warmuth, M.2
  • 14
    • 84942756197 scopus 로고    scopus 로고
    • Large margin classification for moving targets
    • N. Cesa-Bianchi M. Numao R. Reischuk Eds. Berlin Germany Nov
    • J. Kivinen, A. J. Smola, and R. C. Williamson, "Large margin classification for moving targets," in Proc. 13th Int. Conf. Algorithmic Learning Theory, N. Cesa-Bianchi, M. Numao, and R. Reischuk, Eds., Berlin, Germany, Nov. 2002, pp. 113-127.
    • (2002) Proc. 13th Int. Conf. Algorithmic Learning Theory , pp. 113-127
    • Kivinen, J.1    Smola, A.J.2    Williamson, R.C.3
  • 15
    • 84937405862 scopus 로고    scopus 로고
    • Tracking linear-threshold concepts with Winnow
    • J. Kivinen B. Sloan Eds. Berlin Germany July
    • C. Mesterharm, "Tracking linear-threshold concepts with Winnow," in Proc. 15th Annu. Conf. Comput. Learning Theory, J. Kivinen and B. Sloan, Eds., Berlin, Germany, July 2002, pp. 138-152.
    • (2002) Proc. 15th Annu. Conf. Comput. Learning Theory , pp. 138-152
    • Mesterharm, C.1
  • 16
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone, "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm," Machine Learning, vol. 2, pp. 285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 17
    • 0041965987 scopus 로고    scopus 로고
    • Tracking a small set of experts by mixing past posteriors
    • Nov
    • O. Bousquet and M. K. Warmuth, "Tracking a small set of experts by mixing past posteriors," J. Machine Learning Res., vol. 3, pp. 363-396, Nov. 2002.
    • (2002) J. Machine Learning Res. , vol.3 , pp. 363-396
    • Bousquet, O.1    Warmuth, M.K.2
  • 18
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf C.J.C. Burges A.J. Smola Eds. Cambridge MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 19
    • 3543134928 scopus 로고    scopus 로고
    • Technische Univ. Darmstadt Inst. Automat. Contr. Lab. Contr. Syst. Process Automat. Darmstadt Germany
    • M. Vogt, "SMO algorithms for support vector machines without bias term," Technische Univ. Darmstadt, Inst. Automat. Contr., Lab. Contr. Syst. Process Automat., Darmstadt, Germany, 2002.
    • (2002) SMO Algorithms for Support Vector Machines Without Bias Term
    • Vogt, M.1
  • 20
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian, "Robust linear programming discrimination of two linearly inseparable sets," Optimization Methods Software, vol. 1, pp. 23-34, 1992.
    • (1992) Optimization Methods Software , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 22
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • P. J. Huber, "Robust statistics: A review," Ann. Statist., vol. 43, pp. 1041-1067, 1972.
    • (1972) Ann. Statist. , vol.43 , pp. 1041-1067
    • Huber, P.J.1
  • 23
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation regression estimation signal processing
    • M.C. Mozer M.I. Jordan T. Petsche Eds. Cambridge MA: MIT Press
    • V. Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 281-287.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 24
    • 0003807773 scopus 로고
    • Second ed. Englewood Cliffs NJ: Prentice-Hall
    • S. Haykin, Adaptive Filter Theory, Second ed. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    • (1991) Adaptive Filter Theory
    • Haykin, S.1
  • 26
    • 84898940321 scopus 로고    scopus 로고
    • Online learning with kernels
    • T.G. Dietterich S. Becker Z. Ghahramani Eds. Cambridge MA: MIT Press
    • J. Kivinen, A. J. Smola, and R. C. Williamson, "Online learning with kernels," in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 785-792.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 785-792
    • Kivinen, J.1    Smola, A.J.2    Williamson, R.C.3
  • 29
    • 0000327937 scopus 로고
    • On convergence proofs on perceptrons
    • A. B. J. Novikoff, "On convergence proofs on perceptrons," in Proc. Symp. Math. Theory Automata, vol. 12, 1962, pp. 615-622.
    • (1962) Proc. Symp. Math. Theory Automata , vol.12 , pp. 615-622
    • Novikoff, A.B.J.1
  • 31
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire, "Large margin classification using the perceptron algorithm," Machine Learning, vol. 37, no. 3, pp. 277-296, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 32
    • 0036477185 scopus 로고    scopus 로고
    • Adaptive self-confident on-line learning algorithms
    • Feb
    • P. Auer, N. Cesa-Bianchi, and C. Gentile, "Adaptive and self-confident on-line learning algorithms," J. Comput. Syst. Sci., vol. 64, no. 1, pp. 48-75, Feb. 2002.
    • (2002) J. Comput. Syst. Sci. , vol.64 , Issue.1 , pp. 48-75
    • Auer, P.1    Cesa-Bianchi, N.2    Gentile, C.3
  • 33
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent
    • May
    • N. Cesa-Bianchi, P. Long, and M. Warmuth, "Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent," IEEE Trans. Neural Networks, vol. 7, pp. 604-619, May 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.2    Warmuth, M.3
  • 34
    • 3543055379 scopus 로고    scopus 로고
    • Continuous discrete time non-linear gradient descent: Relative loss bounds convergence
    • [Online] Available
    • M.K. Warmuth and A. Jagota. Continuous and discrete time non-linear gradient descent: Relative loss bounds and convergence. presented at Fifth Int. Symp. Artif. Intell. Math.. [Online], Available: http://rutcor.rutgers.edu/~amai
    • Fifth Int. Symp. Artif. Intell. Math
    • Warmuth, M.K.1    Jagota., A.2
  • 35
    • 84899015772 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • T.G. Dietterich S. Becker Z. Ghahramani Eds. Cambridge MA: MIT Press
    • N. Cesa-Bianchi, A. Conconi, and C. Gentile, "On the generalization ability of on-line learning algorithms," in Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002 pp. 359-366.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 359-366
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.