-
2
-
-
0034323731
-
Support vector machine techniques for nonlinear equalization
-
Nov
-
D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Processing, vol. 48, pp. 3217-3226, Nov. 2000.
-
(2000)
IEEE Trans. Signal Processing
, vol.48
, pp. 3217-3226
-
-
Sebald, D.J.1
Bucklew, J.A.2
-
3
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G. S. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline functions," J. Math. Anal. Applic., vol. 33, pp. 82-95, 1971.
-
(1971)
J. Math. Anal. Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
4
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, "New support vector algorithms," Neural Comput., vol. 12, pp. 1207-1245, 2000.
-
(2000)
Neural Comput.
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
5
-
-
84943226219
-
Learning additive models online with fast evaluating kernels
-
Springer Lecture Notes in Computer Science D.P. Helmbold B. Williamson Eds
-
M. Herbster, "Learning additive models online with fast evaluating kernels," in Proc. Fourteenth Annu. Conf. Comput. Learning Theory, vol. 2111, Springer Lecture Notes in Computer Science, D. P. Helmbold and B. Williamson, Eds., 2001, pp. 444-460.
-
(2001)
Proc. Fourteenth Annu. Conf. Comput. Learning Theory
, vol.2111
, pp. 444-460
-
-
Herbster, M.1
-
7
-
-
80052866161
-
Incremental decremental support vector machine learning
-
T.K. Leen T.G. Dietterich V. Tresp Eds. Cambridge MA: MIT Press
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 409-415.
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
8
-
-
84898947911
-
Sparse representation for Gaussian process models
-
T.K. Leen T.G. Dietterich V. Tresp Eds. Cambridge MA: MIT Press
-
L. Csató and M. Opper, "Sparse representation for Gaussian process models," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 444-450.
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 444-450
-
-
Csató, L.1
Opper, M.2
-
9
-
-
84868111801
-
A new approximate maximal margin classification algorithm
-
Dec
-
C. Gentile, "A new approximate maximal margin classification algorithm," J. Machine Learning Res., vol. 2, pp. 213-242, Dec. 2001.
-
(2001)
J. Machine Learning Res.
, vol.2
, pp. 213-242
-
-
Gentile, C.1
-
10
-
-
84898991622
-
From margin to sparsity
-
T.K. Leen T.G. Dietterich V. Tresp Eds. Cambridge MA: MIT Press
-
T. Graepel, R. Herbrich, and R. C. Williamson, "From margin to sparsity," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 210-216.
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 210-216
-
-
Graepel, T.1
Herbrich, R.2
Williamson, R.C.3
-
11
-
-
0036161258
-
The relaxed online maximum margin algorithm
-
Jan
-
Y. Li and P. M. Long, "The relaxed online maximum margin algorithm," Machine Learning, vol. 46, no. 1, pp. 361-387, Jan. 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 361-387
-
-
Li, Y.1
Long, P.M.2
-
12
-
-
0042496213
-
Tracking the best linear predictor
-
M. Herbster and M. Warmuth, "Tracking the best linear predictor," J. Machine Learning Res., vol. 1, pp. 281-309, 2001.
-
(2001)
J. Machine Learning Res.
, vol.1
, pp. 281-309
-
-
Herbster, M.1
Warmuth, M.2
-
13
-
-
0032140937
-
Tracking the best disjunction
-
P. Auer and M. Warmuth, "Tracking the best disjunction," Machine Learning J., vol. 32, no. 2, pp. 127-150, 1998.
-
(1998)
Machine. Learning J.
, vol.32
, Issue.2
, pp. 127-150
-
-
Auer, P.1
Warmuth, M.2
-
14
-
-
84942756197
-
Large margin classification for moving targets
-
N. Cesa-Bianchi M. Numao R. Reischuk Eds. Berlin Germany Nov
-
J. Kivinen, A. J. Smola, and R. C. Williamson, "Large margin classification for moving targets," in Proc. 13th Int. Conf. Algorithmic Learning Theory, N. Cesa-Bianchi, M. Numao, and R. Reischuk, Eds., Berlin, Germany, Nov. 2002, pp. 113-127.
-
(2002)
Proc. 13th Int. Conf. Algorithmic Learning Theory
, pp. 113-127
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
15
-
-
84937405862
-
Tracking linear-threshold concepts with Winnow
-
J. Kivinen B. Sloan Eds. Berlin Germany July
-
C. Mesterharm, "Tracking linear-threshold concepts with Winnow," in Proc. 15th Annu. Conf. Comput. Learning Theory, J. Kivinen and B. Sloan, Eds., Berlin, Germany, July 2002, pp. 138-152.
-
(2002)
Proc. 15th Annu. Conf. Comput. Learning Theory
, pp. 138-152
-
-
Mesterharm, C.1
-
16
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone, "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm," Machine Learning, vol. 2, pp. 285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
17
-
-
0041965987
-
Tracking a small set of experts by mixing past posteriors
-
Nov
-
O. Bousquet and M. K. Warmuth, "Tracking a small set of experts by mixing past posteriors," J. Machine Learning Res., vol. 3, pp. 363-396, Nov. 2002.
-
(2002)
J. Machine Learning Res.
, vol.3
, pp. 363-396
-
-
Bousquet, O.1
Warmuth, M.K.2
-
18
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf C.J.C. Burges A.J. Smola Eds. Cambridge MA: MIT Press
-
J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
19
-
-
3543134928
-
-
Technische Univ. Darmstadt Inst. Automat. Contr. Lab. Contr. Syst. Process Automat. Darmstadt Germany
-
M. Vogt, "SMO algorithms for support vector machines without bias term," Technische Univ. Darmstadt, Inst. Automat. Contr., Lab. Contr. Syst. Process Automat., Darmstadt, Germany, 2002.
-
(2002)
SMO Algorithms for Support Vector Machines Without Bias Term
-
-
Vogt, M.1
-
20
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K. P. Bennett and O. L. Mangasarian, "Robust linear programming discrimination of two linearly inseparable sets," Optimization Methods Software, vol. 1, pp. 23-34, 1992.
-
(1992)
Optimization Methods Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
21
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Comput., vol. 13, no. 7, 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
22
-
-
0000171374
-
Robust statistics: A review
-
P. J. Huber, "Robust statistics: A review," Ann. Statist., vol. 43, pp. 1041-1067, 1972.
-
(1972)
Ann. Statist.
, vol.43
, pp. 1041-1067
-
-
Huber, P.J.1
-
23
-
-
84887252594
-
Support vector method for function approximation regression estimation signal processing
-
M.C. Mozer M.I. Jordan T. Petsche Eds. Cambridge MA: MIT Press
-
V. Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 281-287.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
24
-
-
0003807773
-
-
Second ed. Englewood Cliffs NJ: Prentice-Hall
-
S. Haykin, Adaptive Filter Theory, Second ed. Englewood Cliffs, NJ: Prentice-Hall, 1991.
-
(1991)
Adaptive Filter Theory
-
-
Haykin, S.1
-
25
-
-
84865131152
-
A generalized representer theorem
-
B. Schölkopf, R. Herbrich, and A. J. Smola, "A generalized representer theorem," in Proc. Annu. Conf. Comput. Learning Theory, 2001, pp. 416-426.
-
(2001)
Proc. Annu. Conf. Comput. Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
26
-
-
84898940321
-
Online learning with kernels
-
T.G. Dietterich S. Becker Z. Ghahramani Eds. Cambridge MA: MIT Press
-
J. Kivinen, A. J. Smola, and R. C. Williamson, "Online learning with kernels," in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 785-792.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 785-792
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
28
-
-
0003660631
-
-
Dept. Statist. Stanford Univ. Stanford CA
-
J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Dept. Statist., Stanford Univ., Stanford, CA, 1998.
-
(1998)
Additive Logistic Regression: A Statistical View of Boosting
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
29
-
-
0000327937
-
On convergence proofs on perceptrons
-
A. B. J. Novikoff, "On convergence proofs on perceptrons," in Proc. Symp. Math. Theory Automata, vol. 12, 1962, pp. 615-622.
-
(1962)
Proc. Symp. Math. Theory Automata
, vol.12
, pp. 615-622
-
-
Novikoff, A.B.J.1
-
31
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Y. Freund and R. E. Schapire, "Large margin classification using the perceptron algorithm," Machine Learning, vol. 37, no. 3, pp. 277-296, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.E.2
-
32
-
-
0036477185
-
Adaptive self-confident on-line learning algorithms
-
Feb
-
P. Auer, N. Cesa-Bianchi, and C. Gentile, "Adaptive and self-confident on-line learning algorithms," J. Comput. Syst. Sci., vol. 64, no. 1, pp. 48-75, Feb. 2002.
-
(2002)
J. Comput. Syst. Sci.
, vol.64
, Issue.1
, pp. 48-75
-
-
Auer, P.1
Cesa-Bianchi, N.2
Gentile, C.3
-
33
-
-
0030145382
-
Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent
-
May
-
N. Cesa-Bianchi, P. Long, and M. Warmuth, "Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent," IEEE Trans. Neural Networks, vol. 7, pp. 604-619, May 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.2
Warmuth, M.3
-
34
-
-
3543055379
-
Continuous discrete time non-linear gradient descent: Relative loss bounds convergence
-
[Online] Available
-
M.K. Warmuth and A. Jagota. Continuous and discrete time non-linear gradient descent: Relative loss bounds and convergence. presented at Fifth Int. Symp. Artif. Intell. Math.. [Online], Available: http://rutcor.rutgers.edu/~amai
-
Fifth Int. Symp. Artif. Intell. Math
-
-
Warmuth, M.K.1
Jagota., A.2
-
35
-
-
84899015772
-
On the generalization ability of on-line learning algorithms
-
T.G. Dietterich S. Becker Z. Ghahramani Eds. Cambridge MA: MIT Press
-
N. Cesa-Bianchi, A. Conconi, and C. Gentile, "On the generalization ability of on-line learning algorithms," in Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002 pp. 359-366.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 359-366
-
-
Cesa-Bianchi, N.1
Conconi, A.2
Gentile, C.3
|