메뉴 건너뛰기




Volumn , Issue , 2000, Pages 91-98

Active learning using adaptive resampling

Author keywords

Active learning; Adaptive resampling; Classification; Data mining; Machine learning

Indexed keywords

ADAPTIVE SYSTEMS; CLASSIFICATION (OF INFORMATION); DATA MINING; MATHEMATICAL MODELS; SAMPLING;

EID: 0034592915     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/347090.347110     Document Type: Conference Paper
Times cited : (71)

References (31)
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 3
    • 0028461417 scopus 로고
    • Automated learning of decision rules for text categorization
    • July
    • C. Apte, F. Damerau, and S. Weiss. Automated learning of decision rules for text categorization. ACM Transactions on Information Systems, 12(3):233-251, July 1994.
    • (1994) ACM Transactions on Information Systems , vol.12 , Issue.3 , pp. 233-251
    • Apte, C.1    Damerau, F.2    Weiss, S.3
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 10
    • 0028424239 scopus 로고
    • Improved generalization with active learning
    • D. Cohn, L. Atlas, and R.Ladner. Improved generalization with active learning. Machine Learning, 15:201-221, 1994.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 13
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2), August 2000.
    • (2000) Machine Learning , vol.40 , Issue.2
    • Dietterich, T.G.1
  • 14
  • 17
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 26
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.