-
2
-
-
0000710299
-
Queries and concept learning
-
D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 319-342
-
-
Angluin, D.1
-
3
-
-
0028461417
-
Automated learning of decision rules for text categorization
-
July
-
C. Apte, F. Damerau, and S. Weiss. Automated learning of decision rules for text categorization. ACM Transactions on Information Systems, 12(3):233-251, July 1994.
-
(1994)
ACM Transactions on Information Systems
, vol.12
, Issue.3
, pp. 233-251
-
-
Apte, C.1
Damerau, F.2
Weiss, S.3
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
7
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
10
-
-
0028424239
-
Improved generalization with active learning
-
D. Cohn, L. Atlas, and R.Ladner. Improved generalization with active learning. Machine Learning, 15:201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
13
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2), August 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
-
-
Dietterich, T.G.1
-
14
-
-
0013155508
-
Sifting informative examples from a random source
-
Y. Freund. Sifting informative examples from a random source. In Advances in Neural Information Processing, pages 85-89, 1994.
-
(1994)
Advances in Neural Information Processing
, pp. 85-89
-
-
Freund, Y.1
-
16
-
-
0011904207
-
Information, prediction, and query by committee
-
Morgan Kaufmann
-
Y. Freund, H. Seung, E. Shamir, and N. Tishby. Information, prediction, and query by committee. In Advances in Neural Information Processing Systems 5, pages 337-344. Morgan Kaufmann, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.5
, pp. 337-344
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
17
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
18
-
-
0003660631
-
-
Technical Report Technical Report, Stanford University, Dept. of Statistics, July
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Technical Report Technical Report, Stanford University, Dept. of Statistics, July 1998.
-
(1998)
Additive Logistic Regression: A Statistical View of Boosting
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
26
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
28
-
-
0033366097
-
Maximizing text-mining performance
-
July/August
-
S. Weiss, C. Apte, F. Damerau, D. Johnson, F. Oles, T. Goetz, and T. Hampp. Maximizing text-mining performance. IEEE Intelligent Systems and their applications, 14(4):63-69, July/August 1999.
-
(1999)
IEEE Intelligent Systems and their Applications
, vol.14
, Issue.4
, pp. 63-69
-
-
Weiss, S.1
Apte, C.2
Damerau, F.3
Johnson, D.4
Oles, F.5
Goetz, T.6
Hampp, T.7
|