메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Fast kernel classifiers with online and active learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTABILITY AND DECIDABILITY; LEARNING ALGORITHMS; PROBLEM SOLVING;

EID: 25444522689     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (561)

References (51)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, É.M.2    Rozonoér, L.I.3
  • 3
    • 84899018011 scopus 로고    scopus 로고
    • Breaking SVM complexity with cross-training
    • Lawrence Saul, Bernhard Schölkopf, and Léon Bottou, editors. MIT Press
    • G. Bakir, L. Bottou, and J. Weston. Breaking SVM complexity with cross-training. In Lawrence Saul, Bernhard Schölkopf, and Léon Bottou, editors, Advances in Neural Information Processing Systems, volume 17, pages 81-88. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 81-88
    • Bakir, G.1    Bottou, L.2    Weston, J.3
  • 9
    • 25444456131 scopus 로고    scopus 로고
    • Worst-case analysis of selective sampling for linear-threshold algorithms
    • L. K. Saul, Y. Weiss, and L. Bottou, editors. MIT Press, Cambridge, MA
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective sampling for linear-threshold algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 241-248. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 241-248
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 10
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM : A library for support vector machines
    • Computer Science and Information Engineering, National Taiwan University
    • C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. Technical report, Computer Science and Information Engineering, National Taiwan University, 2001-2004. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2001) Technical Report
    • Chang, C.-C.1    Lin, C.-J.2
  • 11
    • 0003283879 scopus 로고
    • Training connectionist networks with queries and selective sampling
    • D. Touretzky, editor San Mateo, CA. Morgan Kaufmann
    • D. Cohn, L. Atlas, and R. Ladner. Training connectionist networks with queries and selective sampling. In D. Touretzky, editor, Advances in Neural Information Processing Systems 2, San Mateo, CA, 1990. Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 12
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1:143-160, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 13
    • 84899019809 scopus 로고    scopus 로고
    • A parallel mixture of SVMs for very large scale problems
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
    • R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale problems. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Collobert, R.1    Bengio, S.2    Bengio, Y.3
  • 14
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 84899003168 scopus 로고    scopus 로고
    • Online classification on a budget
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors. MIT Press, Cambridge, MA
    • K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Crammer, K.1    Kandola, J.2    Singer, Y.3
  • 16
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 3:951-991, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 19
    • 33747405813 scopus 로고
    • On the sample complexity of PAC learning using random and chosen examples
    • M. Fulk and J. Case, editors, San Mateo, CA. Kaufmann
    • B. Eisenberg and R. Rivest. On the sample complexity of PAC learning using random and chosen examples. In M. Fulk and J. Case, editors, Proceedings of the Third Annual ACM Workshop on Computational Learning Theory, pages 154-162, San Mateo, CA, 1990. Kaufmann.
    • (1990) Proceedings of the Third Annual ACM Workshop on Computational Learning Theory , pp. 154-162
    • Eisenberg, B.1    Rivest, R.2
  • 22
    • 0000897328 scopus 로고    scopus 로고
    • The kernel Adatron algorithm: A fast and simple learning procedure for support vector machines
    • J. Shavlik, editor. Morgan Kaufmann Publishers. See (Cristianini and Shawe-Taylor, 2000, section 7.2) for an updated presentation
    • T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel Adatron algorithm: a fast and simple learning procedure for support vector machines. In J. Shavlik, editor, 15th International Conf. Machine Learning, pages 188-196. Morgan Kaufmann Publishers, 1998. See (Cristianini and Shawe-Taylor, 2000, section 7.2) for an updated presentation.
    • (1998) 15th International Conf. Machine Learning , pp. 188-196
    • Frieß, T.-T.1    Cristianini, N.2    Campbell, C.3
  • 23
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2:213-242, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 213-242
    • Gentile, C.1
  • 25
    • 0005396750 scopus 로고
    • Automatic capacity tuning of very large VC-dimension classifiers
    • S. J. Hanson, J. D. Cowan, and C. Lee Giles, editors. Morgan Kaufmann, San Mateo, CA
    • I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large VC-dimension classifiers. In S. J. Hanson, J. D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems, volume 5, pages 147-155. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 147-155
    • Guyon, I.1    Boser, B.2    Vapnik, V.3
  • 26
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA. MIT Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 27
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46:351-360, 2002.
    • (2002) Machine Learning , vol.46 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 28
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li and P. Long. The relaxed online maximum margin algorithm. Machine Learning, 46:361-387, 2002.
    • (2002) Machine Learning , vol.46 , pp. 361-387
    • Li, Y.1    Long, P.2
  • 29
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12(6):1288-1298, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 30
    • 0041995194 scopus 로고
    • Relating data compression and learnability
    • University of California Santa Cruz
    • N. Littlestone and M. Warmuth. Relating data compression and learnability. Technical report, University of California Santa Cruz, 1986.
    • (1986) Technical Report
    • Littlestone, N.1    Warmuth, M.2
  • 31
    • 25444469091 scopus 로고    scopus 로고
    • Une boîte à outils rapide et simple pour les SVM
    • Michel Liquière and Marc Sebban, editors. Presses Universitaires de Grenoble. ISBN 9-782706-112249
    • G. Loosli, S. Canu, S.V.N. Vishwanathan, A. J. Smola, and M. Chattopadhyay. Une boîte à outils rapide et simple pour les SVM. In Michel Liquière and Marc Sebban, editors, CAp 2004 - Confrence d'Apprentissage, pages 113-128. Presses Universitaires de Grenoble, 2004. ISBN 9-782706-112249.
    • (2004) CAp 2004 - Confrence D'Apprentissage , pp. 113-128
    • Loosli, G.1    Canu, S.2    Vishwanathan, S.V.N.3    Smola, A.J.4    Chattopadhyay, M.5
  • 32
    • 0000695404 scopus 로고
    • Information based objective functions for active data selection
    • D. J. C. MacKay. Information based objective functions for active data selection. Neural Computation, 4(4):589-603, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 589-603
    • MacKay, D.J.C.1
  • 33
    • 0032629928 scopus 로고    scopus 로고
    • Statistical analysis of learning dynamics
    • N. Murata and S.-I. Amari. Statistical analysis of learning dynamics. Signal Processing, 74(1): 3-28, 1999.
    • (1999) Signal Processing , vol.74 , Issue.1 , pp. 3-28
    • Murata, N.1    Amari, S.-I.2
  • 36
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA. MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 37
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, 1958.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 41
    • 84898949402 scopus 로고    scopus 로고
    • Sparseness of support vector machines - Some asymptotically sharp bounds
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors. MIT Press, Cambridge, MA
    • I. Steinwart. Sparseness of support vector machines - some asymptotically sharp bounds. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Steinwart, I.1
  • 43
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • P. Langley, editor, San Francisco, California. Morgan Kaufmann
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In P. Langley, editor, Proceedings of the 17th International Conference on Machine Learning, San Francisco, California, 2000. Morgan Kaufmann.
    • (2000) Proceedings of the 17th International Conference on Machine Learning
    • Tong, S.1    Koller, D.2
  • 46
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and Remote Control, 24:774-780, 1963.
    • (1963) Automation and Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.