-
1
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
T. Poggio and F. Girosi, "Networks for Approximation and Learning," Proc. IEEE, vol.78, no.9, pp. 1481-1497, Sept. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
2
-
-
0041193345
-
Nonparametric bayesian regression
-
D. Barry, "Nonparametric Bayesian Regression," The Annals of Statistics, vol.14, pp. 934-953, 1986.
-
(1986)
The Annals of Statistics
, vol.14
, pp. 934-953
-
-
Barry, D.1
-
4
-
-
0021269554
-
The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
-
L.B. Sheiner, "The Population Approach to Pharmacokinetic Data Analysis: Rationale and Standard Data Analysis Methods," Drug Metabolism Rev., vol.15, pp. 153-171, 1994.
-
(1994)
Drug Metabolism Rev.
, vol.15
, pp. 153-171
-
-
Sheiner, L.B.1
-
7
-
-
0017688679
-
Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
-
L.B. Sheiner, B. Rosenberg, and V.V. Marathe, "Estimation of Population Characteristics of Pharmacokinetic Parameters from Routine Clinical Data," J. Pharmacokinetics and Biopharmaceutics, vol.5, no.5, pp. 445-479, 1977.
-
(1977)
J. Pharmacokinetics and Biopharmaceutics
, vol.5
, Issue.5
, pp. 445-479
-
-
Sheiner, L.B.1
Rosenberg, B.2
Marathe, V.V.3
-
9
-
-
4243839021
-
Bayesian analysis of linear and non-linear population models by using the gibbs sampler
-
J.C. Wakefield, A.F.M. Smith, A. Racine-Poon, and A.E. Gelfand, "Bayesian Analysis of Linear and Non-Linear Population Models by Using the Gibbs Sampler," Applied Statistics, vol.41, pp. 201-221, 1994.
-
(1994)
Applied Statistics
, vol.41
, pp. 201-221
-
-
Wakefield, J.C.1
Smith, A.F.M.2
Racine-Poon, A.3
Gelfand, A.E.4
-
10
-
-
0036428867
-
Bayesian analysis of population pk/pd models: General concepts and software
-
D.J. Lunn, N. Best, A. Thomas, J.C. Wakefield, and D. Spiegelhalter, "Bayesian Analysis of Population PK/PD Models: General Concepts and Software," J. Pharmacokinetics and Pharmacodynamics, vol.29, no.3, pp. 271-307, 2002.
-
(2002)
J. Pharmacokinetics and Pharmacodynamics
, vol.29
, Issue.3
, pp. 271-307
-
-
Lunn, D.J.1
Best, N.2
Thomas, A.3
Wakefield, J.C.4
Spiegelhalter, D.5
-
11
-
-
0029554724
-
A nonparametric subject-specific population method for deconvolution: I. description, internal validation and real data examples
-
K.E. Fattinger and D. Verotta, "A Nonparametric Subject-Specific Population Method for Deconvolution: I. Description, Internal Validation and Real Data Examples," J. Pharmacokinetics and Biopharmaceutics, vol.23, pp. 581-610, 1995.
-
(1995)
J. Pharmacokinetics and Biopharmaceutics
, vol.23
, pp. 581-610
-
-
Fattinger, K.E.1
Verotta, D.2
-
12
-
-
0038505133
-
Nonparametric aucestimation in population studies with incomplete sampling: A bayesian approach
-
P. Magni, R. Bellazzi, G. De Nicolao, I. Poggesi, and M. Rocchetti, "Nonparametric AUCEstimation in Population Studies with Incomplete Sampling: A Bayesian Approach," J. Pharmacokinetics and Pharmacodynamics, vol.29, nos. 5/6, pp. 445-471, 2002.
-
(2002)
J. Pharmacokinetics and Pharmacodynamics
, vol.29
, Issue.5-6
, pp. 445-471
-
-
Magni, P.1
Bellazzi, R.2
De Nicolao, G.3
Poggesi, I.4
Rocchetti, M.5
-
13
-
-
79960716354
-
Nonparametric identification of pharmacokinetic population models via gaussian processes
-
M. Neve, G. DeNicolao, and L. Marchesi, "Nonparametric Identification of Pharmacokinetic Population Models via Gaussian Processes," Proc. 16th IFAC World Congress, 2005.
-
(2005)
Proc. 16th IFAC World Congress
-
-
Neve, M.1
Denicolao, G.2
Marchesi, L.3
-
14
-
-
34249036998
-
Nonparametric identification of population models via gaussian processes
-
M. Neve, G. De Nicolao, and L. Marchesi, "Nonparametric Identification of Population Models via Gaussian Processes," Automatica, vol.97, no.7, pp. 1134-1144, 2007.
-
(2007)
Automatica
, vol.97
, Issue.7
, pp. 1134-1144
-
-
Neve, M.1
De Nicolao, G.2
Marchesi, L.3
-
15
-
-
33645417582
-
Bayesian clustering of gene expression time series
-
F. Ferrazzi, P. Magni, and R. Bellazzi, "Bayesian Clustering of Gene Expression Time Series," Proc. Third Int'l Workshop Bioinfor-matics for the Management, Analysis and Interpretation of Microarray Data, pp. 53-55, 2003.
-
(2003)
Proc. Third Int'l Workshop Bioinfor-matics for the Management, Analysis and Interpretation of Microarray Data
, pp. 53-55
-
-
Ferrazzi, F.1
Magni, P.2
Bellazzi, R.3
-
16
-
-
0031189914
-
Multi-task learning
-
R. Caruana, "Multi-Task Learning," Machine Learning, vol.28, pp. 41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
18
-
-
0346238931
-
Task clustering and gating for bayesian multi-task learning
-
B. Bakker and T. Heskes, "Task Clustering and Gating for Bayesian Multi-Task Learning," J. Machine Learning Research, vol.4, pp. 83-99, 2003.
-
(2003)
J. Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
19
-
-
0031187873
-
A bayesian/information theoretic model of learning to learn via multiple task sampling
-
J. Baxter, "A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling," Machine Learning, vol.28, pp. 7-39, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 7-39
-
-
Baxter, J.1
-
20
-
-
14544299611
-
On learning vector-valued functions
-
C.A. Micchelli and M. Pontil, "On Learning Vector-Valued Functions," Neural Computation, vol.17, no.1, pp. 177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
21
-
-
21844456299
-
Learning multiple tasks with kernel methods
-
T. Evgeniou, C.A. Micchelli, and M. Pontil, "Learning Multiple Tasks with Kernel Methods," J. Machine Learning Research, vol.6, pp. 615-637, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 615-637
-
-
Evgeniou, T.1
Micchelli, C.A.2
Pontil, M.3
-
22
-
-
57949108274
-
Fast algorithms for nonparametric population modeling of large data sets
-
G. Pillonetto, G. De Nicolao, M. Chierici, and C. Cobelli, "Fast Algorithms for Nonparametric Population Modeling of Large Data Sets," Automatica, vol.45, pp. 173-179, 2009.
-
(2009)
Automatica
, vol.45
, pp. 173-179
-
-
Pillonetto, G.1
De Nicolao, G.2
Chierici, M.3
Cobelli, C.4
-
23
-
-
84899006514
-
Learning gaussian process kernels via hierarchical bayes
-
MIT Press
-
A. Schwaighofer, V. Tresp, and K. Yu, "Learning Gaussian Process Kernels via Hierarchical Bayes," Advances in Neural Information Processing Systems, vol.17, pp. 1209-1216, MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1209-1216
-
-
Schwaighofer, A.1
Tresp, V.2
Yu, K.3
-
25
-
-
31844442664
-
Learning gaussian processes from multiple tasks
-
K. Yu, V. Tresp, and A. Schwaighofer, "Learning Gaussian Processes from Multiple Tasks," Proc. 22nd Int'l Conf. Machine Learning, pp. 1012-1019, 2005.
-
(2005)
Proc. 22nd Int'l Conf. Machine Learning
, pp. 1012-1019
-
-
Yu, K.1
Tresp, V.2
Schwaighofer, A.3
-
26
-
-
33745832477
-
-
Technical Report 661, Dept. of Statistics, Univ. of California, Berkeley
-
M. Seeger and M.I. Jordan, "Sparse Gaussian Process Classification with Multiple Classes," Technical Report 661, Dept. of Statistics, Univ. of California, Berkeley, 2004.
-
(2004)
Sparse Gaussian Process Classification with Multiple Classes
-
-
Seeger, M.1
Jordan, M.I.2
-
28
-
-
0001501999
-
Some tools for functional data analysis (with discussion)
-
Series B
-
J.O. Ramsay and C.J. Dalzell, "Some Tools for Functional Data Analysis (with Discussion)," J. Royal Statistical Soc., Series B, vol.53, pp. 539-572, 1991.
-
(1991)
J. Royal Statistical Soc.
, vol.53
, pp. 539-572
-
-
Ramsay, J.O.1
Dalzell, C.J.2
-
29
-
-
37349091229
-
Nonparametric identification of population models: An mcmc approach
-
Jan.
-
M. Neve, G. De Nicolao, and L. Marchesi, "Nonparametric Identification of Population Models: An MCMC Approach," IEEE Trans. Biomedical Eng., vol.55, no.1, pp. 41-50, Jan. 2008.
-
(2008)
IEEE Trans. Biomedical Eng.
, vol.55
, Issue.1
, pp. 41-50
-
-
Neve, M.1
De Nicolao, G.2
Marchesi, L.3
-
30
-
-
56449091021
-
A reproducing kernel hilbert space framework for pairwise time series distances
-
Z. Lu, T. Leen, Y. Huang, and D. Erdogmus, "A Reproducing Kernel Hilbert Space Framework for Pairwise Time Series Distances," Proc. Int'l Conf. Machine Learning, pp. 624-631, 2008.
-
(2008)
Proc. Int'l Conf. Machine Learning
, pp. 624-631
-
-
Lu, Z.1
Leen, T.2
Huang, Y.3
Erdogmus, D.4
-
31
-
-
0038891993
-
Sparse on-line gaussian processes
-
L. Csató and M. Opper, "Sparse On-Line Gaussian Processes," Neural Computation, vol.14, no.3, pp. 641-668, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
32
-
-
25844508057
-
-
Online Learning in Neural Networks, Cambridge Univ. Press
-
M. Opper, "A Bayesian Approach to Online Learning," Online Learning in Neural Networks, Cambridge Univ. Press, 1998.
-
(1998)
A Bayesian Approach to Online Learning
-
-
Opper, M.1
-
33
-
-
0000406385
-
A correspondence between bayesian estimation of stochastic processes and smoothing by splines
-
G. Kimeldorf and G. Wahba, "A Correspondence between Bayesian Estimation of Stochastic Processes and Smoothing by Splines," Annals of Math. Statistics, vol.41, pp. 495-502, 1979.
-
(1979)
Annals of Math. Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.1
Wahba, G.2
-
34
-
-
84865131152
-
A generalized representer theorem
-
B. Schölkopf, R. Herbrich, and A.J. Smola, "A Generalized Representer Theorem," Proc. Ann. Conf. Computational Learning Theory, pp. 416-426, 2001.
-
(2001)
Proc. Ann. Conf. Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
39
-
-
26944453996
-
Learning convex combinations of continuously parametrized basic kernels
-
A. Argyriou, C.A. Micchelli, and M. Pontil, "Learning Convex Combinations of Continuously Parametrized Basic Kernels," Proc. Ann. Conf. Learning Theory, pp. 338-352, 2005.
-
(2005)
Proc. Ann. Conf. Learning Theory
, pp. 338-352
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
-
40
-
-
33749254646
-
A dc algorithm for kernel selection
-
A. Argyriou, R. Hauser, C.A. Micchelli, and M. Pontil, "A DC Algorithm for Kernel Selection," Proc. 23rd Int'l Conf. Machine Learning, pp. 41-48, 2006.
-
(2006)
Proc. 23rd Int'l Conf. Machine Learning
, pp. 41-48
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.A.3
Pontil, M.4
-
41
-
-
38749149236
-
A convex optimization approach to modeling heterogeneity in conjoint estimation
-
T. Evgeniou, M. Pontil, and O. Toubia, "A Convex Optimization Approach to Modeling Heterogeneity in Conjoint Estimation," Marketing Science, vol.26, pp. 805-818, 2007.
-
(2007)
Marketing Science
, vol.26
, pp. 805-818
-
-
Evgeniou, T.1
Pontil, M.2
Toubia, O.3
-
42
-
-
37349124084
-
Comparison of the bailer and yeh methods using real data
-
European Cooperation in the Field of Scientific and Technical Research, European Commission
-
M. Rocchetti and I. Poggesi, "Comparison of the Bailer and Yeh Methods Using Real Data," The Population Approach: Measuring and Managing Variability in Response, Concentration and Dose, pp. 385-390, European Cooperation in the Field of Scientific and Technical Research, European Commission, 1997.
-
(1997)
The Population Approach: Measuring and Managing Variability in Response, Concentration and Dose
, pp. 385-390
-
-
Rocchetti, M.1
Poggesi, I.2
-
44
-
-
0018487598
-
Quantitative estimation of insulin sensitivity
-
R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli, "Quantitative Estimation of Insulin Sensitivity," Am. J. Physiology (Endocrinology and Metabolism Gastrointestinal and Liver Physiology), vol.236, pp. E667-E677, 1979.
-
(1979)
Am. J. Physiology (Endocrinology and Metabolism Gastrointestinal and Liver Physiology)
, vol.236
-
-
Bergman, R.N.1
Ider, Y.Z.2
Bowden, C.R.3
Cobelli, C.4
-
45
-
-
0035008172
-
The iterative two-stage population approach to ivgttminimal modeling: Improved precision with reduced sampling
-
P. Vicini and C. Cobelli, "The Iterative Two-Stage Population Approach to IVGTTMinimal Modeling: Improved Precision with Reduced Sampling," Am. J. Physiology Endocrinology and Metabolism, vol.280, no.1, pp. 179-186, 2001.
-
(2001)
Am. J. Physiology Endocrinology and Metabolism
, vol.280
, Issue.1
, pp. 179-186
-
-
Vicini, P.1
Cobelli, C.2
|