메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Learning the kernel with hyperkernels

Author keywords

Capacity control; Kernel methods; Learning the kernel; Representer theorem; Semidefinite programming; Support vector machines

Indexed keywords

AUTOMATION; CLASSIFICATION (OF INFORMATION); OPTIMIZATION; PARAMETER ESTIMATION; PROBLEM SOLVING; RISKS; VECTORS;

EID: 21844468979     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (290)

References (45)
  • 1
    • 0014476598 scopus 로고
    • Conditions for positive and nonnegative definiteness in terms of pseudoinverses
    • A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM Journal on Applied Mathematics, 17(2):434-440, 1969.
    • (1969) SIAM Journal on Applied Mathematics , vol.17 , Issue.2 , pp. 434-440
    • Albert, A.1
  • 4
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2): 121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 8
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 9
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0000541146 scopus 로고
    • Asymptotic analysis of penalized likelihood and related estimators
    • D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics, 18:1676-1695, 1990.
    • (1990) Annals of Statistics , vol.18 , pp. 1676-1695
    • Cox, D.1    O'Sullivan, F.2
  • 14
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning svm hyperparameters
    • K. Duan, S. S. Keerthi, and A. N. Poo. Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing, 51:41-59, 2003.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 15
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Dec
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, Dec 2001. http://www.jmlr.org.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 17
    • 0008267184 scopus 로고    scopus 로고
    • Convolutional kernels on discrete structures
    • Computer Science Department, UC Santa Cruz
    • D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.
    • (1999) Technical Report , vol.UCSC-CRL-99-10
    • Haussler, D.1
  • 19
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33:82-95, 1971.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 24
    • 0003281852 scopus 로고
    • On estimation of characters obtained in statistical procedure of recognition
    • A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of recognition (in Russian). Technicheskaya Kibernetica, 3, 1969.
    • (1969) Technicheskaya Kibernetica , vol.3
    • Luntz, A.1    Brailovsky, V.2
  • 25
    • 1942514696 scopus 로고
    • Bayesian non-linear modelling for the energy prediction competition
    • D. J. C. MacKay. Bayesian non-linear modelling for the energy prediction competition. ASHRAE Transcations, 4:448-472, 1994.
    • (1994) ASHRAE Transcations , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 27
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocomputing, 55 (1-2):169-186, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 31
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian processes and SVM: Mean field and leave-one-out
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors Cambridge, MA. MIT Press
    • M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-out. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 311-326, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 37
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. J. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11(5):637-649, 1998.
    • (1998) Neural Networks , vol.11 , Issue.5 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.-R.3
  • 38
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11/12(1-4):625-653, 1999.
    • (1999) Optimization Methods and Software , vol.11-12 , Issue.1-4 , pp. 625-653
    • Sturm, J.F.1
  • 39
    • 2342585524 scopus 로고    scopus 로고
    • The EM algorithm for kernel matrix completion with auxiliary data
    • K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kernel matrix completion with auxiliary data. Journal of Machine Learning Research, 4:67-81, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 67-81
    • Tsuda, K.1    Akaho, S.2    Asai, K.3
  • 40
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review., 38(1):49-95, 1996.
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 44
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Cambridge, MA. MIT Press
    • C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 45
    • 0141819626 scopus 로고    scopus 로고
    • Some sparse approximation bounds for regression problems
    • Morgan Kaufmann, San Francisco, CA
    • T. Zhang. Some sparse approximation bounds for regression problems. In Proc. 18th International Conf. on Machine Learning, pages 624-631. Morgan Kaufmann, San Francisco, CA, 2001.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 624-631
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.