-
1
-
-
0014476598
-
Conditions for positive and nonnegative definiteness in terms of pseudoinverses
-
A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM Journal on Applied Mathematics, 17(2):434-440, 1969.
-
(1969)
SIAM Journal on Applied Mathematics
, vol.17
, Issue.2
, pp. 434-440
-
-
Albert, A.1
-
4
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
7
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2): 121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
8
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
9
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimators
-
D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics, 18:1676-1695, 1990.
-
(1990)
Annals of Statistics
, vol.18
, pp. 1676-1695
-
-
Cox, D.1
O'Sullivan, F.2
-
13
-
-
84898936871
-
On kernel-target alignment
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors Cambridge, MA. MIT Press
-
N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 367-373, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 367-373
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.4
-
14
-
-
0037382208
-
Evaluation of simple performance measures for tuning svm hyperparameters
-
K. Duan, S. S. Keerthi, and A. N. Poo. Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing, 51:41-59, 2003.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
15
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Dec
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, Dec 2001. http://www.jmlr.org.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
17
-
-
0008267184
-
Convolutional kernels on discrete structures
-
Computer Science Department, UC Santa Cruz
-
D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.
-
(1999)
Technical Report
, vol.UCSC-CRL-99-10
-
-
Haussler, D.1
-
19
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33:82-95, 1971.
-
(1971)
J. Math. Anal. Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
20
-
-
1942515510
-
Learning the kernel matrix with semidefinite programming
-
Morgan Kaufmann
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the kernel matrix with semidefinite programming. In Proceedings of the International Conference on Machine Learning, pages 323-330. Morgan Kaufmann, 2002.
-
(2002)
Proceedings of the International Conference on Machine Learning
, pp. 323-330
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.5
-
21
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
24
-
-
0003281852
-
On estimation of characters obtained in statistical procedure of recognition
-
A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of recognition (in Russian). Technicheskaya Kibernetica, 3, 1969.
-
(1969)
Technicheskaya Kibernetica
, vol.3
-
-
Luntz, A.1
Brailovsky, V.2
-
25
-
-
1942514696
-
Bayesian non-linear modelling for the energy prediction competition
-
D. J. C. MacKay. Bayesian non-linear modelling for the energy prediction competition. ASHRAE Transcations, 4:448-472, 1994.
-
(1994)
ASHRAE Transcations
, vol.4
, pp. 448-472
-
-
MacKay, D.J.C.1
-
27
-
-
0242288813
-
The support vector machine under test
-
D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocomputing, 55 (1-2):169-186, 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 169-186
-
-
Meyer, D.1
Leisch, F.2
Hornik, K.3
-
30
-
-
21844460727
-
Hyperkernels
-
MIT Press
-
C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. In Neural Information Processing Systems, volume 15, pages 495-502. MIT Press, 2002.
-
(2002)
Neural Information Processing Systems
, vol.15
, pp. 495-502
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
31
-
-
0002755771
-
Gaussian processes and SVM: Mean field and leave-one-out
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors Cambridge, MA. MIT Press
-
M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-out. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 311-326, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 311-326
-
-
Opper, M.1
Winther, O.2
-
32
-
-
0342502195
-
Soft margins for adaboost
-
G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Machine Learning, 42(3):287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
33
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
35
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
37
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
A. J. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11(5):637-649, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.5
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.-R.3
-
38
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11/12(1-4):625-653, 1999.
-
(1999)
Optimization Methods and Software
, vol.11-12
, Issue.1-4
, pp. 625-653
-
-
Sturm, J.F.1
-
39
-
-
2342585524
-
The EM algorithm for kernel matrix completion with auxiliary data
-
K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kernel matrix completion with auxiliary data. Journal of Machine Learning Research, 4:67-81, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 67-81
-
-
Tsuda, K.1
Akaho, S.2
Asai, K.3
-
40
-
-
0030106462
-
Semidefinite programming
-
L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review., 38(1):49-95, 1996.
-
(1996)
SIAM Review
, vol.38
, Issue.1
, pp. 49-95
-
-
Vandenberghe, L.1
Boyd, S.2
-
44
-
-
85072768928
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Cambridge, MA. MIT Press
-
C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
45
-
-
0141819626
-
Some sparse approximation bounds for regression problems
-
Morgan Kaufmann, San Francisco, CA
-
T. Zhang. Some sparse approximation bounds for regression problems. In Proc. 18th International Conf. on Machine Learning, pages 624-631. Morgan Kaufmann, San Francisco, CA, 2001.
-
(2001)
Proc. 18th International Conf. on Machine Learning
, pp. 624-631
-
-
Zhang, T.1
|