-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
AIZERMAN, M. A., BRAVERMAN, É. M. and ROZONOÉR, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25 821-837.
-
(1964)
Autom. Remote Control
, vol.25
, pp. 821-837
-
-
AIZERMAN, M.A.1
BRAVERMAN, E.M.2
ROZONOÉR, L.I.3
-
2
-
-
51049111286
-
-
ALLWEIN, E. L., SCHAPIRE, R. E. and SINGER, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. In Proc. 17th International Conf. Machine Learning (P. Langley, ed.) 9-16. Morgan Kaufmann, San Francisco, CA. MR1884092
-
ALLWEIN, E. L., SCHAPIRE, R. E. and SINGER, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. In Proc. 17th International Conf. Machine Learning (P. Langley, ed.) 9-16. Morgan Kaufmann, San Francisco, CA. MR1884092
-
-
-
-
3
-
-
0027802035
-
-
ALON, N., BEN-DAVID, S., CESA- BIANCHI, N. and HAUSSLER, D. (1993). Scale-sensitive dimensions, uniform convergence, and learnability. In Proc. of the 34rd Annual Symposium on Foundations of Computer Science 292-301. IEEE Computer Society Press, Los Alamitos, CA. MR1328428
-
ALON, N., BEN-DAVID, S., CESA- BIANCHI, N. and HAUSSLER, D. (1993). Scale-sensitive dimensions, uniform convergence, and learnability. In Proc. of the 34rd Annual Symposium on Foundations of Computer Science 292-301. IEEE Computer Society Press, Los Alamitos, CA. MR1328428
-
-
-
-
4
-
-
14344257912
-
Gaussian process classification for segmenting and annotating sequences
-
ACM Press. New York
-
ALTUN, Y., HOFMANN, T. and SMOLA, A. J. (2004). Gaussian process classification for segmenting and annotating sequences. In Proc. International Conf. Machine Learning 25-32. ACM Press. New York.
-
(2004)
Proc. International Conf. Machine Learning
, pp. 25-32
-
-
ALTUN, Y.1
HOFMANN, T.2
SMOLA, A.J.3
-
5
-
-
32344450688
-
Exponential families for conditional random fields
-
AUAI Press, Arlington, VA
-
ALTUN, Y., SMOLA, A. J. and HOFMANN, T. (2004). Exponential families for conditional random fields. In Uncertainty in Artificial Intelligence (UAI) 2-9. AUAI Press, Arlington, VA.
-
(2004)
Uncertainty in Artificial Intelligence (UAI)
, pp. 2-9
-
-
ALTUN, Y.1
SMOLA, A.J.2
HOFMANN, T.3
-
6
-
-
1942421209
-
Hidden Markov support vector machines
-
AAAI Press, Menlo Park. CA
-
ALTUN, Y., TSOCHANTARIDIS, I. and HOFMANN, T. (2003). Hidden Markov support vector machines. In Proc. Intl. Conf. Machine Learning 3-10. AAAI Press, Menlo Park. CA.
-
(2003)
Proc. Intl. Conf. Machine Learning
, pp. 3-10
-
-
ALTUN, Y.1
TSOCHANTARIDIS, I.2
HOFMANN, T.3
-
7
-
-
5844297152
-
Theory of reproducing kernels
-
MR0051437
-
ARONSZAJN, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404, MR0051437
-
(1950)
Trans. Amer. Math. Soc
, vol.68
, pp. 337-404
-
-
ARONSZAJN, N.1
-
8
-
-
51049105811
-
-
BACH, F. R. and JORDAN, M. I. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 31-48, MR 1966051
-
BACH, F. R. and JORDAN, M. I. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 31-48, MR 1966051
-
-
-
-
9
-
-
36849072723
-
-
MIT Press, Cambridge, MA
-
BAKIR, G., HOFMANN, T., SCHÖLKOPF, B., SMOLA, A., TASKAR, B. and VISHWANATHAN, S. V. N. (2007). Predicting Structured Data. MIT Press, Cambridge, MA.
-
(2007)
Predicting Structured Data
-
-
BAKIR, G.1
HOFMANN, T.2
SCHÖLKOPF, B.3
SMOLA, A.4
TASKAR, B.5
VISHWANATHAN, S.V.N.6
-
10
-
-
49549139345
-
The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
-
MR0384214
-
BAMBER, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psych. 12 387-415. MR0384214
-
(1975)
J. Math. Psych
, vol.12
, pp. 387-415
-
-
BAMBER, D.1
-
11
-
-
84906640298
-
-
BARNDORFF-NIELSEN, O. E. (1978). Information and Exponential Families in Statistical Theory. Wiley, New York. MR0489333
-
BARNDORFF-NIELSEN, O. E. (1978). Information and Exponential Families in Statistical Theory. Wiley, New York. MR0489333
-
-
-
-
12
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
MR 1984026
-
BARTLETT, P. L. and MENDELSON, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res. 3 463-482. MR 1984026
-
(2002)
J. Mach. Learn. Res
, vol.3
, pp. 463-482
-
-
BARTLETT, P.L.1
MENDELSON, S.2
-
13
-
-
14344253490
-
Unifying collaborative and content-based filtering
-
ACM Press, New York
-
BASILICO, J. and HOFMANN, T. (2004). Unifying collaborative and content-based filtering. In Proc. Intl. Conf. Machine Learning 65-72. ACM Press, New York.
-
(2004)
Proc. Intl. Conf. Machine Learning
, pp. 65-72
-
-
BASILICO, J.1
HOFMANN, T.2
-
14
-
-
0001862769
-
An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process
-
MR0341782
-
BAUM, L. E. (1972). An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities 3 1-8. MR0341782
-
(1972)
Inequalities
, vol.3
, pp. 1-8
-
-
BAUM, L.E.1
-
15
-
-
0038575680
-
On the difficulty of approximately maximizing agreements
-
MR1981222
-
BEN-DAVID, S., EIRON, N. and LONG, P. (2003). On the difficulty of approximately maximizing agreements. J. Comput. System Sci. 66 496-514. MR1981222
-
(2003)
J. Comput. System Sci
, vol.66
, pp. 496-514
-
-
BEN-DAVID, S.1
EIRON, N.2
LONG, P.3
-
16
-
-
0002429764
-
A column generation algorithm for boosting
-
P. Langley, ed, Morgan Kaufmann, San Francisco, CA
-
BENNETT, K. P., DEMIRIZ, A. and SHAWE- TAYLOR, J. (2000). A column generation algorithm for boosting. In Proc. 17th International Conf. Machine Learning (P. Langley, ed.) 65-72. Morgan Kaufmann, San Francisco, CA.
-
(2000)
Proc. 17th International Conf. Machine Learning
, pp. 65-72
-
-
BENNETT, K.P.1
DEMIRIZ, A.2
SHAWE- TAYLOR, J.3
-
17
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
BENNETT, K. P. and MANGASARIAN, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1 23-34.
-
(1992)
Optim. Methods Softw
, vol.1
, pp. 23-34
-
-
BENNETT, K.P.1
MANGASARIAN, O.L.2
-
20
-
-
51049121226
-
-
BLOOMFIELD, P. and STEIGER, W. (1983). Least Absolute Deviations: Theory. Applications and Algorithms. Birkhäuser, Boston. MR0748483
-
BLOOMFIELD, P. and STEIGER, W. (1983). Least Absolute Deviations: Theory. Applications and Algorithms. Birkhäuser, Boston. MR0748483
-
-
-
-
21
-
-
0001303543
-
Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse.
-
MR1512856
-
BOCHNER, S. (1933). Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108 378-410. MR1512856
-
(1933)
Math. Ann
, vol.108
, pp. 378-410
-
-
BOCHNER, S.1
-
22
-
-
33747886323
-
Integrating structured biological data by kernel maximum mean discrepancy
-
BORGWARDT, K. M., GRETTON, A., RASCH, M. J., KRIEGEL, H.-P., SCHÖLKOPF, B. and SMOLA, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics (ISMB) 22 e49-e57.
-
(2006)
Bioinformatics (ISMB)
, vol.22
-
-
BORGWARDT, K.M.1
GRETTON, A.2
RASCH, M.J.3
KRIEGEL, H.-P.4
SCHÖLKOPF, B.5
SMOLA, A.J.6
-
23
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, ed, ACM Press, Pittsburgh, PA
-
BOSER, B., GUYON, I. and VAPNIK, V. (1992). A training algorithm for optimal margin classifiers. In Proc. Annual Conf. Computational Learning Theory (D. Haussler, ed.) 144-152. ACM Press, Pittsburgh, PA.
-
(1992)
Proc. Annual Conf. Computational Learning Theory
, pp. 144-152
-
-
BOSER, B.1
GUYON, I.2
VAPNIK, V.3
-
24
-
-
84924053271
-
Theory of classification: A survey of recent advances
-
MR2182250
-
BOUSQUET, O., BOUCHERON, S. and LUGOSI, G. (2005). Theory of classification: A survey of recent advances. ESAIM Probab. Statist. 9 323-375. MR2182250
-
(2005)
ESAIM Probab. Statist
, vol.9
, pp. 323-375
-
-
BOUSQUET, O.1
BOUCHERON, S.2
LUGOSI, G.3
-
25
-
-
27144489164
-
-
B URGES, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2 121-167.
-
B URGES, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2 121-167.
-
-
-
-
26
-
-
0032187518
-
Blind signal separation: Statistical principles
-
CARDOSO, J.-F. (1998). Blind signal separation: Statistical principles. Proceedings of the IEEE 90 2009-2026.
-
(1998)
Proceedings of the IEEE
, vol.90
, pp. 2009-2026
-
-
CARDOSO, J.-F.1
-
27
-
-
31844453941
-
A machine learning approach to conjoint analysis
-
L. K. Saul, Y. Weiss and L. Bottou, eds, MIT Press, Cambridge, MA
-
CHAPELLE, O. and HARCHAOUI, Z. (2005). A machine learning approach to conjoint analysis. In Advances in Neural Information Processing Systems 17 (L. K. Saul, Y. Weiss and L. Bottou, eds.) 257-264. MIT Press, Cambridge, MA.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 257-264
-
-
CHAPELLE, O.1
HARCHAOUI, Z.2
-
28
-
-
27844461921
-
Consistent independent component analysis and prewhitening
-
MR2239886
-
CHEN, A. and BICKEL, P. (2005). Consistent independent component analysis and prewhitening. IEEE Trans. Signal Process. 53 3625-3632. MR2239886
-
(2005)
IEEE Trans. Signal Process
, vol.53
, pp. 3625-3632
-
-
CHEN, A.1
BICKEL, P.2
-
29
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
MR1639094
-
CHEN, S., DONOHO, D. and SAUNDERS, M. (1999). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20 33-61. MR1639094
-
(1999)
SIAM J. Sci. Comput
, vol.20
, pp. 33-61
-
-
CHEN, S.1
DONOHO, D.2
SAUNDERS, M.3
-
30
-
-
0040044720
-
Discriminative reranking for natural language parsing
-
P. Langley, ed, Morgan Kaufmann, San Francisco, CA
-
COLLINS, M. (2000). Discriminative reranking for natural language parsing. In Proc. 17th International Conf. Machine Learning (P. Langley, ed.) 175-182. Morgan Kaufmann, San Francisco, CA.
-
(2000)
Proc. 17th International Conf. Machine Learning
, pp. 175-182
-
-
COLLINS, M.1
-
31
-
-
1942419006
-
Convolution kernels for natural language
-
T. G. Dietterich, S. Becker and Z. Ghahramani, eds, MIT Press, Cambridge, MA
-
COLLINS, M. and DUFFY, N. (2001). Convolution kernels for natural language. In Advances in Neural Information Processing Systems 14 (T. G. Dietterich, S. Becker and Z. Ghahramani, eds.) 625-632. MIT Press, Cambridge, MA.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 625-632
-
-
COLLINS, M.1
DUFFY, N.2
-
32
-
-
84952261476
-
Projection pursuit indices based on orthonormal function expansions
-
MR1272393
-
COOK, D., BUJA, A. and CABRERA, J. (1993). Projection pursuit indices based on orthonormal function expansions. J. Comput. Graph. Statist. 2 225-250. MR1272393
-
(1993)
J. Comput. Graph. Statist
, vol.2
, pp. 225-250
-
-
COOK, D.1
BUJA, A.2
CABRERA, J.3
-
33
-
-
31844441189
-
A general regression technique for learning transductions
-
ACM Press, New York
-
CORTES, C., MOHRI, M. and WESTON, J. (2005). A general regression technique for learning transductions. In ICML'05: Proceedings of the 22nd International Conference on Machine Learning 153-160. ACM Press, New York.
-
(2005)
ICML'05: Proceedings of the 22nd International Conference on Machine Learning
, pp. 153-160
-
-
CORTES, C.1
MOHRI, M.2
WESTON, J.3
-
34
-
-
34249753618
-
Support vector networks
-
CORTES, C. and VAPNIK, V. (1995). Support vector networks. Machine Learning 20 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
CORTES, C.1
VAPNIK, V.2
-
35
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
CRAMMER, K. and SINGER, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2 265-292.
-
(2001)
J. Mach. Learn. Res
, vol.2
, pp. 265-292
-
-
CRAMMER, K.1
SINGER, Y.2
-
36
-
-
26944437032
-
-
CRAMMER, K. and SINGER, Y. (2005). Loss bounds for online category ranking. In Proc. Annual Conf. Computational Learning Theory (P. Auer and R. Meir, eds.) 48-62. Springer, Berlin. MR2203253
-
CRAMMER, K. and SINGER, Y. (2005). Loss bounds for online category ranking. In Proc. Annual Conf. Computational Learning Theory (P. Auer and R. Meir, eds.) 48-62. Springer, Berlin. MR2203253
-
-
-
-
38
-
-
84898936871
-
-
CRISTIANINI, N., SHAWE-TAYLOR, J., ELISSEEFF, A. and KANDOLA, J. (2002). On kernel-target alignment. In Advances in Neural Information Processing Systems 14 (T. G. Dietterich, S. Becker and Z. Ghahramani, eds.) 367-373. MIT Press, Cambridge, MA.
-
CRISTIANINI, N., SHAWE-TAYLOR, J., ELISSEEFF, A. and KANDOLA, J. (2002). On kernel-target alignment. In Advances in Neural Information Processing Systems 14 (T. G. Dietterich, S. Becker and Z. Ghahramani, eds.) 367-373. MIT Press, Cambridge, MA.
-
-
-
-
39
-
-
51049119483
-
-
CULOTTA, A., KULP, D. and MCCALLUM, A. (2005). Gene prediction with conditional random fields. Technical Report UM-CS-2005-028, Univ. Massachusetts, Amherst.
-
CULOTTA, A., KULP, D. and MCCALLUM, A. (2005). Gene prediction with conditional random fields. Technical Report UM-CS-2005-028, Univ. Massachusetts, Amherst.
-
-
-
-
40
-
-
0001573124
-
Generalized iterative scaling for log-linear models
-
MR0345337
-
DARROCH, J. N. and RATCLIFF, D. (1972). Generalized iterative scaling for log-linear models. Ann. Math. Statist. 43 1470-1480. MR0345337
-
(1972)
Ann. Math. Statist
, vol.43
, pp. 1470-1480
-
-
DARROCH, J.N.1
RATCLIFF, D.2
-
41
-
-
4744372292
-
Restricted canonical correlations
-
MR1294769
-
DAS, D. and SEN, P. (1994). Restricted canonical correlations. Linear Algebra Appl. 210 29-47. MR1294769
-
(1994)
Linear Algebra Appl
, vol.210
, pp. 29-47
-
-
DAS, D.1
SEN, P.2
-
42
-
-
0040350036
-
Nonlinear canonical analysis and independence tests
-
MR1647653
-
DAUXOIS, J. and NKIET, G. M. (1998). Nonlinear canonical analysis and independence tests. Ann. Statist. 26 1254-1278. MR1647653
-
(1998)
Ann. Statist
, vol.26
, pp. 1254-1278
-
-
DAUXOIS, J.1
NKIET, G.M.2
-
43
-
-
0003064380
-
Applications of a general propagation algorithm for probabilistic expert systems
-
DAWID, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Stat. Comput. 2 25-36.
-
(1992)
Stat. Comput
, vol.2
, pp. 25-36
-
-
DAWID, A.P.1
-
44
-
-
0036161034
-
Training invariant support vector machines
-
DECOSTE, D. and SCHÖLKOPF, B. (2002). Training invariant support vector machines. Machine Learning 46 161-190.
-
(2002)
Machine Learning
, vol.46
, pp. 161-190
-
-
DECOSTE, D.1
SCHÖLKOPF, B.2
-
45
-
-
84898970009
-
Log-linear models for label ranking
-
S. Thrun, L. Saul and B. Schölkopf, eds, MIT Press, Cambridge, MA
-
DEKEL, O., MANNING, C. and SINGER, Y. (2004). Log-linear models for label ranking. In Advances in Neural Information Processing Systems 16 (S. Thrun, L. Saul and B. Schölkopf, eds.) 497-504. MIT Press, Cambridge, MA.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 497-504
-
-
DEKEL, O.1
MANNING, C.2
SINGER, Y.3
-
47
-
-
0001765899
-
Generalized quantile processes
-
MR1165606
-
EINMAL, J. H. J. and MASON, D. M. (1992). Generalized quantile processes. Ann. Statist. 20 1062-1078. MR1165606
-
(1992)
Ann. Statist
, vol.20
, pp. 1062-1078
-
-
EINMAL, J.H.J.1
MASON, D.M.2
-
48
-
-
2542631648
-
A kernel method for multi-labeled classification
-
MIT Press, Cambridge, MA
-
ELISSEEFF, A. and WESTON, J. (2001). A kernel method for multi-labeled classification. In Advances in Neural Information Processing Systems 14 681-687. MIT Press, Cambridge, MA.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 681-687
-
-
ELISSEEFF, A.1
WESTON, J.2
-
49
-
-
0001350119
-
Algebraic connectivity of graphs
-
MR0318007
-
FIEDLER, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23 298-305. MR0318007
-
(1973)
Czechoslovak Math. J
, vol.23
, pp. 298-305
-
-
FIEDLER, M.1
-
50
-
-
21844525300
-
Functions that preserve families of positive semidefinite matrices
-
MR1331791
-
FITZGERALD, C. H., MICCHELLI, C. A. and PINKUS, A. (1995). Functions that preserve families of positive semidefinite matrices. Linear Algebra Appl. 221 83-102. MR1331791
-
(1995)
Linear Algebra Appl
, vol.221
, pp. 83-102
-
-
FITZGERALD, C.H.1
MICCHELLI, C.A.2
PINKUS, A.3
-
51
-
-
51049090449
-
-
FLETCHER, R. (1989). Practical Methods of Optimization. Wiley, New York. MR0955799
-
FLETCHER, R. (1989). Practical Methods of Optimization. Wiley, New York. MR0955799
-
-
-
-
52
-
-
0000945775
-
Convergence de la réparation empirique vers la réparation théorique.
-
MR0061325
-
FORTET, R. and MOURIER, E. (1953). Convergence de la réparation empirique vers la réparation théorique. Ann. Scient. École Norm. Sup. 70 266-285. MR0061325
-
(1953)
Ann. Scient. École Norm. Sup
, vol.70
, pp. 266-285
-
-
FORTET, R.1
MOURIER, E.2
-
54
-
-
84950754164
-
Exploratory projection pursuit
-
MR0883353
-
FRIEDMAN, J. H. (1987). Exploratory projection pursuit. J. Amer. Statist. Assoc. 82 249-266. MR0883353
-
(1987)
J. Amer. Statist. Assoc
, vol.82
, pp. 249-266
-
-
FRIEDMAN, J.H.1
-
55
-
-
0016102310
-
A projection pursuit algorithm for exploratory data analysis
-
FRIEDMAN, J. H. and TUKEY, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C-23 881-890.
-
(1974)
IEEE Trans. Comput
, vol.C-23
, pp. 881-890
-
-
FRIEDMAN, J.H.1
TUKEY, J.W.2
-
56
-
-
4444231365
-
A survey of kernels for structured data
-
GÄRTNER, T. (2003). A survey of kernels for structured data. SIGKDD Explorations 5 49-58.
-
(2003)
SIGKDD Explorations
, vol.5
, pp. 49-58
-
-
GÄRTNER, T.1
-
58
-
-
33646528415
-
-
GRETTON, A., BOUSQUET, O., SMOLA, A. and SCHÖLKOPF, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Proceedings Algorithmic Learning Theory (S. Jain, H. U. Simon and E. Tomita, eds.) 63-77. Springer, Berlin. MR2255909
-
GRETTON, A., BOUSQUET, O., SMOLA, A. and SCHÖLKOPF, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Proceedings Algorithmic Learning Theory (S. Jain, H. U. Simon and E. Tomita, eds.) 63-77. Springer, Berlin. MR2255909
-
-
-
-
59
-
-
29144505110
-
-
GRETTON, A., SMOLA, A., BOUSQUET, O., HERBRICH, R., BELITSKI, A., AUGATH, M., MURAYAMA, Y., PAULS, J., SCHÖLKOPF, B. and LOGOTHETIS, N. (2005). Kernel constrained covariance for dependence measurement. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (R. G. Cowell and Z. Ghahramani, eds.) 112-119. Society for Artificial Intelligence and Statistics, New Jersey.
-
GRETTON, A., SMOLA, A., BOUSQUET, O., HERBRICH, R., BELITSKI, A., AUGATH, M., MURAYAMA, Y., PAULS, J., SCHÖLKOPF, B. and LOGOTHETIS, N. (2005). Kernel constrained covariance for dependence measurement. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (R. G. Cowell and Z. Ghahramani, eds.) 112-119. Society for Artificial Intelligence and Statistics, New Jersey.
-
-
-
-
60
-
-
11144299132
-
A kernel view of the dimensionality reduction of manifolds
-
ACM Press, New York
-
HAM, J., LEE, D., MIKA, S. and SCHÖLKOPF, B. (2004). A kernel view of the dimensionality reduction of manifolds. In Proceedings of the Twenty-First International Conference on Machine Learning 369-376. ACM Press, New York.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning
, pp. 369-376
-
-
HAM, J.1
LEE, D.2
MIKA, S.3
SCHÖLKOPF, B.4
-
61
-
-
0003678451
-
Markov fields on finite graphs and lattices
-
Unpublished manuscript
-
HAMMERSLEY, J. M. and CLIFFORD, P. E. (1971). Markov fields on finite graphs and lattices. Unpublished manuscript.
-
(1971)
-
-
HAMMERSLEY, J.M.1
CLIFFORD, P.E.2
-
62
-
-
0008267184
-
Convolutional kernels on discrete structures
-
Technical Report UCSC-CRL-99-10, Computer Science Dept, UC Santa Cruz
-
HAUSSLER, D. (1999). Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Dept., UC Santa Cruz.
-
(1999)
-
-
HAUSSLER, D.1
-
63
-
-
24644463278
-
Maximal margin classification for metric spaces
-
MR2168357
-
HEIN, M., BOUSQUET, O. and SCHÖLKOPF, B. (2005). Maximal margin classification for metric spaces. J. Comput. System Sci. 71 333-359. MR2168357
-
(2005)
J. Comput. System Sci
, vol.71
, pp. 333-359
-
-
HEIN, M.1
BOUSQUET, O.2
SCHÖLKOPF, B.3
-
65
-
-
51049091967
-
-
HERBRICH, R., GRAEPEL, T. and OBERMAYER, K. (2000). Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 115-132. MIT Press, Cambridge, MA. MR1820960
-
HERBRICH, R., GRAEPEL, T. and OBERMAYER, K. (2000). Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 115-132. MIT Press, Cambridge, MA. MR1820960
-
-
-
-
66
-
-
0027657329
-
Semi-infinite programming: Theory, methods, and applications
-
MR1234637
-
HETTICH, R. and KORTANEK, K. O. (1993). Semi-infinite programming: Theory, methods, and applications. SIAM Rev. 35 380-429. MR1234637
-
(1993)
SIAM Rev
, vol.35
, pp. 380-429
-
-
HETTICH, R.1
KORTANEK, K.O.2
-
67
-
-
0010705369
-
Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen
-
HILBERT, D. (1904). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 49-91.
-
(1904)
Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II
, pp. 49-91
-
-
HILBERT, D.1
-
68
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
HOERL, A. E. and KENNARD, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
HOERL, A.E.1
KENNARD, R.W.2
-
69
-
-
38149004973
-
A review of kernel methods in machine learning
-
Technical Report 156, Max-Planck-Institut für biologische Kybernetik
-
HOFMANN, T., SCHÖLKOPF, B. and SMOLA, A. J. (2006). A review of kernel methods in machine learning. Technical Report 156, Max-Planck-Institut für biologische Kybernetik.
-
(2006)
-
-
HOFMANN, T.1
SCHÖLKOPF, B.2
SMOLA, A.J.3
-
70
-
-
0000107975
-
Relations between two sets of variates
-
HOTELLING, H. (1936). Relations between two sets of variates. Biometrika 28 321-377.
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
HOTELLING, H.1
-
71
-
-
51049124372
-
-
HUBER, P. J. (1981). Robust Statistics. Wiley, New York. MR0606374
-
HUBER, P. J. (1981). Robust Statistics. Wiley, New York. MR0606374
-
-
-
-
72
-
-
0000263797
-
Projection pursuit
-
MR0790553
-
HUBER, P. J. (1985). Projection pursuit. Ann. Statist. 13 435-475. MR0790553
-
(1985)
Ann. Statist
, vol.13
, pp. 435-475
-
-
HUBER, P.J.1
-
75
-
-
9444269199
-
Bhattacharyya and expected likelihood kernels
-
Proceedings of the Sixteenth Annual Conference on Computational Learning TheoryB. Scholkopf and M. Warmuth, eds, Springer, Heidelberg
-
JEBARA, T. and KONDOR, I. (2003). Bhattacharyya and expected likelihood kernels. Proceedings of the Sixteenth Annual Conference on Computational Learning Theory(B. Scholkopf and M. Warmuth, eds.) 57-71. Lecture Notes in Comput. Sci.2777. Springer, Heidelberg.
-
(2003)
Lecture Notes in Comput. Sci
, vol.2777
, pp. 57-71
-
-
JEBARA, T.1
KONDOR, I.2
-
76
-
-
0001698979
-
Bayesian updates in causal probabilistic networks by local computation
-
MR1073446
-
JENSEN, F. V., LAURITZEN, S. L. and OLESEN, K. G. (1990). Bayesian updates in causal probabilistic networks by local computation. Comput. Statist. Quaterly 4 269-282. MR1073446
-
(1990)
Comput. Statist. Quaterly
, vol.4
, pp. 269-282
-
-
JENSEN, F.V.1
LAURITZEN, S.L.2
OLESEN, K.G.3
-
78
-
-
31844446804
-
A support vector method for multivariate performance measures
-
Morgan Kaufmann, San Francisco, CA
-
JOACHIMS, T. (2005). A support vector method for multivariate performance measures. In Proc. Intl. Conf. Machine Learning 377-384. Morgan Kaufmann, San Francisco, CA.
-
(2005)
Proc. Intl. Conf. Machine Learning
, pp. 377-384
-
-
JOACHIMS, T.1
-
80
-
-
51049116714
-
-
JORDAN, M. I., BARTLETT, P. L. and. MCAULIFFE, J. D. (2003). Convexity, classification, and risk bounds. Technical Report 638, Univ. California, Berkeley.
-
JORDAN, M. I., BARTLETT, P. L. and. MCAULIFFE, J. D. (2003). Convexity, classification, and risk bounds. Technical Report 638, Univ. California, Berkeley.
-
-
-
-
82
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
Morgan Kaufmann, San Francisco, CA
-
KASHIMA, H., TSUDA, K. and INOKUCHI, A. (2003). Marginalized kernels between labeled graphs. In Proc. Intl. Conf. Machine Learning 321-328. Morgan Kaufmann, San Francisco, CA.
-
(2003)
Proc. Intl. Conf. Machine Learning
, pp. 321-328
-
-
KASHIMA, H.1
TSUDA, K.2
INOKUCHI, A.3
-
83
-
-
0000020007
-
Canonical analysis of several sets of variables
-
MR0341750
-
KETTENRING, J. R. (1971). Canonical analysis of several sets of variables. Biometrika 58 433-451. MR0341750
-
(1971)
Biometrika
, vol.58
, pp. 433-451
-
-
KETTENRING, J.R.1
-
85
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
MR0290013
-
KLMELDORF, G. S. and WAHBA, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82-95. MR0290013
-
(1971)
J. Math. Anal. Appl
, vol.33
, pp. 82-95
-
-
KLMELDORF, G.S.1
WAHBA, G.2
-
86
-
-
0035397715
-
-
KOLTCHINSKII, V. (2001). Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory 47 1902-1914. MR1842526
-
KOLTCHINSKII, V. (2001). Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory 47 1902-1914. MR1842526
-
-
-
-
87
-
-
0041775676
-
Diffusion kernels on graphs and other discrete structures
-
Morgan Kaufmann, San Francisco, CA
-
KONDOR, I. R. and LAFFERTY, J. D. (2002). Diffusion kernels on graphs and other discrete structures. In Proc. International Conf. Machine Learning 315-322. Morgan Kaufmann, San Francisco, CA.
-
(2002)
Proc. International Conf. Machine Learning
, pp. 315-322
-
-
KONDOR, I.R.1
LAFFERTY, J.D.2
-
89
-
-
33646426783
-
Kernel conditional random fields: Representation and clique selection
-
Morgan Kaufmann, San Francisco, CA
-
LAFFERTY, J., ZHU, X. and LIU, Y. (2004). Kernel conditional random fields: Representation and clique selection. In Proc. International Conf. Machine Learning 21 64. Morgan Kaufmann, San Francisco, CA.
-
(2004)
Proc. International Conf. Machine Learning
, vol.21
, pp. 64
-
-
LAFFERTY, J.1
ZHU, X.2
LIU, Y.3
-
90
-
-
0142192295
-
Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data
-
Morgan Kaufmann, San Francisco, CA
-
LAFFERTY, J. D., MCCALLUM, A. and PEREIRA, F. (2001). Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data. In Proc. International Conf. Machine Learning 18 282-289. Morgan Kaufmann, San Francisco, CA.
-
(2001)
Proc. International Conf. Machine Learning
, vol.18
, pp. 282-289
-
-
LAFFERTY, J.D.1
MCCALLUM, A.2
PEREIRA, F.3
-
91
-
-
0034207888
-
A unifying framework for independent component analysis
-
MR1766376
-
LEE, T.-W., GIROLAMI, M., BELL, A. and SEJNOWSKI, T. (2000). A unifying framework for independent component analysis. Comput. Math. Appl. 39 1-21. MR1766376
-
(2000)
Comput. Math. Appl
, vol.39
, pp. 1-21
-
-
LEE, T.-W.1
GIROLAMI, M.2
BELL, A.3
SEJNOWSKI, T.4
-
92
-
-
0036358995
-
The spectrum kernel: A string kernel for SVM protein classification
-
World Scientific Publishing, Singapore
-
LESLIE, .C, ESKIN, E. and NOBLE, W. S. (2002). The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of the Pacific Symposium on Biocomputing 564-575. World Scientific Publishing, Singapore.
-
(2002)
Proceedings of the Pacific Symposium on Biocomputing
, pp. 564-575
-
-
LESLIE, C.1
ESKIN, E.2
NOBLE, W.S.3
-
93
-
-
51049117793
-
-
LIÈVE, M. (1978). Probability Theory II, 4th ed. Springer, New York. MR0651018
-
LIÈVE, M. (1978). Probability Theory II, 4th ed. Springer, New York. MR0651018
-
-
-
-
94
-
-
84958982834
-
Learning grammatical structure using statistical decision-trees
-
Springer, Berlin
-
MAGERMAN, D. M. (1996). Learning grammatical structure using statistical decision-trees. Proceedings ICGI. Lecture Notes in Artificial Intelligence 1147 1-21. Springer, Berlin.
-
(1996)
Proceedings ICGI. Lecture Notes in Artificial Intelligence
, vol.1147
, pp. 1-21
-
-
MAGERMAN, D.M.1
-
95
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
MR0192918
-
MANGASARIAN, O. L. (1965). Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13 444-452. MR0192918
-
(1965)
Oper. Res
, vol.13
, pp. 444-452
-
-
MANGASARIAN, O.L.1
-
96
-
-
44849098451
-
A conditional random field for discriminatively- trained finite-state string edit distance
-
AUAI Press, Arlington, VA
-
MCCALLUM., A., BELLARE, K. and PEREIRA, F. (2005). A conditional random field for discriminatively- trained finite-state string edit distance. In Conference on Uncertainty in AI (UAI)388. AUAI Press, Arlington, VA.
-
(2005)
Conference on Uncertainty in AI (UAI)
, vol.388
-
-
MCCALLUM, A.1
BELLARE, K.2
PEREIRA, F.3
-
97
-
-
51049093259
-
-
MCCULLAGH, P. and NELD.ER, J. A. (1983). Generalized Linear Models. Chapman and Hall, London. MR0727836
-
MCCULLAGH, P. and NELD.ER, J. A. (1983). Generalized Linear Models. Chapman and Hall, London. MR0727836
-
-
-
-
98
-
-
35248851077
-
A few notes on statistical learning theory
-
Advanced Lectures on Machine Learning S. Mendelson and A. J. Smola, eds, Springer, Heidelberg
-
MENDELSON, S. (2003). A few notes on statistical learning theory. Advanced Lectures on Machine Learning (S. Mendelson and A. J. Smola, eds.). Lecture Notes in Artificial Intelligence 2600 1-40. Springer, Heidelberg.
-
(2003)
Lecture Notes in Artificial Intelligence
, vol.2600
, pp. 1-40
-
-
MENDELSON, S.1
-
99
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
MERCER, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. A 209 415-446.
-
(1909)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. A
, vol.209
, pp. 415-446
-
-
MERCER, J.1
-
100
-
-
0038633559
-
Learning discriminative and invariant nonlinear features
-
MIKA, S., RÄTSCH, G., WESTON, J., SCHÖLKOPF, B., SMOLA, A. J. and MÜLLER, K.-R. (2003). Learning discriminative and invariant nonlinear features. IEEE Trans. Pattern Analysis and Machine Intelligence 25 623-628.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, pp. 623-628
-
-
MIKA, S.1
RÄTSCH, G.2
WESTON, J.3
SCHÖLKOPF, B.4
SMOLA, A.J.5
MÜLLER, K.-R.6
-
102
-
-
51049095316
-
-
MOROZOV, V. A. (1984). Methods for Solving Incorrectly Posed Problems. Springer, New York. MR0766231
-
MOROZOV, V. A. (1984). Methods for Solving Incorrectly Posed Problems. Springer, New York. MR0766231
-
-
-
-
103
-
-
51049084495
-
-
MURRAY, M. K. and RICE, J. W. (1993). Differential Geometry and Statistics. Chapman and Hall, London. MR1293124
-
MURRAY, M. K. and RICE, J. W. (1993). Differential Geometry and Statistics. Chapman and Hall, London. MR1293124
-
-
-
-
104
-
-
51049090660
-
-
OLIVER, N., SCHÖLKOPF, B. and SMOLA, A. J. (2000). Natural regularization in SVMs. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 51-60. MIT Press, Cambridge, MA. MR1820960
-
OLIVER, N., SCHÖLKOPF, B. and SMOLA, A. J. (2000). Natural regularization in SVMs. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 51-60. MIT Press, Cambridge, MA. MR1820960
-
-
-
-
105
-
-
0001781878
-
Automatic smoothing of regression functions in generalized linear models
-
MR0830570
-
O'SULLIVAN, F., YANDELL, B. and RAYNOR, W. (1986). Automatic smoothing of regression functions in generalized linear models. J. Amer. Statist. Assoc. 81 96-103. MR0830570
-
(1986)
J. Amer. Statist. Assoc
, vol.81
, pp. 96-103
-
-
O'SULLIVAN, F.1
YANDELL, B.2
RAYNOR, W.3
-
106
-
-
51049105596
-
-
PARZEN, E. (1970). Statistical inference on time series by RKHS methods. In Proceedings 12th Biennial Seminar (R. Pyke, ed.) 1-37. Canadian Mathematical Congress, Montreal. MR0275616
-
PARZEN, E. (1970). Statistical inference on time series by RKHS methods. In Proceedings 12th Biennial Seminar (R. Pyke, ed.) 1-37. Canadian Mathematical Congress, Montreal. MR0275616
-
-
-
-
107
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Scholkopf, C. J. C. Burges and A. J. Smola, eds, MIT Press, Cambridge, MA
-
PLATT, J. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning (B. Scholkopf, C. J. C. Burges and A. J. Smola, eds.) 185-208. MIT Press, Cambridge, MA.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
PLATT, J.1
-
108
-
-
0016765357
-
On optimal nonlinear associative recall
-
MR0503978
-
POGGIO, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics 19 201-209. MR0503978
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
POGGIO, T.1
-
109
-
-
0025490985
-
Networks for approximation and learning
-
POGGIO, T. and GIROSI, F. (1990). Networks for approximation and learning. Proceedings of the IEEE 78 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
POGGIO, T.1
GIROSI, F.2
-
110
-
-
0004161838
-
-
Cambridge Univ. Press
-
PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. and FLANNERY, B. P. (1994). Numerical Recipes in C. The Art of Scientific Computation. Cambridge Univ. Press. MR1880993
-
(1994)
Numerical Recipes in C. The Art of Scientific Computation
-
-
PRESS, W.H.1
TEUKOLSKY, S.A.2
VETTERLING, W.T.3
FLANNERY, B.P.4
-
112
-
-
33847268161
-
Improving the Caenorhabditis elegans genome annotation using machine learning
-
doi:10.1371/journal.pcbi.0030020
-
RÄTSCH, G., SONNENBURG, S., SRINIVASAN, J., WITTE, H., MÜLLER, K.-R., SOMMER, R. J. and SCHÖLKOPF, B. (2007). Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Computational Biology 3 e20 doi:10.1371/journal.pcbi.0030020.
-
(2007)
PLoS Computational Biology
, vol.3
-
-
RÄTSCH, G.1
SONNENBURG, S.2
SRINIVASAN, J.3
WITTE, H.4
MÜLLER, K.-R.5
SOMMER, R.J.6
SCHÖLKOPF, B.7
-
113
-
-
0005472817
-
On measures of dependence
-
MR0115203
-
RÉNYI, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hungar. 10 441-451. MR0115203
-
(1959)
Acta Math. Acad. Sci. Hungar
, vol.10
, pp. 441-451
-
-
RÉNYI, A.1
-
114
-
-
51049093879
-
-
ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
-
ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
-
-
-
-
115
-
-
0001743201
-
Metric spaces and completely monotone functions
-
MR1503439
-
SCHOENBERG, I. J. (1938). Metric spaces and completely monotone functions. Ann. Math. 39 811-841. MR1503439
-
(1938)
Ann. Math
, vol.39
, pp. 811-841
-
-
SCHOENBERG, I.J.1
-
116
-
-
0003893955
-
-
R. Oldenbourg Verlag, Munich. Available at
-
SCHÖLKOPF, B. (1997). Support Vector Learning. R. Oldenbourg Verlag, Munich. Available at http://www.kernel-machines.org.
-
(1997)
Support Vector Learning
-
-
SCHÖLKOPF, B.1
-
117
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
SCHÖLKOPF, B., PLATT, J., SHAWE- TAYLOR, J., SMOLA, A. J. and WILLIAMSON, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Comput. 13 1443-1471.
-
(2001)
Neural Comput
, vol.13
, pp. 1443-1471
-
-
SCHÖLKOPF, B.1
PLATT, J.2
SHAWE- TAYLOR, J.3
SMOLA, A.J.4
WILLIAMSON, R.C.5
-
119
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
SCHÖLKOPF, B., SMOLA, A. J. and MÜLLER, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 1299-1319.
-
(1998)
Neural Comput
, vol.10
, pp. 1299-1319
-
-
SCHÖLKOPF, B.1
SMOLA, A.J.2
MÜLLER, K.-R.3
-
120
-
-
17444438778
-
New support vector algorithms
-
SCHÖLKOPF, B., SMOLA, A. J., WILLIAMSON, R. C. and BARTLETT, P. L. (2000). New support vector algorithms. Neural Comput. 12 .1207-1245.
-
(2000)
Neural Comput
, vol.12
, pp. 1207-1245
-
-
SCHÖLKOPF, B.1
SMOLA, A.J.2
WILLIAMSON, R.C.3
BARTLETT, P.L.4
-
121
-
-
4444292685
-
-
MIT Press, Cambridge, MA
-
SCHÖLKOPF, B., TSUDA, K. and VERT, J.-P. (2004). Kernel Methods in Computational Biology. MIT Press, Cambridge, MA.
-
(2004)
Kernel Methods in Computational Biology
-
-
SCHÖLKOPF, B.1
TSUDA, K.2
VERT, J.-P.3
-
122
-
-
85043116988
-
Shallow parsing with conditional random fields
-
Association for Computational Linguistics, Edmonton, Canada
-
SHA, F. and PEREIRA, F. (2003). Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL 213-220. Association for Computational Linguistics, Edmonton, Canada.
-
(2003)
Proceedings of HLT-NAACL
, pp. 213-220
-
-
SHA, F.1
PEREIRA, F.2
-
124
-
-
51049100929
-
-
SMOLA, A. J., BARTLETT, P. L., SCHÖLKOPF, B. and SCHUURMANS, D. (2000). Advances in Large Margin Classifiers. MIT Press, Cambridge, MA. MR1820960
-
SMOLA, A. J., BARTLETT, P. L., SCHÖLKOPF, B. and SCHUURMANS, D. (2000). Advances in Large Margin Classifiers. MIT Press, Cambridge, MA. MR1820960
-
-
-
-
125
-
-
9444285502
-
Kernels and regularization on graphs
-
Proc. Annual Conf. Computational Learning Theory B. Schölkopf and M. K. Warmuth, eds, Springer, Heidelberg
-
SMOLA, A.J. and KONDOR, I. R. (2003). Kernels and regularization on graphs. Proc. Annual Conf. Computational Learning Theory (B. Schölkopf and M. K. Warmuth, eds.). Lecture Notes in Comput. Sci. 2726 .144-158. Springer, Heidelberg.
-
(2003)
Lecture Notes in Comput. Sci
, vol.2726
, pp. 144-158
-
-
SMOLA, A.J.1
KONDOR, I.R.2
-
126
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
MR1637511
-
SMOLA, A. J. and SCHÖLKOPF, B. (1998). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica 22 211-231. MR1637511
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
SMOLA, A.J.1
SCHÖLKOPF, B.2
-
127
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
SMOLA, A. J., SCHÖLKOPF, B. and MÜLLER, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks 11 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
SMOLA, A.J.1
SCHÖLKOPF, B.2
MÜLLER, K.-R.3
-
128
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
MR1883281
-
STEINWART, I. (2002). On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2 67-93. MR1883281
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 67-93
-
-
STEINWART, I.1
-
129
-
-
0036749277
-
Support vector machines are universally consistent
-
MR1928806
-
STEINWART, I. (2002). Support vector machines are universally consistent. J. Complexity 18 768-791. MR1928806
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
STEINWART, I.1
-
130
-
-
0001558197
-
Positive definite functions and generalizations, an historical survey
-
MR0430674
-
STEWART, J. (1976). Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math. 6 409-434. MR0430674
-
(1976)
Rocky Mountain J. Math
, vol.6
, pp. 409-434
-
-
STEWART, J.1
-
131
-
-
0002081773
-
Support vector regression with ANOVA decomposition kernels
-
B. Schölkopf, C. J. C. Burges and A. J. Smola, eds, MIT Press, Cambridge, MA
-
STITSON, M., GAMMERMAN, A., VAPNIK, V., VOVK, V., WATKINS, C. and WESTON, J. (1999). Support vector regression with ANOVA decomposition kernels. In Advances in Kernel Methods - Support Vector Learning (B. Schölkopf, C. J. C. Burges and A. J. Smola, eds.) 285-292. MIT Press, Cambridge, MA.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 285-292
-
-
STITSON, M.1
GAMMERMAN, A.2
VAPNIK, V.3
VOVK, V.4
WATKINS, C.5
WESTON, J.6
-
132
-
-
84898948585
-
Max-margin Markov networks
-
S. Thrun, L. Saul and B. Schölkopf, eds, MIT Press, Cambridge, MA
-
TASKAR, B., GUESTRIN, C. and KOLLER, D. (2004). Max-margin Markov networks. In Aavances in Neural Information Processing Systems 16 (S. Thrun, L. Saul and B. Schölkopf, eds.) 25-32. MIT Press, Cambridge, MA.
-
(2004)
Aavances in Neural Information Processing Systems
, vol.16
, pp. 25-32
-
-
TASKAR, B.1
GUESTRIN, C.2
KOLLER, D.3
-
133
-
-
85117165447
-
Max-margin parsing
-
Association for Computational Linguistics, Barcelona, Spain
-
TASKAR, B., KLEIN, D., COLLINS, M., KOLLER, D. and MANNING, C. (2004). Max-margin parsing. In Empirical Methods in Natural Language Processing 1-8. Association for Computational Linguistics, Barcelona, Spain.
-
(2004)
Empirical Methods in Natural Language Processing
, pp. 1-8
-
-
TASKAR, B.1
KLEIN, D.2
COLLINS, M.3
KOLLER, D.4
MANNING, C.5
-
134
-
-
51049096203
-
-
TAX, D. M. J. and DUIN, R. P. W. (1999). Data domain description by support vectors. In Proceedings ESANN (M. Verleysen, ed.) 251-256. D Facto, Brussels.
-
TAX, D. M. J. and DUIN, R. P. W. (1999). Data domain description by support vectors. In Proceedings ESANN (M. Verleysen, ed.) 251-256. D Facto, Brussels.
-
-
-
-
135
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 267-288. MR1379242
-
(1996)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.58
, pp. 267-288
-
-
TIBSHIRANI, R.1
-
136
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
TIKHONOV, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4 1035-1038.
-
(1963)
Soviet Math. Dokl
, vol.4
, pp. 1035-1038
-
-
TIKHONOV, A.N.1
-
137
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
MR2249862
-
TSOCHANTARIDIS, I., JOACHIMS, T., HOFMANN, T. and ALTUN, Y. (2005). Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6 1453-1484. MR2249862
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1453-1484
-
-
TSOCHANTARIDIS, I.1
JOACHIMS, T.2
HOFMANN, T.3
ALTUN, Y.4
-
139
-
-
51049094982
-
-
VAPNIK, V. (1982). Estimation of Dependences Based on Empirical Data. Springer, Berlin. MR0672244
-
VAPNIK, V. (1982). Estimation of Dependences Based on Empirical Data. Springer, Berlin. MR0672244
-
-
-
-
140
-
-
51049122672
-
-
VAPNIK, V. (1995). The Nature of Statistical Learning Theory. Springer, New York. MR1367965
-
VAPNIK, V. (1995). The Nature of Statistical Learning Theory. Springer, New York. MR1367965
-
-
-
-
141
-
-
51049104919
-
-
VAPNIK, V. (1998). Statistical Learning Theory. Wiley, New York. MR1641250
-
VAPNIK, V. (1998). Statistical Learning Theory. Wiley, New York. MR1641250
-
-
-
-
142
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
VAPNIK, V. and CHERVONENKIS, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 264-281.
-
(1971)
Theory Probab. Appl
, vol.16
, pp. 264-281
-
-
VAPNIK, V.1
CHERVONENKIS, A.2
-
143
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
VAPNIK, V. and CHERVONENKIS, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis 1 283-305.
-
(1991)
Pattern Recognition and Image Analysis
, vol.1
, pp. 283-305
-
-
VAPNIK, V.1
CHERVONENKIS, A.2
-
144
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. C. Mozer, M. I. Jordan and T. Petsche, eds, MIT Press, Cambridge, MA
-
VAPNIK, V., GOLOWICH, S. and SMOLA, A. J. (1997). Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems 9 (M. C. Mozer, M. I. Jordan and T. Petsche, eds.) 281-287. MIT Press, Cambridge, MA.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
VAPNIK, V.1
GOLOWICH, S.2
SMOLA, A.J.3
-
145
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
VAPNIK, V. and LERNER, A. (1963). Pattern recognition using generalized portrait method. Autom. Remote Control 24 774-780.
-
(1963)
Autom. Remote Control
, vol.24
, pp. 774-780
-
-
VAPNIK, V.1
LERNER, A.2
-
146
-
-
33749236901
-
Fast kernels for string and tree matching
-
B. Schölkopf, K. Tsuda and J. P. Vert, eds, MIT Press, Cambridge, MA
-
VISHWANATHAN, S. V. N. and SMOLA, A. J. (2004). Fast kernels for string and tree matching. In Kernel Methods in Computational Biology (B. Schölkopf, K. Tsuda and J. P. Vert, eds.) 113-130. MIT Press, Cambridge, MA.
-
(2004)
Kernel Methods in Computational Biology
, pp. 113-130
-
-
VISHWANATHAN, S.V.N.1
SMOLA, A.J.2
-
147
-
-
33846637208
-
Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes
-
VISHWANATHAN, S. V. N., SMOLA, A. J. and VIDAL, R. (2007). Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. Internat. J. Computer Vision 73 95-119.
-
(2007)
Internat. J. Computer Vision
, vol.73
, pp. 95-119
-
-
VISHWANATHAN, S.V.N.1
SMOLA, A.J.2
VIDAL, R.3
-
148
-
-
51049111283
-
-
WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. MR1045442
-
WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. MR1045442
-
-
-
-
149
-
-
51049094983
-
-
WAHBA, G., WANG, Y., GU, C., KLEIN, R. and KLEIN, B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann. Statist. 23 1865-1895. MR1389856
-
WAHBA, G., WANG, Y., GU, C., KLEIN, R. and KLEIN, B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann. Statist. 23 1865-1895. MR1389856
-
-
-
-
150
-
-
51049122464
-
-
WAINWRIGHT, M. J. and JORDAN, M. I. (2003). Graphical models, exponential families, and variational inference. Technical Report 649, Dept. Statistics, Univ. California, Berkeley.
-
WAINWRIGHT, M. J. and JORDAN, M. I. (2003). Graphical models, exponential families, and variational inference. Technical Report 649, Dept. Statistics, Univ. California, Berkeley.
-
-
-
-
151
-
-
51049104698
-
-
WATKLNS, C. (2000). Dynamic alignment kernels. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and. D. Schuurmans, eds.) 39-50. MIT Press, Cambridge, MA. MR1820960
-
WATKLNS, C. (2000). Dynamic alignment kernels. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and. D. Schuurmans, eds.) 39-50. MIT Press, Cambridge, MA. MR1820960
-
-
-
-
152
-
-
51049111285
-
-
WENDLAND, H. (2005). Scattered Data Approximation. Cambridge Univ. Press. MR2131724
-
WENDLAND, H. (2005). Scattered Data Approximation. Cambridge Univ. Press. MR2131724
-
-
-
-
153
-
-
84898971943
-
-
WESTON, J., CHAPELLE, O., ELISSEEFF, A., SCHÖLKOPF, B. and VAPNIK, V. (2003). Kernel dependency estimation. In Advances in Neural Information Processing Systems 15 (S. T. S. Becker and K. Obermayer, eds.) 873-880. MIT Press, Cambridge, MA. MR1820960
-
WESTON, J., CHAPELLE, O., ELISSEEFF, A., SCHÖLKOPF, B. and VAPNIK, V. (2003). Kernel dependency estimation. In Advances in Neural Information Processing Systems 15 (S. T. S. Becker and K. Obermayer, eds.) 873-880. MIT Press, Cambridge, MA. MR1820960
-
-
-
-
154
-
-
51049096426
-
-
WHITTAKER, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, New York. MR1112133
-
WHITTAKER, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, New York. MR1112133
-
-
-
-
155
-
-
0000056917
-
Adaptive on-line learning algorithms for blind separation - maximum entropy and minimum mutual information
-
YANG, H. H. and AMARI, S.-I. (1997). Adaptive on-line learning algorithms for blind separation - maximum entropy and minimum mutual information. Neural Comput. 9 1457-1482.
-
(1997)
Neural Comput
, vol.9
, pp. 1457-1482
-
-
YANG, H.H.1
AMARI, S.-I.2
-
156
-
-
36348934176
-
Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
-
AUAI Press, Arlington, Virginia
-
ZETTLEMOYER, L. S. and COLLINS, M. (2005). Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In Uncertainty in Artificial Intelligence UAI 658-666. AUAI Press, Arlington, Virginia.
-
(2005)
Uncertainty in Artificial Intelligence UAI
, pp. 658-666
-
-
ZETTLEMOYER, L.S.1
COLLINS, M.2
-
157
-
-
0033670134
-
Engineering support vector machine kernels that recognize translation initiation sites
-
ZIEN, A., RATSCH, G., MIKA, S., SCHÖLKOPF, B., LENGAUER, T. and MÜLLER, K.-R. (2000). Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16 799-807.
-
(2000)
Bioinformatics
, vol.16
, pp. 799-807
-
-
ZIEN, A.1
RATSCH, G.2
MIKA, S.3
SCHÖLKOPF, B.4
LENGAUER, T.5
MÜLLER, K.-R.6
|