메뉴 건너뛰기




Volumn 18, Issue 6, 2004, Pages 294-305

Active learning support vector machines for optimal sample selection in classification

Author keywords

Active learning; Classification; Sample selection; Support vector machines

Indexed keywords

MASS SPECTROMETRY; SUPPORT VECTOR MACHINES; VECTORS;

EID: 9444283161     PISSN: 08869383     EISSN: None     Source Type: Journal    
DOI: 10.1002/cem.872     Document Type: Article
Times cited : (30)

References (38)
  • 1
    • 0034676318 scopus 로고    scopus 로고
    • Classification of multidrug-resistance reversal agents using structure-based descriptors and linear discriminant analysis
    • Bakken GA, Jurs PC. Classification of multidrug-resistance reversal agents using structure-based descriptors and linear discriminant analysis. J. Med. Chem. 2000; 43: 4534-4541.
    • (2000) J. Med. Chem. , vol.43 , pp. 4534-4541
    • Bakken, G.A.1    Jurs, P.C.2
  • 3
    • 0034999659 scopus 로고    scopus 로고
    • Analysis of badger urine volatiles using gas chromatography mass spectrometry and pattern recognition techniques
    • Service K, Brereton RG, Harris S. Analysis of badger urine volatiles using gas chromatography mass spectrometry and pattern recognition techniques. Analyst 2000; 126: 615-623.
    • (2000) Analyst , vol.126 , pp. 615-623
    • Service, K.1    Brereton, R.G.2    Harris, S.3
  • 4
    • 85153992552 scopus 로고    scopus 로고
    • Toxicological classification of urine samples using pattern recognition techniques and capillary electrophoresis
    • in press
    • Zomer S, Guillo C, Brereton RG, Hanna-Brown M. Toxicological classification of urine samples using pattern recognition techniques and capillary electrophoresis. Anal. Bioanal. Chem. in press.
    • Anal. Bioanal. Chem.
    • Zomer, S.1    Guillo, C.2    Brereton, R.G.3    Hanna-Brown, M.4
  • 6
    • 0000710299 scopus 로고
    • Queries and concept of learning
    • Angluin D. Queries and concept of learning. Mach. Learn. 1988; 2: 319-342.
    • (1988) Mach. Learn. , vol.2 , pp. 319-342
    • Angluin, D.1
  • 12
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay FEH, Cao LJ. Modified support vector machines in financial time series forecasting. Neurocomp. 2002; 48: 847-861.
    • (2002) Neurocomp. , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 13
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machines classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machines classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 14
    • 0035419334 scopus 로고    scopus 로고
    • Support vector machines for face recognition
    • Guo G, Li SZ, Chan KL. Support vector machines for face recognition. Image Vis. Comput. 2001; 19: 631-638.
    • (2001) Image Vis. Comput. , vol.19 , pp. 631-638
    • Guo, G.1    Li, S.Z.2    Chan, K.L.3
  • 15
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: Support vector machines
    • Belousov AI, Verzakov SA, Von Frese J. A flexible classification approach with optimal generalisation performance: support vector machines. Chemometrics Intell. Lab. Syst. 2002; 64: 15-25.
    • (2002) Chemometrics Intell. Lab. Syst. , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 17
    • 1342343985 scopus 로고    scopus 로고
    • Support vector machines for the discrimination of analytical chemical data: Application to the determination of tablet production by pyrolysis-gas chromatography mass spectrometry
    • Zomer S, Brereton RG, Carter JF, Eckers C. Support vector machines for the discrimination of analytical chemical data: application to the determination of tablet production by pyrolysis-gas chromatography mass spectrometry. Analyst 2004; 129: 175-181.
    • (2004) Analyst , vol.129 , pp. 175-181
    • Zomer, S.1    Brereton, R.G.2    Carter, J.F.3    Eckers, C.4
  • 18
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998; 2: 121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 21
    • 0036825821 scopus 로고    scopus 로고
    • Kernel methods: A survey of current techniques
    • Campbell C. Kernel methods: a survey of current techniques. Neurocomp. 2002; 48: 63-84.
    • (2002) Neurocomp. , vol.48 , pp. 63-84
    • Campbell, C.1
  • 24
    • 0032791160 scopus 로고    scopus 로고
    • Studies of self association in alcohols as functions of concentrations and temperature: Part 1. Sample selection
    • Nodland E. Studies of self association in alcohols as functions of concentrations and temperature: Part 1. Sample selection. Chemometrics Intell. Lab. Syst. 1999; 49: 33-40.
    • (1999) Chemometrics Intell. Lab. Syst. , vol.49 , pp. 33-40
    • Nodland, E.1
  • 27
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969; 11: 137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 29
    • 0033014352 scopus 로고    scopus 로고
    • Selecting a representative training set for the classification of demolition waste using remote NIR sensing
    • De Groot PJ, Postma GJ, Meissen WJ. Selecting a representative training set for the classification of demolition waste using remote NIR sensing. Anal. Chim. Acta 1999; 392: 67-75.
    • (1999) Anal. Chim. Acta , vol.392 , pp. 67-75
    • De Groot, P.J.1    Postma, G.J.2    Meissen, W.J.3
  • 30
    • 0036933967 scopus 로고    scopus 로고
    • Predictive QSAR modelling based on diversity sampling of experimental datasets for the training and test set selection
    • Golbraikh A, Tropsha A. Predictive QSAR modelling based on diversity sampling of experimental datasets for the training and test set selection. Mol. Divers. 2000; 5: 231-243.
    • (2000) Mol. Divers. , vol.5 , pp. 231-243
    • Golbraikh, A.1    Tropsha, A.2
  • 31
    • 0037470203 scopus 로고    scopus 로고
    • Separation of data on the training and test set for modelling: A case study for modelling of five colour properties of a white pigment
    • Rajer-Kanduc K, Zupan J, Majcen N. Separation of data on the training and test set for modelling: a case study for modelling of five colour properties of a white pigment. Chemometrics Intell. Lab. Syst. 2003; 65: 221-229.
    • (2003) Chemometrics Intell. Lab. Syst. , vol.65 , pp. 221-229
    • Rajer-Kanduc, K.1    Zupan, J.2    Majcen, N.3
  • 32
    • 0034578871 scopus 로고    scopus 로고
    • Modelling of the river flowrate: The influence of the training set selection
    • Kocjancic R, Zupan J. Modelling of the river flowrate: the influence of the training set selection. Chemometrics Intell. Lab. Syst. 2000; 54: 21-34.
    • (2000) Chemometrics Intell. Lab. Syst. , vol.54 , pp. 21-34
    • Kocjancic, R.1    Zupan, J.2
  • 36
    • 0034189857 scopus 로고    scopus 로고
    • Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview
    • Nadim F, Hoag GE, Liu S, Carley RJ, Zack P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J. Petrol. Sci. Eng. 2000; 26: 169-178.
    • (2000) J. Petrol. Sci. Eng. , vol.26 , pp. 169-178
    • Nadim, F.1    Hoag, G.E.2    Liu, S.3    Carley, R.J.4    Zack, P.5
  • 38
    • 0037350879 scopus 로고    scopus 로고
    • Discrimination between tablet production methods using pyrolysis-gas chromatography-mass spectrometry and pattern recognition techniques
    • Shen H, Carter JF, Brereton RG, Eckers C. Discrimination between tablet production methods using pyrolysis-gas chromatography-mass spectrometry and pattern recognition techniques. Analyst 2003; 128: 287-292.
    • (2003) Analyst , vol.128 , pp. 287-292
    • Shen, H.1    Carter, J.F.2    Brereton, R.G.3    Eckers, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.