-
1
-
-
0002469253
-
On learning from mult-instance examples: Empirical evaluation of a theoretical approach
-
San Francisco: Morgan Kaufmann
-
Auer, P. (1997) On learning from mult-instance examples: Empirical evaluation of a theoretical approach. Proceedings 14th International Conference on Machine Learning, (pp. 21-29), San Francisco: Morgan Kaufmann.
-
(1997)
Proceedings 14th International Conference on Machine Learning
, pp. 21-29
-
-
Auer, P.1
-
3
-
-
0003466962
-
-
(Intermolecular Forces), John Wiley & Sons
-
Berry, R.S., Rice, S. A. and Ross, J. (1980). Physical Chemistry, Chapter 10 (Intermolecular Forces), John Wiley & Sons.
-
(1980)
Physical Chemistry, Chapter 10
-
-
Berry, R.S.1
Rice, S.A.2
Ross, J.3
-
4
-
-
0031704194
-
A note on learning from multiple-instance examples
-
Blum, A. and Kalai, A. (1998). A note on learning from multiple-instance examples. Machine Learning, 30, 23-29.
-
(1998)
Machine Learning
, vol.30
, pp. 23-29
-
-
Blum, A.1
Kalai, A.2
-
5
-
-
0030649484
-
Solving the multiple-instance problem with axis-parallel rectangles
-
Dietterich, T. G., Lathrop, R. H. and Lozano-Pérez, T. (1997). Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 31-71.
-
(1997)
Artificial Intelligence
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Pérez, T.3
-
6
-
-
0000909504
-
New aromatic musk odorants: Design and synthesis
-
Fehr, C., Galindo, J., Haubrichs, R. and Perret, R. (1989). New aromatic musk odorants: Design and synthesis. Helvetica Chimica Acta, 72, 1537-1553.
-
(1989)
Helvetica Chimica Acta
, vol.72
, pp. 1537-1553
-
-
Fehr, C.1
Galindo, J.2
Haubrichs, R.3
Perret, R.4
-
8
-
-
0028706933
-
Compass: A shape-based machine learning tool for drug design
-
Jain, A.N., Dietterich, T.G., Lathrop, R.H., Chapman, D., Critchlow, R.E., Bauer, B.E., Webster, T.A. and Lozano-Pèrez, T. (1994). Compass: A shape-based machine learning tool for drug design. Computer Aided Molecular Design, 8 635-652.
-
(1994)
Computer Aided Molecular Design
, vol.8
, pp. 635-652
-
-
Jain, A.N.1
Dietterich, T.G.2
Lathrop, R.H.3
Chapman, D.4
Critchlow, R.E.5
Bauer, B.E.6
Webster, T.A.7
Lozano-Pèrez, T.8
-
9
-
-
0031701616
-
PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples
-
Long, P. M. and Tan, L. (1998) PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples. Machine Learning, 30, 7-21.
-
(1998)
Machine Learning
, vol.30
, pp. 7-21
-
-
Long, P.M.1
Tan, L.2
-
10
-
-
0004082786
-
Learning from ambiguity
-
Doctoral dissertaton, MIT, Al Technical Report 1639
-
Maron, O. (1998). Learning from Ambiguity. Doctoral dissertaton, MIT, Al Technical Report 1639.
-
(1998)
-
-
Maron, O.1
-
12
-
-
0002288190
-
Multiple-instance learning for natural scene classification
-
San Francisco Morgan Kaufman
-
Maron, O. and Ratan, A. (1998). Multiple-instance learning for natural scene classification. Proceedings 15th International Conference on Machine Learning (pp. 341-349). San Francisco: Morgan Kaufman.
-
(1998)
Proceedings 15th International Conference on Machine Learning
, pp. 341-349
-
-
Maron, O.1
Ratan, A.2
-
14
-
-
0141485059
-
Learning single and multiple instance decision trees for computer security applications
-
Doctoral dissertation. Department of Computer Science, University of Turin, Torino, Italy
-
Ruffo, G. (2000). Learning single and multiple instance decision trees for computer security applications. Doctoral dissertation. Department of Computer Science, University of Turin, Torino, Italy.
-
(2000)
-
-
Ruffo, G.1
-
15
-
-
0141596676
-
Solving the multiple-instance learning problem: A lazy learning approach
-
San Francisco: Morgan Kaufmann
-
Wang, J. and Zucker, J.-D. (2000). Solving the Multiple-Instance Learning Problem: A Lazy Learning Approach. Proceedings 17th International Conference on Machine Learning (pp. 1119-1125). San Francisco: Morgan Kaufmann.
-
(2000)
Proceedings 17th International Conference on Machine Learning
, pp. 1119-1125
-
-
Wang, J.1
Zucker, J.-D.2
|