메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1803-1831

How to explain individual classification decisions

Author keywords

Ames mutagenicity; Black box model; Explaining; Kernel methods; Nonlinear

Indexed keywords

BLACK BOXES; BLACK-BOX MODEL; CLASSIFICATION DECISION; CLASSIFICATION METHODS; DATA POINTS; KERNEL METHODS; MACHINE-LEARNING; MODERN TOOLS; MUTAGENICITY;

EID: 77954665728     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1113)

References (40)
  • 4
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 5
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • doi: 10.1016/S0893-6080(01)00127-7
    • R. Fraud and F. Clrot. A methodology to explain neural network classification. Neural Networks, 15(2): 237-246, 2002. doi: 10.1016/S0893- 6080(01)00127-7.
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 237-246
    • Fraud, R.1    Clrot, F.2
  • 6
    • 0020617278 scopus 로고
    • Bacterial mutagenicity investigation of epoxides: Drugs, drug metabolites, steroids and pesticides
    • doi: 10.1016/0027-5107(83)90056-8
    • H. Glatt, R. Jung, and F. Oesch. Bacterial mutagenicity investigation of epoxides: drugs, drug metabolites, steroids and pesticides. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 111(2): 99-118, 1983. doi: 10.1016/0027-5107(83)90056-8.
    • (1983) Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , vol.111 , Issue.2 , pp. 99-118
    • Glatt, H.1    Jung, R.2    Oesch, F.3
  • 11
    • 0000754365 scopus 로고
    • Decision theory in expert systems and artificial inteligence
    • Special Issue on Uncertainty in Artificial Intelligence
    • E. J. Horvitz, J. S. Breese, and M. Henrion. Decision theory in expert systems and artificial inteligence. Journal of Approximation Reasoning, 2: 247-302, 1988. Special Issue on Uncertainty in Artificial Intelligence.
    • (1988) Journal of Approximation Reasoning , vol.2 , pp. 247-302
    • Horvitz, E.J.1    Breese, J.S.2    Henrion, M.3
  • 13
    • 12144257810 scopus 로고    scopus 로고
    • And validation of toxicophores for mutagenicity prediction
    • J. Kazius, R. McGuire, and R. Bursi. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 48: 312-320, 2005.
    • (2005) J. Med. Chem. , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi Derivation, R.3
  • 14
    • 65649150346 scopus 로고    scopus 로고
    • Center-surround patterns emerge as optimal predictors for human saccade targets
    • W. Kienzle, M. O. Franz, B. Schölkopf, and F. A. Wichmann. Center-surround patterns emerge as optimal predictors for human saccade targets. Journal of Vision, 9(5): 1-15, 2009.
    • (2009) Journal of Vision , vol.9 , Issue.5 , pp. 1-15
    • Kienzle, W.1    Franz, M.O.2    Schölkopf, B.3    Wichmann, F.A.4
  • 15
    • 25444528713 scopus 로고    scopus 로고
    • Assesing approximate inference for binary gaussian process classification
    • M. Kuss and C. E. Ramussen. Assesing approximate inference for binary gaussian process classification. Journal of Machine Learning Research, 6: 1679-1704, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Ramussen, C.E.2
  • 17
    • 77954676080 scopus 로고    scopus 로고
    • Une méthode d'interprétation de scores
    • V. Lemaire and R. Feraud. Une méthode d'interprétation de scores. In EGC, pages 191-192, 2007.
    • (2007) EGC , pp. 191-192
    • Lemaire, V.1    Feraud, R.2
  • 19
    • 77954075802 scopus 로고    scopus 로고
    • Gaussian processes for classification: QSAR modeling of ADMET and target activity
    • April 2010. ISSN 1549-9596. doi: doi:10.1021/ci900406x. URL
    • Olga Obrezanova and Matthew D. Segall. Gaussian processes for classification: QSAR modeling of ADMET and target activity. Journal of Chemical Information and Modeling, April 2010. ISSN 1549-9596. doi: doi:10.1021/ ci900406x. URL http://dx.doi.org/10.1021/ci900406x.
    • Journal of Chemical Information and Modeling
    • Obrezanova, O.1    Segall, M.D.2
  • 21
    • 44249091638 scopus 로고    scopus 로고
    • Automatic QSAR modeling of adme properties: Blood-brain barrier penetration and aqueous solubility
    • O. Obrezanova, J. M. R. Gola, E. J. Champness, and M. D. Segall. Automatic QSAR modeling of adme properties: blood-brain barrier penetration and aqueous solubility. J. Comput. -Aided Mol. Des., 22: 431-440, 2008.
    • (2008) J. Comput. -Aided Mol. Des. , vol.22 , pp. 431-440
    • Obrezanova, O.1    Gola, J.M.R.2    Champness, E.J.3    Segall, M.D.4
  • 22
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, pages 61-74. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 25
    • 52949101606 scopus 로고    scopus 로고
    • Explaining classifications for individual instances
    • M. Robnik-Sikonja and I. Kononenko. Explaining classifications for individual instances. IEEE TKDE, 20(5): 589-600, 2008.
    • (2008) IEEE TKDE , vol.20 , Issue.5 , pp. 589-600
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 33
    • 46249106500 scopus 로고    scopus 로고
    • POIMs: Positional oligomer importance matrices - Understanding support vector machine based signal detectors
    • S. Sonnenburg, A. Zien, P. Philips, and G. Ratsch. POIMs: positional oligomer importance matrices - understanding support vector machine based signal detectors. Bioinformatics, 2008.
    • (2008) Bioinformatics
    • Sonnenburg, S.1    Zien, A.2    Philips, P.3    Ratsch, G.4
  • 34
    • 52949147440 scopus 로고    scopus 로고
    • Towards a model independent method for explaining classification for individual instances. In I.-Y. Song, J. Eder, and T.M. Nguyen, editors
    • volume 5182 of Lecture Notes in Computer Science, Springer
    • E. Strumbelj and I. Kononenko. Towards a model independent method for explaining classification for individual instances. In I.-Y. Song, J. Eder, and T.M. Nguyen, editors, Data Warehousing and Knowledge Discovery, volume 5182 of Lecture Notes in Computer Science, pages 273-282. Springer, 2008.
    • (2008) Data Warehousing and Knowledge Discovery , pp. 273-282
    • Strumbelj, E.1    Kononenko, I.2
  • 35
    • 0344368927 scopus 로고
    • PhD thesis, Department of Computer Science and Medicine, Stanford University, Stanford, CA
    • H. Suermondt. Explanation in Bayesian Belief Networks. PhD thesis, Department of Computer Science and Medicine, Stanford University, Stanford, CA, 1992.
    • (1992) Explanation in Bayesian Belief Networks.
    • Suermondt, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.