메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 289-296

Gradient boosting for kernelized output spaces

Author keywords

[No Author keywords available]

Indexed keywords

GRADIENT METHODS; PROBLEM SOLVING; RANDOM PROCESSES; REGRESSION ANALYSIS; TREES (MATHEMATICS);

EID: 34547970262     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273533     Document Type: Conference Paper
Times cited : (19)

References (15)
  • 1
    • 31844441189 scopus 로고    scopus 로고
    • A general regression technique for learning transductions
    • Cortes, C., Mehryar, M., & Weston, J. (2005). A general regression technique for learning transductions. Proceedings of ICML 2005 (pp. 153-160).
    • (2005) Proceedings of ICML 2005 , pp. 153-160
    • Cortes, C.1    Mehryar, M.2    Weston, J.3
  • 2
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 3
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-67.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.1
  • 4
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, 1189-1232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 7
    • 33749248197 scopus 로고    scopus 로고
    • Kernelizing the output of tree-based methods
    • Geurts, P., Wehenkel, L., & d'Alché Bue F. (2006b). Kernelizing the output of tree-based methods. Proc. of ICML (pp. 345-352).
    • (2006) Proc. of ICML , pp. 345-352
    • Geurts, P.1    Wehenkel, L.2    d'Alché Bue, F.3
  • 9
    • 34547977784 scopus 로고    scopus 로고
    • An introduction to structured discriminative learning
    • Department of Computer Science, University of Toronto
    • Memisevic (2006). An introduction to structured discriminative learning (Technical Report). Department of Computer Science, University of Toronto.
    • (2006) Technical Report
    • Memisevic1
  • 10
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • Rätsch, G., Demiriz, A., & Bennett, K. (2002). Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48, 193-221.
    • (2002) Machine Learning , vol.48 , pp. 193-221
    • Rätsch, G.1    Demiriz, A.2    Bennett, K.3
  • 11
    • 34249014147 scopus 로고    scopus 로고
    • Learning via linear operators: Maximum margin regression
    • University of Southampton, UK
    • Szedmak, S., Shawe-Taylor, J., &: Parado-Hernandez, E. (2005). Learning via linear operators: Maximum margin regression (Technical Report). University of Southampton, UK.
    • (2005) Technical Report
    • Szedmak, S.1    Shawe-Taylor, J.2    Parado-Hernandez, E.3
  • 13
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. JMLR, 6, 1453-1484.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 15
    • 29144446142 scopus 로고    scopus 로고
    • Supervised enzyme network inference from the integration of genomic data and chemical information
    • Yamanishi, Y., Vert, J.-P., & Kanehisa, M. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics, 21, i468-i477.
    • (2005) Bioinformatics , vol.21
    • Yamanishi, Y.1    Vert, J.-P.2    Kanehisa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.