-
1
-
-
31844441189
-
A general regression technique for learning transductions
-
Cortes, C., Mehryar, M., & Weston, J. (2005). A general regression technique for learning transductions. Proceedings of ICML 2005 (pp. 153-160).
-
(2005)
Proceedings of ICML 2005
, pp. 153-160
-
-
Cortes, C.1
Mehryar, M.2
Weston, J.3
-
2
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
3
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-67.
-
(1991)
The Annals of Statistics
, vol.19
, pp. 1-67
-
-
Friedman, J.1
-
4
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, 1189-1232.
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
6
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., Ernst, D., & Wehenkel, L. (2006a). Extremely randomized trees. Machine Learning, 36, 3-42.
-
(2006)
Machine Learning
, vol.36
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
8
-
-
84898978212
-
Boosting algorithms as gradient descent
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. Neural Information Processing Systems (pp. 512-518).
-
(2000)
Neural Information Processing Systems
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
9
-
-
34547977784
-
An introduction to structured discriminative learning
-
Department of Computer Science, University of Toronto
-
Memisevic (2006). An introduction to structured discriminative learning (Technical Report). Department of Computer Science, University of Toronto.
-
(2006)
Technical Report
-
-
Memisevic1
-
10
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
Rätsch, G., Demiriz, A., & Bennett, K. (2002). Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48, 193-221.
-
(2002)
Machine Learning
, vol.48
, pp. 193-221
-
-
Rätsch, G.1
Demiriz, A.2
Bennett, K.3
-
11
-
-
34249014147
-
Learning via linear operators: Maximum margin regression
-
University of Southampton, UK
-
Szedmak, S., Shawe-Taylor, J., &: Parado-Hernandez, E. (2005). Learning via linear operators: Maximum margin regression (Technical Report). University of Southampton, UK.
-
(2005)
Technical Report
-
-
Szedmak, S.1
Shawe-Taylor, J.2
Parado-Hernandez, E.3
-
12
-
-
31844442382
-
Learning structured prediction models: A large margin approach
-
Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (2005). Learning structured prediction models: A large margin approach. Proc. of ICML 2005 (pp. 897-904).
-
(2005)
Proc. of ICML 2005
, pp. 897-904
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
Guestrin, C.4
-
13
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. JMLR, 6, 1453-1484.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
14
-
-
85156188079
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Schoelkopf, B., & Vapnik, V. (2002). Kernel dependency estimation. Advances in Neural Information Processing Systems, 15.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schoelkopf, B.4
Vapnik, V.5
-
15
-
-
29144446142
-
Supervised enzyme network inference from the integration of genomic data and chemical information
-
Yamanishi, Y., Vert, J.-P., & Kanehisa, M. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics, 21, i468-i477.
-
(2005)
Bioinformatics
, vol.21
-
-
Yamanishi, Y.1
Vert, J.-P.2
Kanehisa, M.3
|