메뉴 건너뛰기




Volumn 46, Issue 5, 2006, Pages 2003-2014

The pharmacophore kernel for virtual screening with support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; DRUG PRODUCTS; LEARNING SYSTEMS; MOLECULAR DYNAMICS; MOLECULAR STRUCTURE; SCREENING;

EID: 33750294461     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci060138m     Document Type: Article
Times cited : (80)

References (41)
  • 1
    • 0035498999 scopus 로고    scopus 로고
    • The impact of informatics and computational chemistry on synthesis and screening
    • Manly, C.; Louise-May, S.; Hammer, J. The impact of informatics and computational chemistry on synthesis and screening. Drug Discovery Today 2001, 6 (21), 1101-1110.
    • (2001) Drug Discovery Today , vol.6 , Issue.21 , pp. 1101-1110
    • Manly, C.1    Louise-May, S.2    Hammer, J.3
  • 2
    • 0036606241 scopus 로고    scopus 로고
    • Predicting ADME properties in silico: Methods and models
    • Butina, D.; Segall, M. D.; Frankcombe, K. Predicting ADME properties in silico: Methods and models. Drug Discovery Today 2002, 7 (Suppl. 11), S83-S88.
    • (2002) Drug Discovery Today , vol.7 , Issue.SUPPL. 11
    • Butina, D.1    Segall, M.D.2    Frankcombe, K.3
  • 3
    • 0035289779 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski, C. A.; Lombarde, F.; dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Delivery Rev. 2001, 46 (1-3), 3-26.
    • (2001) Adv. Drug. Delivery Rev. , vol.46 , Issue.1-3 , pp. 3-26
    • Lipinski, C.A.1    Lombarde, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 4
    • 0030044168 scopus 로고    scopus 로고
    • Structure - Activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
    • King, R. D.; Muggleton, S. H.; Srinivasan, A.; Sternberg, M. J. E. Structure - activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (1), 438-442.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , Issue.1 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.J.E.4
  • 6
    • 0036606483 scopus 로고    scopus 로고
    • Principles of docking: An overview of search algorithms and a guide to scoring functions
    • Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002, 47 (4), 409-443.
    • (2002) Proteins , vol.47 , Issue.4 , pp. 409-443
    • Halperin, I.1    Ma, B.2    Wolfson, H.3    Nussinov, R.4
  • 7
    • 0034065350 scopus 로고    scopus 로고
    • Computational methods for the structural alignment of molecules
    • Lemmen, C.; Lengauer, T. Computational methods for the structural alignment of molecules. J. Comput.-Aided Mol. Des. 2000, 14 (3), 215-232.
    • (2000) J. Comput.-aided Mol. Des. , vol.14 , Issue.3 , pp. 215-232
    • Lemmen, C.1    Lengauer, T.2
  • 8
    • 0033779243 scopus 로고    scopus 로고
    • Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening
    • Xue, L.; Bajorath, J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb. Chem. High. Throughput Screening 2000, 3 (5), 363-372.
    • (2000) Comb. Chem. High. Throughput Screening , vol.3 , Issue.5 , pp. 363-372
    • Xue, L.1    Bajorath, J.2
  • 9
    • 0031419681 scopus 로고    scopus 로고
    • Using a genetic algorithm to identify common structural features in sets of ligands
    • Holliday, J. D.; Willett, P. Using a genetic algorithm to identify common structural features in sets of ligands. J. Mol. Graphics Modell. 1997, 15 (4), 221-232.
    • (1997) J. Mol. Graphics Modell. , vol.15 , Issue.4 , pp. 221-232
    • Holliday, J.D.1    Willett, P.2
  • 10
    • 0031997218 scopus 로고    scopus 로고
    • Pharmacophore discovery using the inductive logic programming language
    • Finn, P.; Muggleton, S. H.; Page, D.; Srinivasan, A. Pharmacophore discovery using the inductive logic programming language Prog. Machine Learning 1998, 30 (2-3), 241-270.
    • (1998) Prog. Machine Learning , vol.30 , Issue.2-3 , pp. 241-270
    • Finn, P.1    Muggleton, S.H.2    Page, D.3    Srinivasan, A.4
  • 11
    • 0001027028 scopus 로고    scopus 로고
    • Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets
    • Matter, H.; Pötter, T. Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J. Chem. Inf. Model. 1999, 39 (6), 1211-1225.
    • (1999) J. Chem. Inf. Model. , vol.39 , Issue.6 , pp. 1211-1225
    • Matter, H.1    Pötter, T.2
  • 12
    • 5244364312 scopus 로고    scopus 로고
    • The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding
    • Brown, R. D.; Martin, Y. C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 1997, 37 (1), 1-9.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , Issue.1 , pp. 1-9
    • Brown, R.D.1    Martin, Y.C.2
  • 13
    • 0035292795 scopus 로고    scopus 로고
    • Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening
    • Bajorath, J. Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J. Chem. Inf. Comput. Sci. 2001, 41 (2), 233-245.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , Issue.2 , pp. 233-245
    • Bajorath, J.1
  • 16
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26 (1), 4-15.
    • (2001) Comput. Chem. , vol.26 , Issue.1 , pp. 4-15
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 17
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 2003, 43 (6), 1882-1889.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 18
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular structure-activity relationship analysis with support vector machines
    • Mahé, P.; Ueda, N.; Akutsu, T.; Perret, J. L.; Yert, J. P. Graph kernels for molecular structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model. 2005, 45 (4), 939-951.
    • (2005) J. Chem. Inf. Model. , vol.45 , Issue.4 , pp. 939-951
    • Mahé, P.1    Ueda, N.2    Akutsu, T.3    Perret, J.L.4    Yert, J.P.5
  • 21
    • 33750317385 scopus 로고    scopus 로고
    • Kernels for graphs
    • Schölkopf, B., Tsuda, K., Vert, J. P., Eds.; MIT Press: Cambridge, MA
    • Kashima, H.; Tsuda, K.; Inokuchi, A. Kernels for graphs. In Kernel Methods in Computational Biology; Schölkopf, B., Tsuda, K., Vert, J. P., Eds.; MIT Press: Cambridge, MA, 2004; pp 155-170.
    • (2004) Kernel Methods in Computational Biology , pp. 155-170
    • Kashima, H.1    Tsuda, K.2    Inokuchi, A.3
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowledge Discovery 1998, 2 (2), 121-167.
    • (1998) Data Min. Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 24
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M. A.; Braverman, E. M.; Rozonoér, L. I. Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control (Engl. Trans.) 1964, 25, 821-837.
    • (1964) Autom. Remote Control (Engl. Trans.) , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoér, L.I.3
  • 25
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337-404.
    • (1950) Trans. Am. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 30
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, S. J.; Chen, J.; Bruand, J.; Phung, P.; Ralaivola, L.; Baldi, P. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics 2005, 21 (Suppl. 1), i359-i368.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Swamidass, S.J.1    Chen, J.2    Bruand, J.3    Phung, P.4    Ralaivola, L.5    Baldi, P.6
  • 31
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • Altman, R. B, Dunker, A. K., Hunter, L., Lauerdale, K., Klein, T. E., Eds.; World Scientific: River Edge, NJ
    • Leslie, C.; Eskin, E.; Noble, W. S. The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of the Pacific Symposium on Biocomputing 2002; Altman, R. B, Dunker, A. K., Hunter, L., Lauerdale, K., Klein, T. E., Eds.; World Scientific: River Edge, NJ, 2002; pp 564-575.
    • (2002) Proceedings of the Pacific Symposium on Biocomputing 2002 , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.S.3
  • 32
    • 0344686488 scopus 로고    scopus 로고
    • Spline-fitting with a genetic algorithm: A method for developing classification structure - Activity relationships
    • Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Spline-fitting with a genetic algorithm: A method for developing classification structure - activity relationships. J. Chem. Inf. Comput. Sci. 2003, 43 (6), 1906-1915.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1906-1915
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 34
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar. J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Machine Learning Res. 2006, 7, 1-30.
    • (2006) J. Machine Learning Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 35
    • 0037365125 scopus 로고    scopus 로고
    • Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces-A novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles
    • Horvath, D.; Jeandenans, C. Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces-A novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles. J. Chem. Inf. Comput. Sci. 2003, 43 (2), 680-690.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.2 , pp. 680-690
    • Horvath, D.1    Jeandenans, C.2
  • 36
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich, T. G.; Lathrop, R. H.; Lozano-Perez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1997, 89 (1-2), 31-71.
    • (1997) Artif. Intell. , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 38
    • 0036923345 scopus 로고    scopus 로고
    • Multiple instance learning with generalized support vector machines
    • American Association for Artificial Intelligence: Edmonton, Alberta, Canada
    • Andrews, S.; Hofmann, T.; Tsochantaridis, I. Multiple instance learning with generalized support vector machines. In Proceedings of the Eighteenth National Conference on Artificial Intelligence; American Association for Artificial Intelligence: Edmonton, Alberta, Canada, 2002; pp 943-944.
    • (2002) Proceedings of the Eighteenth National Conference on Artificial Intelligence , pp. 943-944
    • Andrews, S.1    Hofmann, T.2    Tsochantaridis, I.3
  • 40
    • 4644322072 scopus 로고    scopus 로고
    • Learning over sets using kernel principal angles
    • Wolf, L.; Shashua, A. Learning over sets using kernel principal angles. J. Machine Learning Res. 2003, 4, 913-931.
    • (2003) J. Machine Learning Res. , vol.4 , pp. 913-931
    • Wolf, L.1    Shashua, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.