메뉴 건너뛰기




Volumn 30, Issue 1, 2011, Pages 96-109

Least square regression with indefinite kernels and coefficient regularization

Author keywords

Capacity independent error bounds; Coefficient regularization; Indefinite kernel; Integral operator; Learning rates; Least square regression; Mercer kernel

Indexed keywords

COEFFICIENT REGULARIZATION; ERROR BOUND; INDEFINITE KERNEL; INTEGRAL OPERATORS; LEARNING RATES; LEAST SQUARE REGRESSION; MERCER KERNEL;

EID: 78649308061     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2010.04.001     Document Type: Article
Times cited : (105)

References (30)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn Theory of reproducing kernels Trans. Amer. Math. Soc. 68 1950 337 404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 33846829559 scopus 로고    scopus 로고
    • On regularization algorithms in learning theory
    • F. Bauer, S. Pereverzev, and L. Rosasco On regularization algorithms in learning theory J. Complexity 23 2007 52 72
    • (2007) J. Complexity , vol.23 , pp. 52-72
    • Bauer, F.1    Pereverzev, S.2    Rosasco, L.3
  • 4
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker, and S. Smale On the mathematical foundations of learning Bull. Amer. Math. Soc. 39 2001 1 49
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 5
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker, and S. Smale Best choices for regularization parameters in learning theory: on the bias-variance problem Found. Comput. Math. 2 2002 413 428
    • (2002) Found. Comput. Math. , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 6
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio Regularization networks and support vector machines Adv. Comput. Math. 13 2000 1 50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 8
    • 3042674061 scopus 로고    scopus 로고
    • Gabor-based kernel PCA with fractional power polynomial models for face recognition
    • C. Liu Gabor-based kernel PCA with fractional power polynomial models for face recognition IEEE Trans. Pattern Anal. Mach. Intell. 26 2004 572 581
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , pp. 572-581
    • Liu, C.1
  • 10
    • 78649290941 scopus 로고    scopus 로고
    • Support vector machine classification with indefinite kernels
    • R. Luss, and A. d'Aspremont Support vector machine classification with indefinite kernels Math. Program. Comput. 1 2009 97 118
    • (2009) Math. Program. Comput. , vol.1 , pp. 97-118
    • Luss, R.1    D'Aspremont, A.2
  • 11
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • C.A. Micchelli, and M. Pontil Learning the kernel function via regularization J. Mach. Learn. Res. 6 2005 1099 1125 (electronic)
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 12
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • T. Poggio, and S. Smale The mathematics of learning: dealing with data Notices Amer. Math. Soc. 50 2003 537 544
    • (2003) Notices Amer. Math. Soc. , vol.50 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 13
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • H. Saigo, J. Vert, N. Ueda, and T. Akutsu Protein homology detection using string alignment kernels Bioinformatics 20 2004 1682 1689
    • (2004) Bioinformatics , vol.20 , pp. 1682-1689
    • Saigo, H.1    Vert, J.2    Ueda, N.3    Akutsu, T.4
  • 15
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • S. Smale, and D.-X. Zhou Shannon sampling and function reconstruction from point values Bull. Amer. Math. Soc. (N.S.) 41 2004 279 305 (electronic)
    • (2004) Bull. Amer. Math. Soc. (N.S.) , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.-X.2
  • 16
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling. II. Connections to learning theory
    • S. Smale, and D.-X. Zhou Shannon sampling. II. Connections to learning theory Appl. Comput. Harmon. Anal. 19 2005 285 302
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 285-302
    • Smale, S.1    Zhou, D.-X.2
  • 17
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their approximations
    • S. Smale, and D.X. Zhou Learning theory estimates via integral operators and their approximations Constr. Approx. 26 2007 153 172
    • (2007) Constr. Approx. , vol.26 , pp. 153-172
    • Smale, S.1    Zhou, D.X.2
  • 18
    • 77951769307 scopus 로고    scopus 로고
    • Regularized least square regression with dependent samples
    • 101007/s10444-008-9099-y
    • H. Sun, and Q. Wu Regularized least square regression with dependent samples Adv. Comput. Math. 32 2 2010 175 189 10.1007/s10444-008-9099-y
    • (2010) Adv. Comput. Math. , vol.32 , Issue.2 , pp. 175-189
    • Sun, H.1    Wu, Q.2
  • 19
    • 55549114309 scopus 로고    scopus 로고
    • Application of integral operator for regularized least square regression
    • H. Sun, and Q. Wu Application of integral operator for regularized least square regression Math. Comput. Modelling 49 2009 276 285
    • (2009) Math. Comput. Modelling , vol.49 , pp. 276-285
    • Sun, H.1    Wu, Q.2
  • 20
    • 62549100873 scopus 로고    scopus 로고
    • A note on application of integral operator in learning theory
    • S. Sun, and Q. Wu A note on application of integral operator in learning theory Appl. Comput. Harmon. Anal. 26 2009 416 421
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , pp. 416-421
    • Sun, S.1    Wu, Q.2
  • 22
    • 33744772341 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression
    • Q. Wu, Y. Ying, and D.X. Zhou Learning rates of least-square regularized regression Found. Comput. Math. 6 2006 171 192
    • (2006) Found. Comput. Math. , vol.6 , pp. 171-192
    • Wu, Q.1    Ying, Y.2    Zhou, D.X.3
  • 23
    • 33846804061 scopus 로고    scopus 로고
    • Multi-kernel regularized classifiers
    • Q. Wu, Y. Ying, and D.-X. Zhou Multi-kernel regularized classifiers J. Complexity 23 2007 108 134
    • (2007) J. Complexity , vol.23 , pp. 108-134
    • Wu, Q.1    Ying, Y.2    Zhou, D.-X.3
  • 24
    • 17444402055 scopus 로고    scopus 로고
    • SVM soft margin classifiers: Linear programming versus quadratic programming
    • Q. Wu, and D.-X. Zhou SVM soft margin classifiers: linear programming versus quadratic programming Neural Comput. 17 2005 1160 1187
    • (2005) Neural Comput. , vol.17 , pp. 1160-1187
    • Wu, Q.1    Zhou, D.-X.2
  • 25
    • 84954358500 scopus 로고    scopus 로고
    • Learning with sample dependent hypothesis spaces
    • Q. Wu, and D.-X. Zhou Learning with sample dependent hypothesis spaces Comput. Math. Appl. 56 2008 2896 2907
    • (2008) Comput. Math. Appl. , vol.56 , pp. 2896-2907
    • Wu, Q.1    Zhou, D.-X.2
  • 28
    • 59449086559 scopus 로고    scopus 로고
    • Refinement of reproducing kernels
    • Y. Xu, and H. Zhang Refinement of reproducing kernels J. Mach. Learn. Res. 10 2009 107 140
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 107-140
    • Xu, Y.1    Zhang, H.2
  • 29
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang Leave-one-out bounds for kernel methods Neural Comput. 15 2003 1397 1437
    • (2003) Neural Comput. , vol.15 , pp. 1397-1437
    • Zhang, T.1
  • 30
    • 22944490838 scopus 로고    scopus 로고
    • Learning bounds for kernel regression using effective data dimensionality
    • T. Zhang Learning bounds for kernel regression using effective data dimensionality Neural Comput. 17 2005 2077 2098
    • (2005) Neural Comput. , vol.17 , pp. 2077-2098
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.