-
1
-
-
0003802343
-
-
Wadsworth, Belmont, CA
-
BREIMAN, L., FRIEDMAN, J., OLSHEN, R. and STONE, C. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
2
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81 461-470.
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
3
-
-
0031536511
-
Improvements on cross-validation: The.632+ bootstrap method
-
EFRON, B. and TIBSHIRANI, R. (1997). Improvements on cross-validation: The.632+ bootstrap method. J. Amer. Statist. Assoc. 92 548-560.
-
(1997)
J. Amer. Statist. Assoc.
, vol.92
, pp. 548-560
-
-
Efron, B.1
Tibshirani, R.2
-
4
-
-
0031211090
-
A decision-theoretic generalization of online learning and an application to boosting
-
FREUND, Y. and SCHAPIRE, R. (1997). A decision-theoretic generalization of online learning and an application to boosting. J. Comput. System Sci. 55 119-139.
-
(1997)
J. Comput. System Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
5
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
FRIEDMAN, J. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232.
-
(2001)
Ann. Statist.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
6
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407.
-
(2000)
Ann. Statist.
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
0003684449
-
-
Springer, New York
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
0034237944
-
On the degrees of freedom in shape-restricted regression
-
MEYER, M. and WOODROOFE, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28 1083-1104.
-
(2000)
Ann. Statist.
, vol.28
, pp. 1083-1104
-
-
Meyer, M.1
Woodroofe, M.2
-
12
-
-
0034215549
-
A new approach to variable selection in least squares problems
-
OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000a). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403.
-
(2000)
IMA J. Numer. Anal.
, vol.20
, pp. 389-403
-
-
Osborne, M.1
Presnell, B.2
Turlach, B.3
-
15
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
STEIN, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151.
-
(1981)
Ann. Statist.
, vol.9
, pp. 1135-1151
-
-
Stein, C.1
-
16
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B. 58 267-288.
-
(1996)
J. Roy. Statist. Soc. Ser. B.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
18
-
-
0032351389
-
On measuring and correcting the effects of data mining and model selection
-
YE, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Amer. Statist. Assoc. 93 120-131.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 120-131
-
-
Ye, J.1
-
19
-
-
0001587464
-
The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
-
BREIMAN, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Amer. Statist. Assoc. 87 738-754.
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 738-754
-
-
Breiman, L.1
-
22
-
-
0042744696
-
Detecting differentially expressed genes in microarrays using Bayesian model selection
-
ISHWARAN, H. and RAO, J. S. (2003). Detecting differentially expressed genes in microarrays using Bayesian model selection. J. Amer. Statist. Assoc. 98 438-455.
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 438-455
-
-
Ishwaran, H.1
Rao, J.S.2
-
24
-
-
0000130839
-
Bayesian variable selection in linear regression
-
MITCHELL, T. J. and BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression (with discussion). J. Amer. Statist. Assoc. 83 1023-1036.
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 1023-1036
-
-
Mitchell, T.J.1
Beauchamp, J.J.2
-
25
-
-
21144474350
-
Linear model selection by cross-validation
-
SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 486-494
-
-
Shao, J.1
-
26
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
27
-
-
0043289776
-
Analyzing bagging
-
BÜHLMANN, P. and YU, B. (2002). Analyzing bagging. Ann. Statist. 30 927-961.
-
(2002)
Ann. Statist.
, vol.30
, pp. 927-961
-
-
Bühlmann, P.1
Yu, B.2
-
28
-
-
0003577684
-
Adapting to unknown sparsity by controlling the false discovery rate
-
Dept. Statistics, Stanford Univ.
-
ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical Report 2000-19, Dept. Statistics, Stanford Univ.
-
(2000)
Technical Report
, vol.2000
, Issue.19
-
-
Abramovich, F.1
Benjamini, Y.2
Donoho, D.3
Johnstone, I.4
-
29
-
-
85041932998
-
Maximum likelihood identification of Gaussian autoregressive moving average models
-
AKAIKE, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60 255-265.
-
(1973)
Biometrika
, vol.60
, pp. 255-265
-
-
Akaike, H.1
-
31
-
-
13444276102
-
p criterion for Gaussian model selection
-
Univ. Paris 6 & 7
-
p criterion for Gaussian model selection. Technical Report 647, Univ. Paris 6 & 7.
-
(2001)
Technical Report
, vol.647
-
-
Birgé, L.1
Massart, P.2
-
32
-
-
21844523862
-
The risk inflation criterion for multiple regression
-
FOSTER, D. and GEORGE, E. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1947-1975
-
-
Foster, D.1
George, E.2
-
33
-
-
0034287156
-
Asymptotics for Lasso-type estimators
-
KNIGHT, K. and FU, B. (2000). Asymptotics for Lasso-type estimators. Ann. Statist. 28 1356-1378.
-
(2000)
Ann. Statist.
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
Fu, B.2
-
34
-
-
0036872087
-
Adaptive estimation with soft thresholding penalties
-
LOUBES, J.-M. and VAN DE GEER, S. (2002). Adaptive estimation with soft thresholding penalties. Statist. Neerlandica 56 453-478.
-
(2002)
Statist. Neerlandica
, vol.56
, pp. 453-478
-
-
Loubes, J.-M.1
Van De Geer, S.2
-
36
-
-
23844457879
-
Least squares estimation with complexity penalties
-
VAN DE GEER, S. (2001). Least squares estimation with complexity penalties. Math. Methods Statist. 10 355-374.
-
(2001)
Math. Methods Statist.
, vol.10
, pp. 355-374
-
-
Van De Geer, S.1
-
37
-
-
0041382385
-
-
BREIMAN, L. (2001). Random forests. Available at ftp://ftp.stat.berkeley. edu/pub/users/breiman/randomforest2001.pdf.
-
(2001)
Random Forests
-
-
Breiman, L.1
-
38
-
-
0032361278
-
Penalized regressions: The Bridge versus the Lasso
-
Fu, W. J. (1998). Penalized regressions: The Bridge versus the Lasso. J. Comput. Graph. Statist. 7 397-416.
-
(1998)
J. Comput. Graph. Statist.
, vol.7
, pp. 397-416
-
-
Fu, W.J.1
-
39
-
-
0034215549
-
A new approach to variable selection in least squares problems
-
OSBORNE, M. R., PRESNELL, B. and TURLACH, B. A. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403.
-
(2000)
IMA J. Numer. Anal.
, vol.20
, pp. 389-403
-
-
Osborne, M.R.1
Presnell, B.2
Turlach, B.A.3
-
41
-
-
0000275022
-
Prediction games and arcing algorithms
-
BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
42
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139.
-
(1997)
J. Comput. System Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
43
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
FRIEDMAN, J. H. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232.
-
(2001)
Ann. Statist.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
44
-
-
84898978212
-
Boosting algorithms as gradient descent
-
MIT Press, Cambridge, MA
-
MASON, L., BAXTER, J., BARTLETT, P. and FREAN, M. (2000). Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems 12 512-518. MIT Press, Cambridge, MA.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
46
-
-
1542367497
-
Boosting as a regularized path to a maximum margin classifier
-
Dept. Statistics, Stanford Univ.
-
ROSSET, S., ZHU, J. and HASTIE, T. (2003). Boosting as a regularized path to a maximum margin classifier. Technical report, Dept. Statistics, Stanford Univ.
-
(2003)
Technical Report
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
47
-
-
84899024917
-
1-norm support vector machines
-
To appear
-
ZHU, J., ROSSET, S., HASTIE, T. and TIBSHIRANI, R. (2004). 1-norm support vector machines. Neural Information Processing Systems 16. To appear.
-
(2004)
Neural Information Processing Systems
, vol.16
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
48
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300.
-
(1995)
J. Roy. Statist. Soc. Ser. B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
49
-
-
0003408496
-
UCI repository of machine learning databases
-
School Information and Computer Science, Univ. California, Irvine.
-
BLAKE, C. and MERZ, C. (1998). UCI repository of machine learning databases. Technical report, School Information and Computer Science, Univ. California, Irvine. Available at www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
Technical Report
-
-
Blake, C.1
Merz, C.2
-
50
-
-
0041958932
-
Ideal spatial adaptation by wavelet shrinkage
-
DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455.
-
(1994)
Biometrika
, vol.81
, pp. 425-455
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
51
-
-
21844523862
-
The risk inflation criterion for multiple regression
-
FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1947-1975
-
-
Foster, D.P.1
George, E.I.2
-
52
-
-
2942586049
-
Variable selection via information theory
-
Center for Mathematical Studies in Economics and Management Science, Northwestern Univ.
-
FOSTER, D. P. and STINE, R. A. (1996). Variable selection via information theory. Technical Report Discussion Paper 1180, Center for Mathematical Studies in Economics and Management Science, Northwestern Univ.
-
(1996)
Technical Report Discussion Paper
, vol.1180
-
-
Foster, D.P.1
Stine, R.A.2
-
53
-
-
21144474350
-
Linear model selection by cross-validation
-
SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 486-494
-
-
Shao, J.1
-
54
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
BREIMAN, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373-384.
-
(1995)
Technometrics
, vol.37
, pp. 373-384
-
-
Breiman, L.1
-
57
-
-
0002534858
-
A reformulation of linear models
-
NELDER, J. A. (1977). A reformulation of linear models (with discussion). J. Roy. Statist. Soc. Ser. A 140 48-76.
-
(1977)
J. Roy. Statist. Soc. Ser. A
, vol.140
, pp. 48-76
-
-
Nelder, J.A.1
-
58
-
-
0000076874
-
The statistics of linear models: Back to basics
-
NELDER, J. A. (1994). The statistics of linear models: Back to basics. Statist. Comput. 4 221-234.
-
(1994)
Statist. Comput.
, vol.4
, pp. 221-234
-
-
Nelder, J.A.1
-
61
-
-
0033484637
-
Graphs in statistical analysis: Is the medium the message?
-
COOK, R. D. and WEISBERG, S. (1999b). Graphs in statistical analysis: Is the medium the message? Amer. Statist. 53 29-37.
-
(1999)
Amer. Statist.
, vol.53
, pp. 29-37
-
-
Cook, R.D.1
Weisberg, S.2
-
62
-
-
85038276539
-
Discussion of "Statistical modeling: The two cultures," by L. Breiman
-
EFRON, B. (2001). Discussion of "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 218-219.
-
(2001)
Statist. Sci.
, vol.16
, pp. 218-219
-
-
Efron, B.1
-
63
-
-
84945116550
-
Sliced inverse regression for dimension reduction
-
LI, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316-342.
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 316-342
-
-
Li, K.C.1
-
64
-
-
20444431631
-
p to individual cases
-
p to individual cases. Technometrics 23 27-31.
-
(1981)
Technometrics
, vol.23
, pp. 27-31
-
-
Weisberg, S.1
-
65
-
-
4544378893
-
Dimension reduction regression in R
-
On-line journal The software is available from cran.r-project.org.
-
WEISBERG, S. (2002). Dimension reduction regression in R. J. Statistical Software 7. (On-line journal available at www.jstatsoft.org. The software is available from cran.r-project.org.)
-
(2002)
J. Statistical Software
, vol.7
-
-
Weisberg, S.1
-
66
-
-
0003577684
-
Adapting to unknown sparsity by controlling the false discovery rate
-
Dept. Statistics, Stanford Univ.
-
ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical Report 2000-19, Dept. Statistics, Stanford Univ.
-
(2000)
Technical Report
, vol.2000
, Issue.19
-
-
Abramovich, F.1
Benjamini, Y.2
Donoho, D.3
Johnstone, I.4
-
68
-
-
4944261923
-
The estimation of prediction error: Covariance penalties and cross-validation
-
To appear
-
EFRON, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. J. Amer. Statist. Assoc. To appear.
-
(2004)
J. Amer. Statist. Assoc.
-
-
Efron, B.1
-
69
-
-
0010053166
-
An information theoretic comparison of model selection criteria
-
Dept. Statistics, Univ. Pennsylvania
-
FOSTER, D. and STINE, R. (1997). An information theoretic comparison of model selection criteria. Technical report, Dept. Statistics, Univ. Pennsylvania.
-
(1997)
Technical Report
-
-
Foster, D.1
Stine, R.2
-
70
-
-
0001729472
-
Calibration and empirical Bayes variable selection
-
GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87 731-747.
-
(2000)
Biometrika
, vol.87
, pp. 731-747
-
-
George, E.I.1
Foster, D.P.2
|