메뉴 건너뛰기




Volumn 32, Issue 2, 2004, Pages 407-499

Least angle regression

(15)  Efron, Bradley a,b   Hastie, Trevor a,b   Johnstone, Iain a,b   Tibshirani, Robert a,b   Ishwaran, Hemant c   Knight, Keith d   Loubes, Jean Michel e,f   Massart, Pascal e,g   Madigan, David h,i   Ridgeway, Greg h,j   Rosset, Saharon a,k   Zhu, J I a,l   Stine, Robert A m,n   Turlach, Berwin A o   Weisberg, Sanford p  

f CNRS   (France)

Author keywords

Boosting; Coefficient paths; Lasso; Linear regression; Variable selection

Indexed keywords


EID: 3242708140     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000067     Document Type: Article
Times cited : (7688)

References (71)
  • 2
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81 461-470.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 3
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ bootstrap method
    • EFRON, B. and TIBSHIRANI, R. (1997). Improvements on cross-validation: The.632+ bootstrap method. J. Amer. Statist. Assoc. 92 548-560.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • FREUND, Y. and SCHAPIRE, R. (1997). A decision-theoretic generalization of online learning and an application to boosting. J. Comput. System Sci. 55 119-139.
    • (1997) J. Comput. System Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 5
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • FRIEDMAN, J. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232.
    • (2001) Ann. Statist. , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 6
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407.
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0034237944 scopus 로고    scopus 로고
    • On the degrees of freedom in shape-restricted regression
    • MEYER, M. and WOODROOFE, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28 1083-1104.
    • (2000) Ann. Statist. , vol.28 , pp. 1083-1104
    • Meyer, M.1    Woodroofe, M.2
  • 12
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000a). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 15
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • STEIN, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151.
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 16
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B. 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 18
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • YE, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Amer. Statist. Assoc. 93 120-131.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 120-131
    • Ye, J.1
  • 19
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • BREIMAN, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Amer. Statist. Assoc. 87 738-754.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 738-754
    • Breiman, L.1
  • 22
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • ISHWARAN, H. and RAO, J. S. (2003). Detecting differentially expressed genes in microarrays using Bayesian model selection. J. Amer. Statist. Assoc. 98 438-455.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.S.2
  • 24
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • MITCHELL, T. J. and BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression (with discussion). J. Amer. Statist. Assoc. 83 1023-1036.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1023-1036
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 25
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 26
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 27
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • BÜHLMANN, P. and YU, B. (2002). Analyzing bagging. Ann. Statist. 30 927-961.
    • (2002) Ann. Statist. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 28
    • 0003577684 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Dept. Statistics, Stanford Univ.
    • ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical Report 2000-19, Dept. Statistics, Stanford Univ.
    • (2000) Technical Report , vol.2000 , Issue.19
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.3    Johnstone, I.4
  • 29
    • 85041932998 scopus 로고
    • Maximum likelihood identification of Gaussian autoregressive moving average models
    • AKAIKE, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60 255-265.
    • (1973) Biometrika , vol.60 , pp. 255-265
    • Akaike, H.1
  • 30
  • 31
    • 13444276102 scopus 로고    scopus 로고
    • p criterion for Gaussian model selection
    • Univ. Paris 6 & 7
    • p criterion for Gaussian model selection. Technical Report 647, Univ. Paris 6 & 7.
    • (2001) Technical Report , vol.647
    • Birgé, L.1    Massart, P.2
  • 32
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. and GEORGE, E. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.1    George, E.2
  • 33
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • KNIGHT, K. and FU, B. (2000). Asymptotics for Lasso-type estimators. Ann. Statist. 28 1356-1378.
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, B.2
  • 34
    • 0036872087 scopus 로고    scopus 로고
    • Adaptive estimation with soft thresholding penalties
    • LOUBES, J.-M. and VAN DE GEER, S. (2002). Adaptive estimation with soft thresholding penalties. Statist. Neerlandica 56 453-478.
    • (2002) Statist. Neerlandica , vol.56 , pp. 453-478
    • Loubes, J.-M.1    Van De Geer, S.2
  • 36
    • 23844457879 scopus 로고    scopus 로고
    • Least squares estimation with complexity penalties
    • VAN DE GEER, S. (2001). Least squares estimation with complexity penalties. Math. Methods Statist. 10 355-374.
    • (2001) Math. Methods Statist. , vol.10 , pp. 355-374
    • Van De Geer, S.1
  • 37
    • 0041382385 scopus 로고    scopus 로고
    • BREIMAN, L. (2001). Random forests. Available at ftp://ftp.stat.berkeley. edu/pub/users/breiman/randomforest2001.pdf.
    • (2001) Random Forests
    • Breiman, L.1
  • 38
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The Bridge versus the Lasso
    • Fu, W. J. (1998). Penalized regressions: The Bridge versus the Lasso. J. Comput. Graph. Statist. 7 397-416.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 39
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • OSBORNE, M. R., PRESNELL, B. and TURLACH, B. A. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 41
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 42
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139.
    • (1997) J. Comput. System Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 43
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • FRIEDMAN, J. H. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232.
    • (2001) Ann. Statist. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 46
    • 1542367497 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Dept. Statistics, Stanford Univ.
    • ROSSET, S., ZHU, J. and HASTIE, T. (2003). Boosting as a regularized path to a maximum margin classifier. Technical report, Dept. Statistics, Stanford Univ.
    • (2003) Technical Report
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 48
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 49
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • School Information and Computer Science, Univ. California, Irvine.
    • BLAKE, C. and MERZ, C. (1998). UCI repository of machine learning databases. Technical report, School Information and Computer Science, Univ. California, Irvine. Available at www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998) Technical Report
    • Blake, C.1    Merz, C.2
  • 50
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 51
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 52
    • 2942586049 scopus 로고    scopus 로고
    • Variable selection via information theory
    • Center for Mathematical Studies in Economics and Management Science, Northwestern Univ.
    • FOSTER, D. P. and STINE, R. A. (1996). Variable selection via information theory. Technical Report Discussion Paper 1180, Center for Mathematical Studies in Economics and Management Science, Northwestern Univ.
    • (1996) Technical Report Discussion Paper , vol.1180
    • Foster, D.P.1    Stine, R.A.2
  • 53
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 54
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • BREIMAN, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 57
    • 0002534858 scopus 로고
    • A reformulation of linear models
    • NELDER, J. A. (1977). A reformulation of linear models (with discussion). J. Roy. Statist. Soc. Ser. A 140 48-76.
    • (1977) J. Roy. Statist. Soc. Ser. A , vol.140 , pp. 48-76
    • Nelder, J.A.1
  • 58
    • 0000076874 scopus 로고
    • The statistics of linear models: Back to basics
    • NELDER, J. A. (1994). The statistics of linear models: Back to basics. Statist. Comput. 4 221-234.
    • (1994) Statist. Comput. , vol.4 , pp. 221-234
    • Nelder, J.A.1
  • 61
    • 0033484637 scopus 로고    scopus 로고
    • Graphs in statistical analysis: Is the medium the message?
    • COOK, R. D. and WEISBERG, S. (1999b). Graphs in statistical analysis: Is the medium the message? Amer. Statist. 53 29-37.
    • (1999) Amer. Statist. , vol.53 , pp. 29-37
    • Cook, R.D.1    Weisberg, S.2
  • 62
    • 85038276539 scopus 로고    scopus 로고
    • Discussion of "Statistical modeling: The two cultures," by L. Breiman
    • EFRON, B. (2001). Discussion of "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 218-219.
    • (2001) Statist. Sci. , vol.16 , pp. 218-219
    • Efron, B.1
  • 63
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • LI, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316-342.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.C.1
  • 64
    • 20444431631 scopus 로고
    • p to individual cases
    • p to individual cases. Technometrics 23 27-31.
    • (1981) Technometrics , vol.23 , pp. 27-31
    • Weisberg, S.1
  • 65
    • 4544378893 scopus 로고    scopus 로고
    • Dimension reduction regression in R
    • On-line journal The software is available from cran.r-project.org.
    • WEISBERG, S. (2002). Dimension reduction regression in R. J. Statistical Software 7. (On-line journal available at www.jstatsoft.org. The software is available from cran.r-project.org.)
    • (2002) J. Statistical Software , vol.7
    • Weisberg, S.1
  • 66
    • 0003577684 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Dept. Statistics, Stanford Univ.
    • ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical Report 2000-19, Dept. Statistics, Stanford Univ.
    • (2000) Technical Report , vol.2000 , Issue.19
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.3    Johnstone, I.4
  • 67
  • 68
    • 4944261923 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • To appear
    • EFRON, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. J. Amer. Statist. Assoc. To appear.
    • (2004) J. Amer. Statist. Assoc.
    • Efron, B.1
  • 69
    • 0010053166 scopus 로고    scopus 로고
    • An information theoretic comparison of model selection criteria
    • Dept. Statistics, Univ. Pennsylvania
    • FOSTER, D. and STINE, R. (1997). An information theoretic comparison of model selection criteria. Technical report, Dept. Statistics, Univ. Pennsylvania.
    • (1997) Technical Report
    • Foster, D.1    Stine, R.2
  • 70
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87 731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.