메뉴 건너뛰기




Volumn 458, Issue , 2008, Pages 137-158

Neural networks in building QSAR models

Author keywords

Artificial neural networks; back propagation; generalization; learning; QSAR

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOLOGY; CHEMISTRY; CLUSTER ANALYSIS; COMPUTER; COMPUTER PROGRAM; METHODOLOGY; PHYSICAL CHEMISTRY; QUANTITATIVE STRUCTURE ACTIVITY RELATION; REGRESSION ANALYSIS; REPRODUCIBILITY; REVIEW; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 58149386885     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-60327-101-1_8     Document Type: Article
Times cited : (47)

References (113)
  • 1
    • 18244416361 scopus 로고
    • Recognition of physiological activity of chemical compounds on perceptron with random adaptation of structure
    • Hiller SA, Glaz AB, Rastrigin LA, Rosenblit AB (1971) Recognition of physiological activity of chemical compounds on perceptron with random adaptation of structure. Dokl Akad Nauk SSSR 199:851-853.
    • (1971) Dokl Akad Nauk SSSR , vol.199 , pp. 851-853
    • Hiller, S.A.1    Glaz, A.B.2    Rastrigin, L.A.3    Rosenblit, A.B.4
  • 4
    • 0025219602 scopus 로고
    • Neural networks applied to structure-Activity relationships
    • Aoyama T, Suzuki Y, Ichikawa H (1990) Neural networks applied to structure-Activity relationships. J Med Chem 33:905-908.
    • (1990) J Med Chem , vol.33 , pp. 905-908
    • Aoyama, T.1    Suzuki, Y.2    Ichikawa, H.3
  • 5
    • 0025029558 scopus 로고
    • Neural networks applied to pharmaceutical problems. III. Neural networks applied to quantitative structure-Activity relationship (QSAR) analysis
    • Aoyama T, Suzuki,Y, Ichikawa H (1990) Neural networks applied to pharmaceutical problems. III. Neural networks applied to quantitative structure-Activity relationship (QSAR) analysis. J Med Chem 33:2583-2590.
    • (1990) J Med Chem , vol.33 , pp. 2583-2590
    • Aoyama, T.1    Suzuki, Y.2    Ichikawa, H.3
  • 10
    • 0029919098 scopus 로고    scopus 로고
    • Applications of artificial neural networks to quantitative structure-Activity relationships
    • Maddalena DJ (1996) Applications of artificial neural networks to quantitative structure-Activity relationships. Expert Opinion on Therapeutic Patents 6:239-251.
    • (1996) Expert Opinion on Therapeutic Patents , vol.6 , pp. 239-251
    • Maddalena, D.J.1
  • 14
    • 0032735695 scopus 로고    scopus 로고
    • Neural networks in drug discovery: Have they lived up to their promise?
    • Manallack DT, Livingstone DJ (1999) Neural networks in drug discovery: Have they lived up to their promise? Eur J Med Chem 34:195-208.
    • (1999) Eur J Med Chem , vol.34 , pp. 195-208
    • Manallack, D.T.1    Livingstone, D.J.2
  • 15
    • 0041753424 scopus 로고    scopus 로고
    • Applications of neural networks in the medicinal chemistry field
    • Ochoa C, Chana A, Stud M (2001) Applications of neural networks in the medicinal chemistry field. Curr Med Chem 1:247-256.
    • (2001) Curr Med Chem , vol.1 , pp. 247-256
    • Ochoa, C.1    Chana, A.2    Stud, M.3
  • 16
    • 0002836406 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms in drug design
    • Terfloth L, Gasteiger J (2001) Neural networks and genetic algorithms in drug design. Drug Discovery Today 6:S102-S108.
    • (2001) Drug Discovery Today , vol.6
    • Terfloth, L.1    Gasteiger, J.2
  • 17
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening, and library design
    • Winkler DA, Burden FR (2002) Application of neural networks to large dataset QSAR, virtual screening, and library design. Methods in Mol Biol 201:325-367.
    • (2002) Methods in Mol Biol , vol.201 , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 18
    • 33748373826 scopus 로고    scopus 로고
    • Neural networks as a method for elucidating structure-property relationships for organic compounds
    • Halberstam NM, Baskin I I, Palyulin VA, Zefirov NS (2003) Neural networks as a method for elucidating structure-property relationships for organic compounds. Russ Chem Rev 72:629-649.
    • (2003) Russ Chem Rev , vol.72 , pp. 629-649
    • Halberstam, N.M.1    Baskin I, I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 19
    • 0037424597 scopus 로고    scopus 로고
    • The use of neural networks in QSARs for acute aquatic toxicological endpoints
    • Kaiser KLE (2003) The use of neural networks in QSARs for acute aquatic toxicological endpoints. J Mol Struct (Theochem) 622:85-95.
    • (2003) J Mol Struct (Theochem , vol.622 , pp. 85-95
    • Kle, K.1
  • 20
    • 0038069350 scopus 로고    scopus 로고
    • Neural networks for effect prediction in environmental and health issues using large datasets
    • Kaiser KLE (2003) Neural networks for effect prediction in environmental and health issues using large datasets. QSAR Comb Sci 22:185-190.
    • (2003) QSAR Comb Sci , vol.22 , pp. 185-190
    • Kle, K.1
  • 22
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • Niculescu SP (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct (Theochem) 622:71-83.
    • (2003) J Mol Struct (Theochem , vol.622 , pp. 71-83
    • Niculescu, S.P.1
  • 23
    • 20544465527 scopus 로고    scopus 로고
    • Artificial neural networks in molecular structures-property studies
    • Novic M, Vracko M (2003) Artificial neural networks in molecular structures-property studies. Data Handling in Science and Technology 23:231-256.
    • (2003) Data Handling in Science and Technology , vol.23 , pp. 231-256
    • Novic, M.1    Vracko, M.2
  • 24
    • 0043235843 scopus 로고    scopus 로고
    • Self-organizing neural networks for pharmacophore mapping
    • Polanski J (2003) Self-organizing neural networks for pharmacophore mapping. Advanced Drug Delivery Reviews 55:1149-1162.
    • (2003) Advanced Drug Delivery Reviews , vol.55 , pp. 1149-1162
    • Polanski, J.1
  • 25
    • 0043235835 scopus 로고    scopus 로고
    • Prediction of physicochemical properties based on neural network modeling
    • Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties based on neural network modeling. Advanced Drug Delivery Reviews 55:1163-1183.
    • (2003) Advanced Drug Delivery Reviews , vol.55 , pp. 1163-1183
    • Taskinen, J.1    Yliruusi, J.2
  • 26
    • 16544393180 scopus 로고    scopus 로고
    • Neural networks as robust tools in drug lead discovery and development
    • Winkler DA (2004) Neural networks as robust tools in drug lead discovery and development. Molecular Biotechnology 27:138-167.
    • (2004) Molecular Biotechnology , vol.27 , pp. 138-167
    • Winkler, D.A.1
  • 27
    • 12444281776 scopus 로고    scopus 로고
    • Bayesian neural nets for modeling in drug discovery
    • Winkler DA, Burden FR (2004) Bayesian neural nets for modeling in drug discovery. Drug Discovery Today 2:104-111.
    • (2004) Drug Discovery Today , vol.2 , pp. 104-111
    • Winkler, D.A.1    Burden, F.R.2
  • 28
    • 27144547880 scopus 로고    scopus 로고
    • The potential performance of artificial neural networks in QSTRs for predicting ecotoxicity of environmental pollutants
    • Shoji R (2005) The potential performance of artificial neural networks in QSTRs for predicting ecotoxicity of environmental pollutants. Curr. Comput-Aided Drug Des 1:65-72.
    • (2005) Curr. Comput-Aided Drug Des , vol.1 , pp. 65-72
    • Shoji, R.1
  • 29
    • 0025903750 scopus 로고
    • Novel method for the display of multivariate data using neural networks
    • Livingstone DJ, Hesketh G, Clayworth D (1991) Novel method for the display of multivariate data using neural networks. J Mol Graph 9:115-118.
    • (1991) J Mol Graph , vol.9 , pp. 115-118
    • Livingstone, D.J.1    Hesketh, G.2    Clayworth, D.3
  • 30
    • 0025981114 scopus 로고
    • An application of unsupervised neural network methodology (Kohonen topology-preserving mapping) to QSAR analysis
    • Rose VS, Croall IF, MacFie HJH (1991) An application of unsupervised neural network methodology (Kohonen topology-preserving mapping) to QSAR analysis. QSAR 10:6-15.
    • (1991) QSAR , vol.10 , pp. 6-15
    • Rose, V.S.1    Croall, I.F.2    MacFie, H.J.H.3
  • 31
    • 0000835102 scopus 로고
    • Counter-propagation neural networks in the modeling and prediction of Kovats indexes for substituted phenols
    • Peterson KL (1992) Counter-propagation neural networks in the modeling and prediction of Kovats indexes for substituted phenols. Anal Chem 64:379-386.
    • (1992) Anal Chem , vol.64 , pp. 379-386
    • Peterson, K.L.1
  • 32
    • 0027076492 scopus 로고
    • Comparison of the functional-link net and the generalized delta rule net in quantitative structure-Activity relationship studies
    • Liu Q, Hirono S, Moriguchi I (1992) Comparison of the functional-link net and the generalized delta rule net in quantitative structure-Activity relationship studies. Chem Pharm Bull 40:2962-2969.
    • (1992) Chem Pharm Bull , vol.40 , pp. 2962-2969
    • Liu, Q.1    Hirono, S.2    Moriguchi, I.3
  • 33
    • 0027698735 scopus 로고
    • Methodology of searching for direct correlations between structures and properties of organic compounds by using computational neural networks
    • Baskin II, Palyulin VA, Zefirov NS (1993) Methodology of searching for direct correlations between structures and properties of organic compounds by using computational neural networks. Dokl Akad Nauk 333:176-179.
    • (1993) Dokl Akad Nauk , vol.333 , pp. 176-179
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 34
    • 0001022357 scopus 로고    scopus 로고
    • A neural device for searching direct correlations between structures and properties of chemical compounds
    • Baskin II, Palyulin VA, Zefirov NS (1997) A neural device for searching direct correlations between structures and properties of chemical compounds. J Chem Inf Comput Sci 37:715-721.
    • (1997) J Chem Inf Comput Sci , vol.37 , pp. 715-721
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 35
    • 0027667984 scopus 로고
    • Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters
    • Lohninger H (1993) Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters. J Chem Inf Comput Sci 33:736-744.
    • (1993) J Chem Inf Comput Sci , vol.33 , pp. 736-744
    • Lohninger, H.1
  • 36
    • 0027899779 scopus 로고
    • Neural network classification of mutagens using structural fragment data
    • Brinn M, Walsh PT, Payne MP, Bott B (1993) Neural network classification of mutagens using structural fragment data. SAR QSAR Env Res 1:169-210.
    • (1993) SAR QSAR Env Res , vol.1 , pp. 169-210
    • Brinn, M.1    Walsh, P.T.2    Payne, M.P.3    Bott, B.4
  • 37
    • 0027513960 scopus 로고
    • Applications of neural networks in structure-Activity relationships of a small number of molecules
    • Tetko IV, Luik AI, Poda GI (1993) Applications of neural networks in structure-Activity relationships of a small number of molecules. J Med Chem 36:811-814.
    • (1993) J Med Chem , vol.36 , pp. 811-814
    • Tetko, I.V.1    Luik, A.I.2    Poda, G.I.3
  • 38
    • 0029230341 scopus 로고
    • Automated descriptor selection for quantitative structure-Activity relationships using generalized simulated annealing
    • Sutter JM, Dixon SL, Jurs PC (1995) Automated descriptor selection for quantitative structure-Activity relationships using generalized simulated annealing. J Chem Inf Comput Sci 35:77-84.
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 39
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-Activity relationship: An application of genetic neural networks
    • So S-S, Karplus M (1996) Evolutionary optimization in quantitative structure-Activity relationship: An application of genetic neural networks. J Med Chem 39:1521-1530.
    • (1996) J Med Chem , vol.39 , pp. 1521-1530
    • So, S.-S.1    Karplus, M.2
  • 40
    • 0347736629 scopus 로고    scopus 로고
    • A new QSAR algorithm combining principal component analysis with a neural network: Application to calcium channel antagonists
    • Viswanadhan VN, Mueller GA, Basak SC, Weinstein JN (1996) A new QSAR algorithm combining principal component analysis with a neural network: Application to calcium channel antagonists. Network Science 2.
    • (1996) Network Science , pp. 2
    • Viswanadhan, V.N.1    Mueller, G.A.2    Basak, S.C.3    Weinstein, J.N.4
  • 42
    • 28044464657 scopus 로고    scopus 로고
    • Bayesian neural network approach to quantitative structure-Activity relationships in carboquinones
    • Sato K, Nakagawa J, Matsuzaki H (1997) Bayesian neural network approach to quantitative structure-Activity relationships in carboquinones. Ann Rept Tohoku College of Pharmacy 44:187-193.
    • (1997) Ann Rept Tohoku College of Pharmacy , vol.44 , pp. 187-193
    • Sato, K.1    Nakagawa, J.2    Matsuzaki, H.3
  • 43
    • 0013448972 scopus 로고    scopus 로고
    • On simple linear regression, multiple linear regression, and elementary probabilistic neural network with Gaussian kernel's performance in modeling toxicity values to fathead minnow based on Microtox data, octanol/water partition coefficient, and various structural descriptors for a 419-compound dataset
    • Elsinore, Denmark, June 24-28, 1996
    • Kaiser KLE, Niculescu SP, McKinnon MB (1997) On simple linear regression, multiple linear regression, and elementary probabilistic neural network with Gaussian kernel's performance in modeling toxicity values to fathead minnow based on Microtox data, octanol/water partition coefficient, and various structural descriptors for a 419-compound dataset. In: Quantitative structure-Activity relationships in environmental sciences, VII, Proceedings of QSAR 96, Elsinore, Denmark, June 24-28, 1996, pp. 285-297.
    • (1997) Quantitative Structure-Activity Relationships in Environmental Sciences, VII, Proceedings of QSAR 96 , pp. 285-297
    • Kle, K.1    Niculescu, S.P.2    McKinnon, M.B.3
  • 44
    • 0031138166 scopus 로고    scopus 로고
    • The receptor-like neural network for modeling corticosteroid and testosterone binding globulins
    • Polanski J (1997) The receptor-like neural network for modeling corticosteroid and testosterone binding globulins. J Chem Inf Comput Sci 37:553-561.
    • (1997) J Chem Inf Comput Sci , vol.37 , pp. 553-561
    • Polanski, J.1
  • 46
    • 0032966444 scopus 로고    scopus 로고
    • Optimization of structure representation for QSAR studies
    • Zupan J, Novic M (1999) Optimization of structure representation for QSAR studies. Anal Chim Acta 388:243-250.
    • (1999) Anal Chim Acta , vol.388 , pp. 243-250
    • Zupan, J.1    Novic, M.2
  • 47
    • 0000251975 scopus 로고    scopus 로고
    • Neural network based quantitative structural property relations (QSPRs) for predicting boiling points of aliphatic hydrocarbons
    • Espinosa G, Yaffe D, Cohen Y, Arenas A, Giralt F (2000) Neural network based quantitative structural property relations (QSPRs) for predicting boiling points of aliphatic hydrocarbons. J Chem Inf Comput Sci 40:859-879.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 859-879
    • Espinosa, G.1    Yaffe, D.2    Cohen, Y.3    Arenas, A.4    Giralt, F.5
  • 48
    • 0012279412 scopus 로고    scopus 로고
    • Studies on quantitative structure-Activity relationships of benzodiazepines using fuzzy neural networks
    • Li, P, Cheng Y-Y (2000) Studies on quantitative structure-Activity relationships of benzodiazepines using fuzzy neural networks. Gaodeng Xuexiao Huaxue Xuebao 21:1473-1478.
    • (2000) Gaodeng Xuexiao Huaxue Xuebao , vol.21 , pp. 1473-1478
    • Li, P.1    Cheng, Y.-Y.2
  • 49
    • 0035221306 scopus 로고    scopus 로고
    • Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-Activity relationship studies of benzodiazepines
    • Micheli A, Sperduti A, Starita A, Bianucci AM (2001) Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-Activity relationship studies of benzodiazepines. J Chem Inf Comput Sci 41:202-218.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 202-218
    • Micheli, A.1    Sperduti, A.2    Starita, A.3    Bianucci, A.M.4
  • 50
    • 0035913053 scopus 로고    scopus 로고
    • Volume learning algorithm artificial neural networks for 3D QSAR studies
    • Tetko IV, Kovalishyn VV, Livingstone DJ (2001) Volume learning algorithm artificial neural networks for 3D QSAR studies. J Med Chem 44:2411-2420.
    • (2001) J Med Chem , vol.44 , pp. 2411-2420
    • Tetko, I.V.1    Kovalishyn, V.V.2    Livingstone, D.J.3
  • 51
    • 0036522888 scopus 로고    scopus 로고
    • The comparative molecular surface analysis (CoMSA)-A nongrid 3D QSAR method by a coupled neural network and PLS system: Predicting p K a values of benzoic and alkanoic acids
    • Polanski J, Gieleciak R, Bak A (2002) The comparative molecular surface analysis (CoMSA)-A nongrid 3D QSAR method by a coupled neural network and PLS system: Predicting p K a values of benzoic and alkanoic acids. J Chem Inf Comput Sci 42:184-191.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 184-191
    • Polanski, J.1    Gieleciak, R.2    Bak, A.3
  • 52
    • 0036708521 scopus 로고    scopus 로고
    • Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure
    • Patankar SJ, Jurs PC (2002) Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure. J Chem Inf Comput Sci 42:1053-1068.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 1053-1068
    • Patankar, S.J.1    Jurs, P.C.2
  • 53
    • 0036827084 scopus 로고    scopus 로고
    • QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks
    • Mosier PD, Jurs PC (2002) QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J Chem Inf Comput Sci 42:1460-1470.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 1460-1470
    • Mosier, P.D.1    Jurs, P.C.2
  • 54
    • 0036489456 scopus 로고    scopus 로고
    • An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity
    • Espinosa G, Arenas A, Giralt F (2002) An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity. J Chem Inf Comput Sci 42:343-359.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 343-359
    • Espinosa, G.1    Arenas, A.2    Giralt, F.3
  • 55
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-Activity correlation using binary particle swarms
    • Agrafiotis DK, Cedeno W (2002) Feature selection for structure-Activity correlation using binary particle swarms. J Med Chem 45:1098-1107.
    • (2002) J Med Chem , vol.45 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 56
    • 0036581948 scopus 로고    scopus 로고
    • Variable selection for QSAR by artificial ant colony systems
    • Izrailev S, Agrafiotis DK (2002) Variable selection for QSAR by artificial ant colony systems. SAR QSAR Env Res 13:417-423.
    • (2002) SAR QSAR Env Res , vol.13 , pp. 417-423
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 57
    • 0141925273 scopus 로고    scopus 로고
    • Application of the novel molecular alignment method using the Hopfield neural network to 3D-QSAR
    • Arakawa M, Hasegawa K, Funatsu K (2003) Application of the novel molecular alignment method using the Hopfield neural network to 3D-QSAR. J Chem Inf Comput Sci 43:1396-1402.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1396-1402
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 58
    • 0042700229 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of factors in principal component-Artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogs
    • Hemmateenejad B, Akhond M, Miri R, Shamsipur M (2003) Genetic algorithm applied to the selection of factors in principal component-Artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogs). J Chem Inf Comput Sci 43:1328-1334.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1328-1334
    • Hemmateenejad, B.1    Akhond, M.2    Miri, R.3    Shamsipur, M.4
  • 61
    • 20844436302 scopus 로고    scopus 로고
    • Genetic algorithms and self-organizing maps: A powerful combination for modeling complex QSAR and QSPR problems
    • Bayram E, Santago P II, Harris R, Xiao Y-D, Clauset AJ, Schmitt JD (2004) Genetic algorithms and self-organizing maps: A powerful combination for modeling complex QSAR and QSPR problems. J Comp-Aided Mol Des 18:483-493.
    • (2004) J Comp-Aided Mol Des , vol.18 , pp. 483-493
    • Bayram, E.1    Santago II, P.2    Harris, R.3    Xiao, Y.-D.4    Clauset, A.J.5    Schmitt, J.D.6
  • 62
    • 1542426098 scopus 로고    scopus 로고
    • 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI
    • Baurin N, Mozziconacci J-C, Arnoult E, Chavatte P, Marot C, Morin-Allory L (2004) 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI. J Chem Inf Comput Sci 44:276-285.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 276-285
    • Baurin, N.1    Mozziconacci, J.-C.2    Arnoult, E.3    Chavatte, P.4    Marot, C.5    Morin-Allory, L.6
  • 63
    • 33751391372 scopus 로고
    • Computational neural networks as model-free mapping devices
    • Maggiora GM, Elrod DW, Trenary RG (1992) Computational neural networks as model-free mapping devices. J Chem Inf Comput Sci 32:732-741.
    • (1992) J Chem Inf Comput Sci , vol.32 , pp. 732-741
    • Maggiora, G.M.1    Elrod, D.W.2    Trenary, R.G.3
  • 64
    • 0001321136 scopus 로고
    • On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition
    • Kolmogorov AN (1957) On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl Akad Nauk SSSR 114:953-956.
    • (1957) Dokl Akad Nauk SSSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 65
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kurková V (1992) Kolmogorov's theorem and multilayer neural networks. Neural Networks 5:501-506.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurková, V.1
  • 67
    • 0001882610 scopus 로고
    • Some comments on the asymptotic behavior of robust smoothers
    • Gasser T, Rosenblatt M (eds). Springer-Verlag, Helderberg
    • Stuetzle W, Mittal Y (1979) Some comments on the asymptotic behavior of robust smoothers. In: Gasser T, Rosenblatt M (eds) Smoothing techniques for curve estimation. Springer-Verlag, Helderberg.
    • (1979) Smoothing Techniques for Curve Estimation
    • Stuetzle, W.1    Mittal, Y.2
  • 68
    • 0036557849 scopus 로고    scopus 로고
    • Neural network studies, 4. Introduction to associative neural networks
    • Tetko IV (2002) Neural network studies, 4. Introduction to associative neural networks. J Chem Inf Comput Sci 42:717-728.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 717-728
    • Tetko, I.V.1
  • 69
    • 0036589082 scopus 로고    scopus 로고
    • SLIPPER-2001-software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity
    • Raevsky OA, Trepalin SV, Trepalina HP, Gerasimenko VA, Raevskaja OE (2002) SLIPPER-2001-software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity. J Chem Inf Comput Sci 42:540-549.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 540-549
    • Raevsky, O.A.1    Trepalin, S.V.2    Trepalina, H.P.3    Gerasimenko, V.A.4    Raevskaja, O.E.5
  • 70
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • Féraud R, Clérot F (2002) A methodology to explain neural network classification. Neural Networks 15:237-246.
    • (2002) Neural Networks , vol.15 , pp. 237-246
    • Féraud, R.1    Clérot, F.2
  • 71
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network quantitative structure-Activity relationship models: A detailed interpretation of the weights and biases
    • Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network quantitative structure-Activity relationship models: A detailed interpretation of the weights and biases. J Chem Inf Mod 45:1109-1121.
    • (2005) J Chem Inf Mod , vol.45 , pp. 1109-1121
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 72
    • 0043256467 scopus 로고
    • Neural networks as nonlinear structure-Activity relationship analyzers. Useful functions of the partial derivative method in multilayer neural networks
    • Aoyama, T, Ichikawa H (1992) Neural networks as nonlinear structure-Activity relationship analyzers. Useful functions of the partial derivative method in multilayer neural networks. J Chem Inf Comput Sci 32:492-500.
    • (1992) J Chem Inf Comput Sci , vol.32 , pp. 492-500
    • Aoyama, T.1    Ichikawa, H.2
  • 73
  • 74
    • 0036763729 scopus 로고    scopus 로고
    • Quantitative structure-conditionsproperty relationship studies Neural network modeling of the acid hydrolysis of esters
    • Halberstam NM, Baskin II, Palyulin VA, Zefirov NS (2002) Quantitative structure-conditionsproperty relationship studies. Neural network modeling of the acid hydrolysis of esters. Mendeleev Commun 12:185-186.
    • (2002) Mendeleev Commun , vol.12 , pp. 185-186
    • Halberstam, N.M.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 75
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: A measure of descriptor importance. J Chem Inf Mod 45:800-806.
    • (2005) J Chem Inf Mod , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 76
    • 0141890762 scopus 로고    scopus 로고
    • On the physical interpretation of QSAR models
    • Stanton DT (2003) On the physical interpretation of QSAR models. J Chem Inf Comput Sci 43:1423-1433.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1423-1433
    • Stanton, D.T.1
  • 77
    • 0000513993 scopus 로고
    • Artificial neural networks: Application and chance effects for QSAR data analysis
    • Manallack D, Livingstone DJ (1992) Artificial neural networks: Application and chance effects for QSAR data analysis. Med Chem Res 2:181-190.
    • (1992) Med Chem Res , vol.2 , pp. 181-190
    • Manallack, D.1    Livingstone, D.J.2
  • 78
    • 0026671125 scopus 로고
    • Regression analysis for QSAR using neural networks
    • Livingstone DJ, Salt DW (1992) Regression analysis for QSAR using neural networks. Bioorg Med Chem Let 2:213-218.
    • (1992) Bioorg Med Chem Let , vol.2 , pp. 213-218
    • Livingstone, D.J.1    Salt, D.W.2
  • 79
    • 0027212862 scopus 로고
    • Statistics using neural networks: Chance effects
    • Livingstone DJ, Manallack DT (1993) Statistics using neural networks: Chance effects. J Med Chem 36:1295-1297.
    • (1993) J Med Chem , vol.36 , pp. 1295-1297
    • Livingstone, D.J.1    Manallack, D.T.2
  • 80
    • 0001447184 scopus 로고
    • Neural network studies, 1. Comparison of overfitting and overtraining
    • Tetko IV, Livingstone DJ, Luik AI (1995) Neural network studies, 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci 35:826-833.
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 81
    • 0026075594 scopus 로고
    • Applications of neural networks in quantitative structureactivity relationships of dihydrofolate reductase inhibitors
    • Andrea TA, Kalayeh H (1991) Applications of neural networks in quantitative structureactivity relationships of dihydrofolate reductase inhibitors. J Med Chem 34:2824-2836.
    • (1991) J Med Chem , vol.34 , pp. 2824-2836
    • Andrea, T.A.1    Kalayeh, H.2
  • 83
    • 0001098776 scopus 로고
    • A universal prior for the integers and estimation by minimum description length
    • Rissanen J (1983) A universal prior for the integers and estimation by minimum description length. Annals of Statistics 11:416-431.
    • (1983) Annals of Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 85
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • Burden FR, Winkler DA (1999) Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42:3183-3187.
    • (1999) J Med Chem , vol.42 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 87
    • 0034265479 scopus 로고    scopus 로고
    • Unsupervised forward selection: A method for eliminating redundant variables
    • Whitley DC, Ford MG, Livingstone DJ (2000) Unsupervised forward selection: A method for eliminating redundant variables. J Chem Inf Comput Sci 40:1160-1168.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 1160-1168
    • Whitley, D.C.1    Ford, M.G.2    Livingstone, D.J.3
  • 89
    • 0037287399 scopus 로고    scopus 로고
    • Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds
    • Artemenko NV, Baskin II, Palyulin VA, Zefirov NS (2003) Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds. Russ Chem Bull 52:20-29.
    • (2003) Russ Chem Bull , vol.52 , pp. 20-29
    • Artemenko, N.V.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 90
    • 26944462733 scopus 로고    scopus 로고
    • Independent component analysis yields chemically interpretable latent variables in multivariate regression
    • Gustafsson MG. (2005) Independent component analysis yields chemically interpretable latent variables in multivariate regression. J Chem Inf Comput Sci 45:1244-1255.
    • (2005) J Chem Inf Comput Sci , vol.45 , pp. 1244-1255
    • Gustafsson, M.G.1
  • 91
    • 0040914011 scopus 로고
    • Ó-n-O Analysis. A method for the correlation of biological activity and chemical structure
    • Hansch C, Fujita T (1964) ó-n-O Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616-1626.
    • (1964) J Am Chem Soc , vol.86 , pp. 1616-1626
    • Hansch, C.1    Fujita, T.2
  • 92
    • 33947485697 scopus 로고
    • A mathematical contribution to structure-Activity studies
    • Free SM Jr, Wilson JW (1964) A mathematical contribution to structure-Activity studies. J Med Chem 7:395-399.
    • (1964) J Med Chem , vol.7 , pp. 395-399
    • Free Jr., S.M.1    Wilson, J.W.2
  • 93
    • 0039890607 scopus 로고
    • Neural network classification of inductive and resonance effects of substituents
    • Kvasnička V, Sklenák Š, Pospichal J (1993) Neural network classification of inductive and resonance effects of substituents. J Am Chem Soc 115:1495-1500.
    • (1993) J Am Chem Soc , vol.115 , pp. 1495-1500
    • Kvasnička, V.1    Sklenák, S.2    Pospichal, J.3
  • 94
    • 84857769478 scopus 로고    scopus 로고
    • Combining molecular modeling with the use of artificial neural networks as an approach to predicting substituent constants and bioactivity
    • Gundertofte K, Jørgensen FS (eds). Kluwer Academic/Plenum Publishers, New York
    • Baskin II, Keschtova SV, Palyulin VA, Zefirov NS (2000) Combining molecular modeling with the use of artificial neural networks as an approach to predicting substituent constants and bioactivity. In: Gundertofte K, Jørgensen FS (eds) Molecular modeling and prediction of bioactivity. Kluwer Academic/Plenum Publishers, New York, pp. 468-469.
    • (2000) Molecular Modeling and Prediction of Bioactivity , pp. 468-469
    • Baskin, I.I.1    Keschtova, S.V.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 95
    • 1842640132 scopus 로고    scopus 로고
    • Development of neural network QSPR models for Hansch substituent constants, 1. Method and validations
    • Chiu T-L, So S-S (2004) Development of neural network QSPR models for Hansch substituent constants, 1. Method and validations. J Chem Inf Comput Sci 44:147-153.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 147-153
    • Chiu, T.-L.1    So, S.-S.2
  • 96
    • 1542426115 scopus 로고    scopus 로고
    • Development of neural network QSPR models for Hansch substituent constants, 2. Applications in QSAR studies of HIV-1 reverse transcriptase and dihydrofolate reductase inhibitors
    • Chiu T-L, So S-S (2004) Development of neural network QSPR models for Hansch substituent constants, 2. Applications in QSAR studies of HIV-1 reverse transcriptase and dihydrofolate reductase inhibitors. J Chem Inf Comput Sci 44:154-160.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 154-160
    • Chiu, T.-L.1    So, S.-S.2
  • 97
    • 0035226195 scopus 로고    scopus 로고
    • The learned symmetry concept in revealing quantitative structure-Activity relationships with artificial neural networks
    • Baskin II, Halberstam NM, Mukhina TV, Palyulin VA, Zefirov NS (2001) The learned symmetry concept in revealing quantitative structure-Activity relationships with artificial neural networks. SAR QSAR Env Res 12:401-416.
    • (2001) SAR QSAR Env Res , vol.12 , pp. 401-416
    • Baskin, I.I.1    Halberstam, N.M.2    Mukhina, T.V.3    Palyulin, V.A.4    Zefirov, N.S.5
  • 100
    • 0000522664 scopus 로고
    • Computational neural networks as an alternative to linear regression analysis in studies of quantitative structure-property relationships for the case of the physicochemical properties of hydrocarbons
    • Baskin II, Palyulin VA, Zefirov NS (1993) Computational neural networks as an alternative to linear regression analysis in studies of quantitative structure-property relationships for the case of the physicochemical properties of hydrocarbons. Dokl Akad Nauk 332:713-716.
    • (1993) Dokl Akad Nauk , vol.332 , pp. 713-716
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 101
    • 0035497866 scopus 로고    scopus 로고
    • Prediction of physical properties of organic compounds by artificial neural networks in the framework of substructural approach
    • Artemenko NV, Baskin II, Palyulin VA, Zefirov NS (2001) Prediction of physical properties of organic compounds by artificial neural networks in the framework of substructural approach. Doklady Chemistry 381:317-320.
    • (2001) Doklady Chemistry , vol.381 , pp. 317-320
    • Artemenko, N.V.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, N.S.4
  • 102
    • 0036265450 scopus 로고    scopus 로고
    • Neural-network model of the lipophilicity of organic compounds based on fragment descriptors
    • Artemenko NV, Palyulin VA, Zefirov NS (2002) Neural-network model of the lipophilicity of organic compounds based on fragment descriptors. Doklady Chemistry 383:114-116.
    • (2002) Doklady Chemistry , vol.383 , pp. 114-116
    • Artemenko, N.V.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 104
    • 3442893263 scopus 로고    scopus 로고
    • Calculation of the enthalpy of sublimation by the QSPR method with the use of a fragment approach
    • Zhokhova NI, Baskin II, Palyulin VA, Zefirov AN, Zefirov NS (2003) Calculation of the enthalpy of sublimation by the QSPR method with the use of a fragment approach. Russ J Appl Chem 76:1914-1919.
    • (2003) Russ J Appl Chem , vol.76 , pp. 1914-1919
    • Zhokhova, N.I.1    Baskin, I.I.2    Palyulin, V.A.3    Zefirov, A.N.4    Zefirov, N.S.5
  • 108
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA), 1. Effect of shape and binding of steroids to carrier proteins
    • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA), 1. Effect of shape and binding of steroids to carrier proteins. J Am Chem Soc 110:5959-5967.
    • (1988) J Am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 109
    • 0036827270 scopus 로고    scopus 로고
    • New molecular surface-based 3DQSAR method using Kohonen neural network and three-way PLS
    • Hasegawa K, Matsuoka S, Arakawa M, Funatsu K (2002) New molecular surface-based 3DQSAR method using Kohonen neural network and three-way PLS. Comput Chem 26:583-589.
    • (2002) Comput Chem , vol.26 , pp. 583-589
    • Hasegawa, K.1    Matsuoka, S.2    Arakawa, M.3    Funatsu, K.4
  • 111
    • 0029277327 scopus 로고
    • ChemNet: A novel neural network based method for graph/property mapping
    • Kireev DB (1995) ChemNet: A novel neural network based method for graph/property mapping. J Chem Inf Comput Sci 35:175-180.
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 175-180
    • Kireev, D.B.1
  • 112
    • 84857726149 scopus 로고    scopus 로고
    • Molecular structure encoding into artificial neural networks topology
    • Ivanciuc O (2001) Molecular structure encoding into artificial neural networks topology. Roumanian Chem Quart Rev 8:197-220.
    • (2001) Roumanian Chem Quart Rev , vol.8 , pp. 197-220
    • Ivanciuc, O.1
  • 113
    • 26944481531 scopus 로고    scopus 로고
    • On the relationship between deterministic and probabilistic directed graphical models: From Bayesian networks to recursive neural networks
    • Baldi P, Rosen-Zvi M (2005) On the relationship between deterministic and probabilistic directed graphical models: From Bayesian networks to recursive neural networks. Neural Networks 18:1080-1086.
    • (2005) Neural Networks , vol.18 , pp. 1080-1086
    • Baldi, P.1    Rosen-Zvi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.