메뉴 건너뛰기




Volumn 36, Issue 6, 2006, Pages 1283-1294

Structured one-class classification

Author keywords

One class classification; Second order cone programming (SOCP); Structured learning; Support vector machine (SVM)

Indexed keywords

BOUNDARY CONDITIONS; CLUSTER ANALYSIS; DATA STRUCTURES; DATABASE SYSTEMS; OPTIMIZATION; PROBLEM SOLVING; STRUCTURED PROGRAMMING; SUPPORT VECTOR MACHINES;

EID: 33947104275     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2006.876189     Document Type: Article
Times cited : (76)

References (35)
  • 1
    • 14344249146 scopus 로고    scopus 로고
    • Learning large margin classifiers locally and globally
    • AB
    • K. Huang H. Yang I. King M. R. Lyu Learning large margin classifiers locally and globally Proc. 21st Int. Conf. Mach. Learn. 401 408 Proc. 21st Int. Conf. Mach. Learn. Banff Canada AB 2004
    • (2004) , pp. 401-408
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 3
    • 85176997672 scopus 로고    scopus 로고
    • Sample reduction for SVMs via data structure analysis
    • HI
    • D. Wang D. S. Yeung E. Tsang Sample reduction for SVMs via data structure analysis Proc. IEEE Int. Conf. Syst., Man, Cybern. 1030 1035 Proc. IEEE Int. Conf. Syst., Man, Cybern. Waikoloa HI 2005
    • (2005) , pp. 1030-1035
    • Wang, D.1    Yeung, D.S.2    Tsang, E.3
  • 5
    • 12244256379 scopus 로고    scopus 로고
    • Kernel k-means, spectral clustering and normalized cuts
    • I. Dhillon Y. Guan B. Kulis Kernel k-means, spectral clustering and normalized cuts Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining 551 556 Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining 2004
    • (2004) , pp. 551-556
    • Dhillon, I.1    Guan, Y.2    Kulis, B.3
  • 6
    • 0004161991 scopus 로고
    • Algorithms for Clustering Data
    • Prentice-Hall NJ, Englewood Cliffs
    • A. K. Jain R. Dubes Algorithms for Clustering Data 1988 Prentice-Hall NJ, Englewood Cliffs
    • (1988)
    • Jain, A.K.1    Dubes, R.2
  • 7
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J. H. Ward Hierarchical grouping to optimize an objective function J. Amer. Statist. Assoc. 58 301 236 244 Mar. 1963
    • (1963) J. Amer. Statist. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 8
    • 0024686546 scopus 로고
    • Comparison of hierarchic agglomerative clustering methods of document retrieval
    • A. El-Hamdouchi P. Willett Comparison of hierarchic agglomerative clustering methods of document retrieval Comput. J. 32 3 220 227 Jun. 1989
    • (1989) Comput. J. , vol.32 , Issue.3 , pp. 220-227
    • El-Hamdouchi, A.1    Willett, P.2
  • 9
    • 0003578015 scopus 로고    scopus 로고
    • Cluster Analysis
    • Hodder Arnold U.K., London
    • S. Everitt S. Landau M. Leese Cluster Analysis 2001 Hodder Arnold U.K., London
    • (2001)
    • Everitt, S.1    Landau, S.2    Leese, M.3
  • 10
    • 16244377091 scopus 로고    scopus 로고
    • Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
    • S. Salvador P. Chan Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms Proc. 16th IEEE Int. Conf. Tools AI 576 584 Proc. 16th IEEE Int. Conf. Tools AI 2004
    • (2004) , pp. 576-584
    • Salvador, S.1    Chan, P.2
  • 11
    • 0004236492 scopus 로고
    • Matrix Computations
    • The Johns Hopkins Univ. Press MD, Baltimore
    • G. H. Golub C. F. Van Loan Matrix Computations 1983 The Johns Hopkins Univ. Press MD, Baltimore
    • (1983)
    • Golub, G.H.1    Van Loan, C.F.2
  • 12
    • 0003630894 scopus 로고
    • Interior-Point Polynomial Algorithms in Convex Programming
    • SIAM PA, Philadelphia
    • Y. Nesterov A. Nemirovskii Interior-Point Polynomial Algorithms in Convex Programming 1994 SIAM PA, Philadelphia
    • (1994)
    • Nesterov, Y.1    Nemirovskii, A.2
  • 13
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones
    • J. Sturm Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones Optim. Methods Softw. 11/12 14 625 653 Aug. 1999
    • (1999) Optim. Methods Softw. , vol.11/12 , Issue.14 , pp. 625-653
    • Sturm, J.1
  • 14
    • 0001614864 scopus 로고    scopus 로고
    • High Performance Optimization
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm Kluwer MA, Norwell
    • E. D. Andersen A. D. Andersen High Performance Optimization 197 232 2001 Kluwer MA, Norwell The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • (2001) , pp. 197-232
    • Andersen, E.D.1    Andersen, A.D.2
  • 16
    • 0035111818 scopus 로고    scopus 로고
    • Nonlinear kernel-based statistical pattern analysis
    • A. Ruiz P. E. Lopez-de Teruel Nonlinear kernel-based statistical pattern analysis IEEE Trans. Neural Netw. 12 1 16 32 Jan. 2001
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.1 , pp. 16-32
    • Ruiz, A.1    Lopez-de Teruel, P.E.2
  • 17
    • 85177018266 scopus 로고    scopus 로고
    • C. Blake E. Keogh C. Merz UCI Repository of Machine Learning Database Jan. 2006 http://www.ics.uci.edu/_mlearn/ML-Repository.html
    • (2006)
    • Blake, C.1    Keogh, E.2    Merz, C.3
  • 18
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit. 30 6 1145 1159 1997
    • (1997) Pattern Recognit. , vol.30 , Issue.6 , pp. 1145-1159
    • Bradley, A.P.1
  • 19
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schlkopf A. Smola K.-R. Muller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1299 1319 Jul. 1998
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schlkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 20
    • 84899010634 scopus 로고    scopus 로고
    • Model selection for support vector machines
    • O. Chapelle V. Vapnik Model selection for support vector machines Proc. Adv. Neural Inf. Process. Syst. 230 236 Proc. Adv. Neural Inf. Process. Syst. 2000
    • (2000) , pp. 230-236
    • Chapelle, O.1    Vapnik, V.2
  • 21
    • 0000542422 scopus 로고    scopus 로고
    • Kernel dependent support vector error bounds
    • B. Schlkopf J. Shawe-Taylor A. Smola R. Williamson Kernel dependent support vector error bounds Proc. 9th Int. Conf. Artif. Neural Netw. 304 309 Proc. 9th Int. Conf. Artif. Neural Netw. 1999
    • (1999) , pp. 304-309
    • Schlkopf, B.1    Shawe-Taylor, J.2    Smola, A.3    Williamson, R.4
  • 22
    • 0029237466 scopus 로고
    • Novelty detection for the identification of masses in mammograms
    • L. Tarassenko P. Hayton M. Brady Novelty detection for the identification of masses in mammograms Proc. 4th Int. IEE Conf. Artif. Neural Netw. 409 442 447 Proc. 4th Int. IEE Conf. Artif. Neural Netw. 1995
    • (1995) , vol.409 , pp. 442-447
    • Tarassenko, L.1    Hayton, P.2    Brady, M.3
  • 23
    • 85177010447 scopus 로고    scopus 로고
    • State Univ. New Jersey New Brunswick
    • N. Japkowicz Concept-learning in the absence of counterexamples: An autoassociation-based approach to classification 1999 State Univ. New Jersey New Brunswick
    • (1999)
    • Japkowicz, N.1
  • 24
  • 25
    • 0003450542 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley NJ, Hoboken
    • V. Vapnik Statistical Learning Theory 1998 Wiley NJ, Hoboken
    • (1998)
    • Vapnik, V.1
  • 26
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax R. Duin Support vector data description Mach. Learn. 54 1 45 66 Jan. 2004
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 27
    • 0004094721 scopus 로고    scopus 로고
    • Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press MA, Cambridge
    • B. Schlkopf A. J. Smola Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2001 MIT Press MA, Cambridge
    • (2001)
    • Schlkopf, B.1    Smola, A.J.2
  • 30
    • 0032961595 scopus 로고    scopus 로고
    • Unsupervised pattern recognition for the classification of EMG signals
    • C. Christodoulou C. Pattichis Unsupervised pattern recognition for the classification of EMG signals IEEE Trans. Biomed. Eng. 46 2 169 178 Feb. 1999
    • (1999) IEEE Trans. Biomed. Eng. , vol.46 , Issue.2 , pp. 169-178
    • Christodoulou, C.1    Pattichis, C.2
  • 32
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • E. Osuna R. Freund F. Girosi Training support vector machines: An application to face detection Proc. IEEE Conf. CVPR 130 136 Proc. IEEE Conf. CVPR 1997
    • (1997) , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 33
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • G. Ritter M. Gallegos Outliers in statistical pattern recognition and an application to automatic chromosome classification Pattern Recognit. Lett. 18 6 525 539 Jun. 1997
    • (1997) Pattern Recognit. Lett. , vol.18 , Issue.6 , pp. 525-539
    • Ritter, G.1    Gallegos, M.2
  • 34
    • 0010142578 scopus 로고
    • One-class classifier networks for target recognition applications
    • OR
    • M. Moya M. Koch L. Hostetler One-class classifier networks for target recognition applications Proc. World Congr. Neural Netw. 797 801 Proc. World Congr. Neural Netw. Portland OR 1993
    • (1993) , pp. 797-801
    • Moya, M.1    Koch, M.2    Hostetler, L.3
  • 35
    • 84880801123 scopus 로고    scopus 로고
    • SVMC: Single-class classification with support vector machines
    • H. Yu SVMC: Single-class classification with support vector machines Proc. IJCAI 567 572 Proc. IJCAI 2003
    • (2003) , pp. 567-572
    • Yu, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.