메뉴 건너뛰기




Volumn 54, Issue 1, 2008, Pages 275-288

Graph-based semi-supervised learning and spectral kernel design

Author keywords

Graph based semi supervised learning; Kernel design; Transductive learning

Indexed keywords

GRAPH THEORY; OPTIMIZATION; SPECTRUM ANALYSIS;

EID: 38349114023     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2007.911294     Document Type: Article
Times cited : (69)

References (20)
  • 2
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Special Issue on Clustering
    • M. Belkin and P. Niyogi, "Semi-supervised learning on Riemannian manifolds," Mach. Learn., pp. 209-239, 2004, Special Issue on Clustering.
    • (2004) Mach. Learn , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 26944439046 scopus 로고    scopus 로고
    • Toward a theoretical foundation for Laplacian-based manifold methods
    • M. Belkin and P. Niyogi, "Toward a theoretical foundation for Laplacian-based manifold methods," in Proc. COLT'05, 2005, pp. 486-500.
    • (2005) Proc. COLT'05 , pp. 486-500
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 38349132120 scopus 로고    scopus 로고
    • M. Belkin, P. Niyogi, and V. Sindhwani, Manifold Regularization: A Geometric Framework for Learning From Examples, Univ. Chicago, Tech. Rep. TR-2004-06, 2004, Computer Science.
    • M. Belkin, P. Niyogi, and V. Sindhwani, Manifold Regularization: A Geometric Framework for Learning From Examples, Univ. Chicago, Tech. Rep. TR-2004-06, 2004, Computer Science.
  • 6
    • 34547263725 scopus 로고    scopus 로고
    • Empirical graph Laplacian approximation of Laplace-Beltrami operators: Large sample results
    • E. Gine and V. Koltchinskii, "Empirical graph Laplacian approximation of Laplace-Beltrami operators: Large sample results," in Proc. 4th Int. Conf. High Dimensional Prob., 2005, pp. 238-259.
    • (2005) Proc. 4th Int. Conf. High Dimensional Prob , pp. 238-259
    • Gine, E.1    Koltchinskii, V.2
  • 7
    • 33746077095 scopus 로고    scopus 로고
    • Uniform convergence of adaptive graph-based regularization
    • M. Hein, "Uniform convergence of adaptive graph-based regularization," in Proc. COLT'06, 2006, pp. 50-64.
    • (2006) Proc. COLT'06 , pp. 50-64
    • Hein, M.1
  • 8
    • 26944489604 scopus 로고    scopus 로고
    • From graphs to manifolds - Weak and strong pointwise consistency of graph Laplacians
    • M. Hein, J.-Y. Audibert, and U. von Luxburg, "From graphs to manifolds - Weak and strong pointwise consistency of graph Laplacians," in Proc. COLT'05, 2005, pp. 470-485.
    • (2005) Proc. COLT'05 , pp. 470-485
    • Hein, M.1    Audibert, J.-Y.2    von Luxburg, U.3
  • 10
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • Neural Netw. Machine Learning, M. Bishop, Ed. New York: Kluwer
    • D. J. C. MacKay, "Introduction to Gaussian processes," in Neural Netw. Machine Learning, ser. NATO ASI, C. M. Bishop, Ed. New York: Kluwer, 1998, pp. 133-166.
    • (1998) ser. NATO ASI , vol.100 , pp. 133-166
    • MacKay, D.J.C.1
  • 12
    • 0004267646 scopus 로고
    • Princeton, NJ: Princeton Univ. Press
    • R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton Univ. Press, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 13
    • 84858874031 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • Cambridge, MA: MIT Press
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002, pp. 945-952.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 15
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang, "Leave-one-out bounds for kernel methods," Neural Comput. vol. 15, pp. 1397-1437, 2003.
    • (2003) Neural Comput , vol.15 , pp. 1397-1437
    • Zhang, T.1
  • 16
    • 22944490838 scopus 로고    scopus 로고
    • Learning bounds for kernel regression using effective data dimensionality
    • T. Zhang, "Learning bounds for kernel regression using effective data dimensionality," Neural Comput., vol. 17, pp. 2077-2098, 2005.
    • (2005) Neural Comput , vol.17 , pp. 2077-2098
    • Zhang, T.1
  • 18
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. ICML 2003, 2003, pp. 912-919.
    • (2003) Proc. ICML 2003 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 20
    • 33749596705 scopus 로고    scopus 로고
    • Semi-Supervised Learning: From Gaussian Fields to Gaussian Processes
    • CMU-CS-03-175, 2003
    • X. Zhu, J. Lafferty, and Z. Ghahramani, "Semi-Supervised Learning: From Gaussian Fields to Gaussian Processes," CMU Tech. Rep. CMU-CS-03-175, 2003.
    • CMU Tech. Rep
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.