메뉴 건너뛰기




Volumn 70, Issue 1, 2006, Pages 253-282

Glucose signaling in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP; CYCLIC AMP DEPENDENT PROTEIN KINASE; DNA; DNA BINDING PROTEIN; GLUCOSE; GUANINE NUCLEOTIDE BINDING PROTEIN; GUANOSINE TRIPHOSPHATASE; GUANOSINE TRIPHOSPHATE; HEXOKINASE; PHOSPHOPROTEIN PHOSPHATASE; RAS PROTEIN; RIBOSOME PROTEIN;

EID: 33645130011     PISSN: 10922172     EISSN: None     Source Type: Journal    
DOI: 10.1128/MMBR.70.1.253-282.2006     Document Type: Review
Times cited : (433)

References (441)
  • 1
    • 0028914238 scopus 로고
    • Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae
    • Ahn, J. H., S. H. Park, and H. S. Kang. 1995. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. Mol. Gen. Genet. 246:529-537.
    • (1995) Mol. Gen. Genet. , vol.246 , pp. 529-537
    • Ahn, J.H.1    Park, S.H.2    Kang, H.S.3
  • 2
    • 1842790124 scopus 로고    scopus 로고
    • The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent
    • Ahuatzi, D., P. Herrero, T. de la Cera, and F. Moreno. 2004. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J. Biol. Chem. 279:14440-14446.
    • (2004) J. Biol. Chem. , vol.279 , pp. 14440-14446
    • Ahuatzi, D.1    Herrero, P.2    De La Cera, T.3    Moreno, F.4
  • 3
    • 8444253679 scopus 로고    scopus 로고
    • A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast
    • Alberghina, L., R. L. Rossi, L. Querin, V. Wanke, and M. Vanoni. 2004. A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J. Cell Biol. 167:433-443.
    • (2004) J. Cell Biol. , vol.167 , pp. 433-443
    • Alberghina, L.1    Rossi, R.L.2    Querin, L.3    Wanke, V.4    Vanoni, M.5
  • 4
    • 0033517106 scopus 로고    scopus 로고
    • Rcg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae: Characterizing the effects of a phosphatase subunit on the yeast proteome
    • Alms, G. R., P. Sanz, M. Carlson, and T. A. Haystead. 1999. Rcg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome. EMBO J. 18:4157-4168.
    • (1999) EMBO J. , vol.18 , pp. 4157-4168
    • Alms, G.R.1    Sanz, P.2    Carlson, M.3    Haystead, T.A.4
  • 6
    • 0034004690 scopus 로고    scopus 로고
    • Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae
    • Andrews, P. D., and M. J. Stark. 2000. Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J. Cell Sci. 113:507-520.
    • (2000) J. Cell Sci. , vol.113 , pp. 507-520
    • Andrews, P.D.1    Stark, M.J.2
  • 7
    • 0034100041 scopus 로고    scopus 로고
    • Glucose depletion rapidly inhibits translation initiation in yeast
    • Ashe, M. P., S. K. De Long, and A. B. Sachs. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833-848.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 833-848
    • Ashe, M.P.1    De Long, S.K.2    Sachs, A.B.3
  • 8
    • 0033870805 scopus 로고    scopus 로고
    • Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae
    • Ashrafi, K., S. S. Lin, J. K. Manchester, and J. I. Gordon. 2000. Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14:1872-1885.
    • (2000) Genes Dev. , vol.14 , pp. 1872-1885
    • Ashrafi, K.1    Lin, S.S.2    Manchester, J.K.3    Gordon, J.I.4
  • 9
    • 0037115490 scopus 로고    scopus 로고
    • Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function
    • Babu, P., J. D. Bryan, H. R. Panek, S. L. Jordan, B. M. Forbrich, S. C. Kelley, R. T. Colvin, and L. C. Robinson. 2002. Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function. J. Cell Sci. 115:4957-4968.
    • (2002) J. Cell Sci. , vol.115 , pp. 4957-4968
    • Babu, P.1    Bryan, J.D.2    Panek, H.R.3    Jordan, S.L.4    Forbrich, B.M.5    Kelley, S.C.6    Colvin, R.T.7    Robinson, L.C.8
  • 10
    • 0030602813 scopus 로고    scopus 로고
    • SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box
    • Bai, C., P. Sen, K. Hofmann, L. Ma, M. Goebl, J. W. Harper, and S. J. Elledge. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263-274.
    • (1996) Cell , vol.86 , pp. 263-274
    • Bai, C.1    Sen, P.2    Hofmann, K.3    Ma, L.4    Goebl, M.5    Harper, J.W.6    Elledge, S.J.7
  • 11
    • 0021288735 scopus 로고
    • Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae
    • Bailey, R. B., and A. Woodword. 1984. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Mol. Gen. Genet. 193:507-512.
    • (1984) Mol. Gen. Genet. , vol.193 , pp. 507-512
    • Bailey, R.B.1    Woodword, A.2
  • 12
    • 0034646510 scopus 로고    scopus 로고
    • Pachytene exit controlled by reversal of Mek1-dependent phosphorylation
    • Bailis, J. M., and G. S. Roeder. 2000. Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell 14:211-221.
    • (2000) Cell , vol.14 , pp. 211-221
    • Bailis, J.M.1    Roeder, G.S.2
  • 13
    • 0022818244 scopus 로고
    • Glycolytic gene expression in Saccharomyces cerevisiae: Nucleotide sequence of GCR1, null mutants, and evidence for expression
    • Baker, H. V. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol. Cell. Biol. 6:3774-3784.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3774-3784
    • Baker, H.V.1
  • 14
    • 0031019156 scopus 로고    scopus 로고
    • Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae
    • Baker, S. H., D. L. Frederick, A. Bloecher, and K. Tatchell. 1997. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 145:615-626.
    • (1997) Genetics , vol.145 , pp. 615-626
    • Baker, S.H.1    Frederick, D.L.2    Bloecher, A.3    Tatchell, K.4
  • 15
    • 0033582218 scopus 로고    scopus 로고
    • The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression
    • Balciunas, D., C. Galman, H. Ronne, and S. Bjorklund. 1999. The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc. Natl. Acad. Sci. USA 96:376-381.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 376-381
    • Balciunas, D.1    Galman, C.2    Ronne, H.3    Bjorklund, S.4
  • 16
    • 0028986667 scopus 로고
    • G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast
    • Barral, Y., S. Jentsch, and C. Mann. 1995. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9:399-409.
    • (1995) Genes Dev. , vol.9 , pp. 399-409
    • Barral, Y.1    Jentsch, S.2    Mann, C.3
  • 17
    • 0141921886 scopus 로고    scopus 로고
    • Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae
    • Belinchon, M. M., and J. M. Gancedo. 2003. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Arch. Microbiol. 180:293-297.
    • (2003) Arch. Microbiol. , vol.180 , pp. 293-297
    • Belinchon, M.M.1    Gancedo, J.M.2
  • 18
    • 15244341978 scopus 로고    scopus 로고
    • Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source
    • Berkey, C. D., V. K. Vyas, and M. Carlson. 2004. Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot. Cell 3:311-317.
    • (2004) Eukaryot. Cell , vol.3 , pp. 311-317
    • Berkey, C.D.1    Vyas, V.K.2    Carlson, M.3
  • 19
    • 0028953787 scopus 로고
    • Ras membrane targeting is essential for glucose signaling but not for viability in yeast
    • Bhattacharya, S., L. Chen, J. R. Broach, and S. Powers. 1995. Ras membrane targeting is essential for glucose signaling but not for viability in yeast. Proc. Natl. Acad. Sci. USA 92:2984-2988.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 2984-2988
    • Bhattacharya, S.1    Chen, L.2    Broach, J.R.3    Powers, S.4
  • 20
    • 0142164962 scopus 로고    scopus 로고
    • On the trail of an elusive flux sensor
    • Bisson, L. F., and V. Kunathigan. 2003. On the trail of an elusive flux sensor. Res. Microbiol. 154:603-610.
    • (2003) Res. Microbiol. , vol.154 , pp. 603-610
    • Bisson, L.F.1    Kunathigan, V.2
  • 21
    • 0029047498 scopus 로고
    • Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae
    • Blacketer, M. J., P. Madaule, and A. M. Myers. 1995. Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics 140:1259-1275.
    • (1995) Genetics , vol.140 , pp. 1259-1275
    • Blacketer, M.J.1    Madaule, P.2    Myers, A.M.3
  • 22
    • 0344338368 scopus 로고
    • Gene gating: A hypothesis
    • Blobel, G. 1985. Gene gating: a hypothesis. Proc. Natl. Acad. Sci. USA 82:8527-8529.
    • (1985) Proc. Natl. Acad. Sci. USA , vol.82 , pp. 8527-8529
    • Blobel, G.1
  • 23
    • 0033105613 scopus 로고    scopus 로고
    • Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint
    • Bloecher, A., and K. Tatchell. 1999. Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev. 13:517-522.
    • (1999) Genes Dev. , vol.13 , pp. 517-522
    • Bloecher, A.1    Tatchell, K.2
  • 24
    • 0034599955 scopus 로고    scopus 로고
    • Dynamic localization of protein phosphatase type 1 in the mitotic cell cycle of Saccharomyces cerevisiae
    • Bloecher, A., and K. Tatchell. 2000. Dynamic localization of protein phosphatase type 1 in the mitotic cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 149:125-140.
    • (2000) J. Cell Biol. , vol.149 , pp. 125-140
    • Bloecher, A.1    Tatchell, K.2
  • 25
    • 0023204240 scopus 로고
    • Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function
    • Blumberg, H., A. Eisen, A. Sledziewski, D. Bader, and E. T. Young. 1987. Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function. Nature 328:443-445.
    • (1987) Nature , vol.328 , pp. 443-445
    • Blumberg, H.1    Eisen, A.2    Sledziewski, A.3    Bader, D.4    Young, E.T.5
  • 26
    • 0039445009 scopus 로고    scopus 로고
    • Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins
    • Bohm, S., D. Frishman, and H. W. Mewes. 1997. Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res. 25:2464-2469.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 2464-2469
    • Bohm, S.1    Frishman, D.2    Mewes, H.W.3
  • 27
    • 0033390344 scopus 로고    scopus 로고
    • Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulated carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p)
    • Bojunga, N., and K. D. Entian. 1999. Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulated carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol. Gen. Genet. 262:869-875.
    • (1999) Mol. Gen. Genet. , vol.262 , pp. 869-875
    • Bojunga, N.1    Entian, K.D.2
  • 28
    • 0345059257 scopus 로고    scopus 로고
    • The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p
    • Bojunga, N., P. Kotter, and K. D. Entian. 1998. The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol. Gen. Genet. 260:453-461.
    • (1998) Mol. Gen. Genet. , vol.260 , pp. 453-461
    • Bojunga, N.1    Kotter, P.2    Entian, K.D.3
  • 29
    • 1542350097 scopus 로고    scopus 로고
    • A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene
    • Boukaba, A., E. I. Georgieva, F. A. Myers, A. W. Thorne, G. Lopez-Rodas, C. Crane-Robinson, and L. Franco. 2004. A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene. J. Biol. Chem. 279:7678-7684.
    • (2004) J. Biol. Chem. , vol.279 , pp. 7678-7684
    • Boukaba, A.1    Georgieva, E.I.2    Myers, F.A.3    Thorne, A.W.4    Lopez-Rodas, G.5    Crane-Robinson, C.6    Franco, L.7
  • 30
    • 0031910875 scopus 로고    scopus 로고
    • Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae
    • Boy-Marcotte, E., M. Perrot, F. Bussereau, H. Boucherie, and M. Jacquet. 1998. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180:1044-1052.
    • (1998) J. Bacteriol. , vol.180 , pp. 1044-1052
    • Boy-Marcotte, E.1    Perrot, M.2    Bussereau, F.3    Boucherie, H.4    Jacquet, M.5
  • 31
    • 0029881888 scopus 로고    scopus 로고
    • SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation
    • Boy-Marcotte, E., P. Ikonomi, and M. Jacquet. 1996. SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation. Mol. Biol. Cell 7:529-539.
    • (1996) Mol. Biol. Cell , vol.7 , pp. 529-539
    • Boy-Marcotte, E.1    Ikonomi, P.2    Jacquet, M.3
  • 32
    • 14044266853 scopus 로고    scopus 로고
    • Gene recruitment of the activated INO1 locus to the nuclear membrane
    • Brickner, J. H., and P. Walter. 2004. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2:1843-1853.
    • (2004) PLoS Biol. , vol.2 , pp. 1843-1853
    • Brickner, J.H.1    Walter, P.2
  • 33
    • 19344376145 scopus 로고    scopus 로고
    • 14-3-3 Proteins: A number of functions for a numbered protein
    • Bridges, D., and G. B. Moorhead. 2004. 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE 2004:re10.
    • (2004) Sci. STKE , vol.2004
    • Bridges, D.1    Moorhead, G.B.2
  • 35
    • 0037046271 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization
    • Bruckner, R., and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209:141-148.
    • (2002) FEMS Microbiol. Lett. , vol.209 , pp. 141-148
    • Bruckner, R.1    Titgemeyer, F.2
  • 36
    • 0037716755 scopus 로고    scopus 로고
    • Independent recruitment in vivo by Gal4 of two complexes required for transcription
    • Bryant, G. O., and M. Ptashne. 2003. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11:1301-1309.
    • (2003) Mol. Cell , vol.11 , pp. 1301-1309
    • Bryant, G.O.1    Ptashne, M.2
  • 37
    • 0032519311 scopus 로고    scopus 로고
    • Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription
    • Bu, Y., and M. C. Schmidt. 1998. Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription. Nucleic Acids Res. 26:1002-1009.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1002-1009
    • Bu, Y.1    Schmidt, M.C.2
  • 38
    • 0024211065 scopus 로고
    • Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein
    • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086-5099.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 5086-5099
    • Buchman, A.R.1    Lue, N.F.2    Kornberg, R.D.3
  • 39
    • 0024292642 scopus 로고
    • AMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae
    • Cameron, S., L. Levin, M. Zoller, and M. Wigler. 1988. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53:555-566.
    • (1988) Cell , vol.53 , pp. 555-566
    • Cameron, S.1    Levin, L.2    Zoller, M.3    Wigler, M.4
  • 40
    • 0023394967 scopus 로고
    • Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase
    • Cannon, J. F., and K. Tatchell. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653-2663.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 2653-2663
    • Cannon, J.F.1    Tatchell, K.2
  • 41
    • 0022504628 scopus 로고
    • Suppressors of the ras2 mutation of Saccharomyces cerevisiae
    • Cannon, J. F., J. B. Gibbs, and K. Tatchell. 1986. Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics 113:247-264.
    • (1986) Genetics , vol.113 , pp. 247-264
    • Cannon, J.F.1    Gibbs, J.B.2    Tatchell, K.3
  • 42
    • 0028040192 scopus 로고
    • Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae
    • Cannon, J. F., J. R. Pringle, A. Fiechter, and M. Khalil. 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485-503.
    • (1994) Genetics , vol.136 , pp. 485-503
    • Cannon, J.F.1    Pringle, J.R.2    Fiechter, A.3    Khalil, M.4
  • 43
    • 0031451166 scopus 로고    scopus 로고
    • Genetics of transcriptional regulation in yeast: Connections to the RNA polymerase II CTD
    • Carlson, M. 1997. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13:1-23.
    • (1997) Annu. Rev. Cell Dev. Biol. , vol.13 , pp. 1-23
    • Carlson, M.1
  • 44
    • 0032190608 scopus 로고    scopus 로고
    • Regulation of glucose utilization in yeast
    • Carlson, M. 1998. Regulation of glucose utilization in yeast. Curr. Opin. Genet. Dev. 8:560-564.
    • (1998) Curr. Opin. Genet. Dev. , vol.8 , pp. 560-564
    • Carlson, M.1
  • 45
    • 0033118209 scopus 로고    scopus 로고
    • Glucose repression in yeast
    • Carlson, M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202-207.
    • (1999) Curr. Opin. Microbiol. , vol.2 , pp. 202-207
    • Carlson, M.1
  • 46
    • 0019566797 scopus 로고
    • Mutants of yeast defective in sucrose utilization
    • Carlson, M., B. C. Osmond, and D. Botstein. 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25-40.
    • (1981) Genetics , vol.98 , pp. 25-40
    • Carlson, M.1    Osmond, B.C.2    Botstein, D.3
  • 47
    • 0021432459 scopus 로고
    • A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast
    • Carlson, M., B. C. Osmond, L. Neigeborn, and D. Botstein. 1984. A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19-32.
    • (1984) Genetics , vol.107 , pp. 19-32
    • Carlson, M.1    Osmond, B.C.2    Neigeborn, L.3    Botstein, D.4
  • 48
    • 2342501365 scopus 로고    scopus 로고
    • Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization
    • Casolari, J. M., C. R. Brown, S. Komili, J. West, H. Hieronymus, and P. A. Silver. 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427-439.
    • (2004) Cell , vol.117 , pp. 427-439
    • Casolari, J.M.1    Brown, C.R.2    Komili, S.3    West, J.4    Hieronymus, H.5    Silver, P.A.6
  • 49
    • 0021339289 scopus 로고
    • Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae
    • Celenza, J. L., and M. Carlson. 1984. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:49-53.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 49-53
    • Celenza, J.L.1    Carlson, M.2
  • 50
    • 0021324997 scopus 로고
    • Structure and expression of the SNF1 gene of Saccharomyces cerevisiae
    • Celenza, J. L., and M. Carlson. 1984. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:54-60.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 54-60
    • Celenza, J.L.1    Carlson, M.2
  • 51
    • 0022534202 scopus 로고
    • A yeast gene that is essential for release from glucose repression encodes a protein kinase
    • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175-1180.
    • (1986) Science , vol.233 , pp. 1175-1180
    • Celenza, J.L.1    Carlson, M.2
  • 52
    • 0024343258 scopus 로고
    • Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein
    • Celenza, J. L., and M. Carlson. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034-5044.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 5034-5044
    • Celenza, J.L.1    Carlson, M.2
  • 53
    • 0024325465 scopus 로고
    • Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: Evidence for physical association of the SNF4 protein with the SNF1 protein kinase
    • Celenza, J. L., F. J. Eng, and M. Carlson. 1989. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 9:5045-5054.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 5045-5054
    • Celenza, J.L.1    Eng, F.J.2    Carlson, M.3
  • 54
    • 0037073762 scopus 로고    scopus 로고
    • Protein phosphatase-1 binding to Scd5p is important for regulation of actin organization and endocytosis in yeast
    • Chang, J. S., K. Henry, B. L. Wolf, M. Geli, and S. K. Lemmon. 2002. Protein phosphatase-1 binding to Scd5p is important for regulation of actin organization and endocytosis in yeast. J. Biol. Chem. 277:48002-48008.
    • (2002) J. Biol. Chem. , vol.277 , pp. 48002-48008
    • Chang, J.S.1    Henry, K.2    Wolf, B.L.3    Geli, M.4    Lemmon, S.K.5
  • 55
    • 3042760385 scopus 로고    scopus 로고
    • The Ras/PKA signaling pathway directly targets the Srb9p protein, a component of the general RNA polymerase II transcription apparatus
    • Chang, Y. W, S. C. Howard, and P. K. Herman. 2004. The Ras/PKA signaling pathway directly targets the Srb9p protein, a component of the general RNA polymerase II transcription apparatus. Mol. Cell 15:107-116.
    • (2004) Mol. Cell , vol.15 , pp. 107-116
    • Chang, Y.W.1    Howard, S.C.2    Herman, P.K.3
  • 56
    • 2942568007 scopus 로고    scopus 로고
    • Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces tactis
    • Charbon, G., K. D. Breunig, R. Wattiez, J. Vandenhaute, and I. Noel-Georis. 2004. Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces tactis. Mol. Cell. Biol. 24:4083-4091.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4083-4091
    • Charbon, G.1    Breunig, K.D.2    Wattiez, R.3    Vandenhaute, J.4    Noel-Georis, I.5
  • 57
    • 0033582317 scopus 로고    scopus 로고
    • Med8, a subunit of the mediator CTD complex of RNA polymerase II, directly binds to regulatory elements of SUC2 and HXK2 genes
    • Chaves, R. S., P. Herrero, and F. Moreno. 1999. Med8, a subunit of the mediator CTD complex of RNA polymerase II, directly binds to regulatory elements of SUC2 and HXK2 genes. Biochem. Biophys. Res. Commun. 254:345-350.
    • (1999) Biochem. Biophys. Res. Commun. , vol.254 , pp. 345-350
    • Chaves, R.S.1    Herrero, P.2    Moreno, F.3
  • 58
    • 0027389016 scopus 로고
    • TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by α2 repressor and is identical to SIN4
    • Chen, S., R. W. West Jr., S. L. Johnson, H. Gans, B. Kruger, and J. Ma. 1993. TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by α2 repressor and is identical to SIN4. Mol. Cell. Biol. 13:831-840.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 831-840
    • Chen, S.1    West Jr., R.W.2    Johnson, S.L.3    Gans, H.4    Kruger, B.5    Ma, J.6
  • 59
    • 0031020932 scopus 로고    scopus 로고
    • Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p
    • Cheng, C., D. Huang, P. J. Roach. 1997. Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1-8.
    • (1997) Yeast , vol.13 , pp. 1-8
    • Cheng, C.1    Huang, D.2    Roach, P.J.3
  • 60
    • 0024965981 scopus 로고
    • Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1
    • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis. 1989. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409-419.
    • (1989) Cell , vol.56 , pp. 409-419
    • Cherry, J.R.1    Johnson, T.R.2    Dollard, C.3    Shuster, J.R.4    Denis, C.L.5
  • 62
    • 0017396028 scopus 로고
    • Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression
    • Ciriacy, M. 1977. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213-220.
    • (1977) Mol. Gen. Genet. , vol.154 , pp. 213-220
    • Ciriacy, M.1
  • 63
    • 0019838416 scopus 로고
    • The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae
    • Clifton, D., and D. G. Fraenkel. 1981. The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem. 256:13074-13078.
    • (1981) J. Biol. Chem. , vol.256 , pp. 13074-13078
    • Clifton, D.1    Fraenkel, D.G.2
  • 64
    • 0017894173 scopus 로고
    • Glycolysis mutants in Saccharomyces cerevisiae
    • Clifton, D., S. B. Weinstock, and D. B. Fraenkel. 1978. Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88:1-11.
    • (1978) Genetics , vol.88 , pp. 1-11
    • Clifton, D.1    Weinstock, S.B.2    Fraenkel, D.B.3
  • 65
    • 0024792262 scopus 로고
    • Protein phosphatases come of age
    • Cohen, P., and P. T. Cohen. 1989. Protein phosphatases come of age. J. Biol. Chem. 264:21435-21438.
    • (1989) J. Biol. Chem. , vol.264 , pp. 21435-21438
    • Cohen, P.1    Cohen, P.T.2
  • 66
    • 6344256284 scopus 로고    scopus 로고
    • Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae
    • Colombo, S., D. Ronchetti, J. M. Thevelein, J. Winderickx, and E. Martegani. 2004. Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J. Biol. Chem. 279:46715-46722.
    • (2004) J. Biol. Chem. , vol.279 , pp. 46715-46722
    • Colombo, S.1    Ronchetti, D.2    Thevelein, J.M.3    Winderickx, J.4    Martegani, E.5
  • 68
    • 0032897887 scopus 로고    scopus 로고
    • The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator
    • Conlan, R. S., N. Gounalaki, P. Hatzis, and D. Tzamarias. 1999. The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J. Biol. Chem. 274:205-210.
    • (1999) J. Biol. Chem. , vol.274 , pp. 205-210
    • Conlan, R.S.1    Gounalaki, N.2    Hatzis, P.3    Tzamarias, D.4
  • 69
    • 0031028168 scopus 로고    scopus 로고
    • The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition
    • Coons, D. M., P. Vagnoli, and L. F. Bisson. 1997. The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13:9-20.
    • (1997) Yeast , vol.13 , pp. 9-20
    • Coons, D.M.1    Vagnoli, P.2    Bisson, L.F.3
  • 70
    • 0036671407 scopus 로고    scopus 로고
    • Ordered recruitment: Gene-specific mechanism of transcription activation
    • Cosma, M. P. 2002. Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10:227-236.
    • (2002) Mol. Cell , vol.10 , pp. 227-236
    • Cosma, M.P.1
  • 71
    • 0000089325 scopus 로고
    • Observation of the carbohydrate metabolism of tumors
    • Crabtree, H. G. 1929. Observation of the carbohydrate metabolism of tumors. Biochem. J. 23:536-545.
    • (1929) Biochem. J. , vol.23 , pp. 536-545
    • Crabtree, H.G.1
  • 72
    • 0030850943 scopus 로고    scopus 로고
    • The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway
    • Crauwels, M., M. C. Donaton, M. B. Pernambuco, J. Winderickx, J. H. de Winde, and J. M. Thevelein. 1997. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143:2627-2637.
    • (1997) Microbiology , vol.143 , pp. 2627-2637
    • Crauwels, M.1    Donaton, M.C.2    Pernambuco, M.B.3    Winderickx, J.4    De Winde, J.H.5    Thevelein, J.M.6
  • 73
    • 0039174099 scopus 로고    scopus 로고
    • Analysis of the role of the hypervariable region of yeast Ras2p and its farnesylation in the interaction with exchange factors and adenylyl cyclase
    • Crechet, J. B., E. Jacquet, A. Bernardi, and A. Parmeggiani. 2000. Analysis of the role of the hypervariable region of yeast Ras2p and its farnesylation in the interaction with exchange factors and adenylyl cyclase. J. Biol. Chem. 275:17754-17761.
    • (2000) J. Biol. Chem. , vol.275 , pp. 17754-17761
    • Crechet, J.B.1    Jacquet, E.2    Bernardi, A.3    Parmeggiani, A.4
  • 74
    • 17744407706 scopus 로고    scopus 로고
    • Characterization of Saccharomyces cerevisiae Ras1p and chimaeric constructs of Ras proteins reveals the hypervariable region and farnesylation as critical elements in the adenylyl cylase signaling pathway
    • Crechet, J. B., R. H. Cool, E. Jacquet, and J. Y. Lallemand. 2003. Characterization of Saccharomyces cerevisiae Ras1p and chimaeric constructs of Ras proteins reveals the hypervariable region and farnesylation as critical elements in the adenylyl cylase signaling pathway. Biochemistry 42:14903-14912.
    • (2003) Biochemistry , vol.42 , pp. 14903-14912
    • Crechet, J.B.1    Cool, R.H.2    Jacquet, E.3    Lallemand, J.Y.4
  • 75
    • 0036899644 scopus 로고    scopus 로고
    • Elucidating TOR signaling and rapamycin action: Lessons from Saccharomyces cerevisiae
    • Crespo, J. L., and M. N. Hall. 2002. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 66:579-591.
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 579-591
    • Crespo, J.L.1    Hall, M.N.2
  • 76
    • 1642287426 scopus 로고    scopus 로고
    • The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-biphosphatase in the vacuole
    • Cui, D. Y., C. R. Brown, and H. L. Chiang. 2004. The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-biphosphatase in the vacuole. J. Biol. Chem. 279:9713-9724.
    • (2004) J. Biol. Chem. , vol.279 , pp. 9713-9724
    • Cui, D.Y.1    Brown, C.R.2    Chiang, H.L.3
  • 77
    • 0028942747 scopus 로고
    • Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I
    • Dale, S., W. A. Wilson, A. M. Edelman, and D. G. Hardie. 1995. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361:191-195.
    • (1995) FEBS Lett. , vol.361 , pp. 191-195
    • Dale, S.1    Wilson, W.A.2    Edelman, A.M.3    Hardie, D.G.4
  • 78
    • 0029852345 scopus 로고    scopus 로고
    • Novel, activated RAS mutations alter protein-protein interactions
    • Dalley, B. K., and J. F. Cannon. 1996. Novel, activated RAS mutations alter protein-protein interactions. Oncogene 13:1209-1220.
    • (1996) Oncogene , vol.13 , pp. 1209-1220
    • Dalley, B.K.1    Cannon, J.F.2
  • 79
    • 0026057814 scopus 로고
    • SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae
    • Damak, F., E. Boy-Marcotte, D. Le-Roscouet, R. Guilbaud, and M. Jacquet. 1991. SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:202-212.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 202-212
    • Damak, F.1    Boy-Marcotte, E.2    Le-Roscouet, D.3    Guilbaud, R.4    Jacquet, M.5
  • 80
    • 0036301441 scopus 로고    scopus 로고
    • Mediator factor Med8p interacts with the hexokinase 2: Implication in the glucose signalling pathway of Saccharomyces cerevisiae
    • de la Cera, T., P. Herrero, F. Moreno-Herrero, R. S. Chaves, and F. Moreno. 2002. Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. J. Mol. Biol. 319:703-714.
    • (2002) J. Mol. Biol. , vol.319 , pp. 703-714
    • De La Cera, T.1    Herrero, P.2    Moreno-Herrero, F.3    Chaves, R.S.4    Moreno, F.5
  • 81
    • 0035012429 scopus 로고    scopus 로고
    • Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively
    • Deminoff, S. J., and G. M. Santangelo. 2001. Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively. Genetics 158:133-143.
    • (2001) Genetics , vol.158 , pp. 133-143
    • Deminoff, S.J.1    Santangelo, G.M.2
  • 82
    • 0028864346 scopus 로고
    • Unigenic evolution: A novel genetic method localizes a putative leucine zipper that mediates dimerization of the Saccharomyces cerevisiae regulator Gcr1p
    • Deminoff, S. J., J. Tornow, and G. M. Santangelo. 1995. Unigenic evolution: a novel genetic method localizes a putative leucine zipper that mediates dimerization of the Saccharomyces cerevisiae regulator Gcr1p. Genetics 141:1263-1274.
    • (1995) Genetics , vol.141 , pp. 1263-1274
    • Deminoff, S.J.1    Tornow, J.2    Santangelo, G.M.3
  • 83
    • 0347601050 scopus 로고    scopus 로고
    • Coordination between eukaryotic growth and cell cycle progression: RAP1/GCR1 transcriptional activation mediates glucose-dependent CLN function
    • Deminoff, S. J., K. Willis, and G. M. Santangelo. 2003. Coordination between eukaryotic growth and cell cycle progression: RAP1/GCR1 transcriptional activation mediates glucose-dependent CLN function. Recent Res. Dev. Genet. 3:1-16.
    • (2003) Recent Res. Dev. Genet. , vol.3 , pp. 1-16
    • Deminoff, S.J.1    Willis, K.2    Santangelo, G.M.3
  • 84
    • 0021702006 scopus 로고
    • Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II
    • Denis, C. L. 1984. Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108:833-844.
    • (1984) Genetics , vol.108 , pp. 833-844
    • Denis, C.L.1
  • 85
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 86
    • 0033523996 scopus 로고    scopus 로고
    • The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae
    • DeVit, M. J., and M. Johnston. 1999. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol. 9:1231-1241.
    • (1999) Curr. Biol. , vol.9 , pp. 1231-1241
    • DeVit, M.J.1    Johnston, M.2
  • 87
    • 0030883032 scopus 로고    scopus 로고
    • Regulated nuclear translocation of the Mig1 glucose repressor
    • DeVit, M. J., J. A. Waddle, and M. Johnston. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:1603-1618.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1603-1618
    • DeVit, M.J.1    Waddle, J.A.2    Johnston, M.3
  • 88
    • 0025898596 scopus 로고
    • RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast H1S4 gene
    • Devlin, C., K. Tice-Baldwin, D. Shore, and K. T. Arndt. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast H1S4 gene. Mol. Cell. Biol. 11:3642-3651.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 3642-3651
    • Devlin, C.1    Tice-Baldwin, K.2    Shore, D.3    Arndt, K.T.4
  • 89
    • 0035929329 scopus 로고    scopus 로고
    • Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3
    • Dlugai, S., S. Hippler, R. Wieczorke, and E. Boles. 2001. Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett. 505:389-392.
    • (2001) FEBS Lett. , vol.505 , pp. 389-392
    • Dlugai, S.1    Hippler, S.2    Wieczorke, R.3    Boles, E.4
  • 90
    • 4644360186 scopus 로고    scopus 로고
    • The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae
    • Dombek, K. M., N. Kacherovsky, and E. T. Young. 2004. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae. J. Biol. Chem. 279:39165-39174.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39165-39174
    • Dombek, K.M.1    Kacherovsky, N.2    Young, E.T.3
  • 91
    • 0032812343 scopus 로고    scopus 로고
    • Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression
    • Dombek, K. M., V. Voronkova, A. Raney, and E. T. Young. 1999. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Mol. Cell. Biol. 19:6029-6040.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 6029-6040
    • Dombek, K.M.1    Voronkova, V.2    Raney, A.3    Young, E.T.4
  • 92
    • 0041689887 scopus 로고    scopus 로고
    • Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae
    • Dong, X., D. A. Mitchell, S. Lobo, L. Zhao, D. J. Bartels, and R. J. Deschenes. 2003. Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:6574-6584.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 6574-6584
    • Dong, X.1    Mitchell, D.A.2    Lobo, S.3    Zhao, L.4    Bartels, D.J.5    Deschenes, R.J.6
  • 93
    • 0022755844 scopus 로고
    • Transcriptional regulation of ribosomal proteins during a nutritional upshift in Saccharomyces cerevisiae
    • Donovan, D. M., and N. J. Pearson. 1986. Transcriptional regulation of ribosomal proteins during a nutritional upshift in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:2429-2435.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 2429-2435
    • Donovan, D.M.1    Pearson, N.J.2
  • 94
    • 1542284052 scopus 로고    scopus 로고
    • The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxy-urea
    • Dubacq, C., A. Chevalier, and C. Mann. 2004. The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxy-urea. Mol. Cell. Biol. 24:2560-2572.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2560-2572
    • Dubacq, C.1    Chevalier, A.2    Mann, C.3
  • 95
    • 0036692080 scopus 로고    scopus 로고
    • Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast
    • Dubacq, C., R. Guerois, R. Courbeyrette, K. Kitagawa, and C. Mann. 2002. Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast. Eukaryot. Cell 1:568-582.
    • (2002) Eukaryot. Cell , vol.1 , pp. 568-582
    • Dubacq, C.1    Guerois, R.2    Courbeyrette, R.3    Kitagawa, K.4    Mann, C.5
  • 96
    • 11244327652 scopus 로고    scopus 로고
    • Nuclear localization destabilizes the stress-regulated transcription factor Msn2
    • Durchschlag, E., W. Reiter, G. Ammerer, and C. Schuller. 2004. Nuclear localization destabilizes the stress-regulated transcription factor Msn2. J. Biol. Chem. 279:55425-55432.
    • (2004) J. Biol. Chem. , vol.279 , pp. 55425-55432
    • Durchschlag, E.1    Reiter, W.2    Ammerer, G.3    Schuller, C.4
  • 97
    • 0030977268 scopus 로고    scopus 로고
    • Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1
    • Egloff, M. P., D. F. Johnson, G. Moorhead, P. T. Cohen, P. Cohen, and D. Barford. 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876-1887.
    • (1997) EMBO J. , vol.16 , pp. 1876-1887
    • Egloff, M.P.1    Johnson, D.F.2    Moorhead, G.3    Cohen, P.T.4    Cohen, P.5    Barford, D.6
  • 98
    • 0024095812 scopus 로고
    • The yeast regulatory protein ADR1 binds in a zinc-dependent manner to the upstream activating sequence of ADH2
    • Eisen, A., W. E. Taylor, H. Blumberg, and E. T. Young. 1988. The yeast regulatory protein ADR1 binds in a zinc-dependent manner to the upstream activating sequence of ADH2. Mol. Cell. Biol. 8:4552-4556.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 4552-4556
    • Eisen, A.1    Taylor, W.E.2    Blumberg, H.3    Young, E.T.4
  • 99
    • 0018969294 scopus 로고
    • Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast
    • Entian, K. D. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:633-637.
    • (1980) Mol. Gen. Genet. , vol.178 , pp. 633-637
    • Entian, K.D.1
  • 100
    • 0020028142 scopus 로고
    • Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae
    • Entian, K. D., and D. Mecke. 1982. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J. Biol. Chem. 257:870-874.
    • (1982) J. Biol. Chem. , vol.257 , pp. 870-874
    • Entian, K.D.1    Mecke, D.2
  • 101
    • 0018845565 scopus 로고
    • Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae
    • Entian, K. D., and F. K. Zimmermann. 1980. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 177:345-350.
    • (1980) Mol. Gen. Genet. , vol.177 , pp. 345-350
    • Entian, K.D.1    Zimmermann, F.K.2
  • 102
    • 0020401969 scopus 로고
    • New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae
    • Entian, K. D., and F. K. Zimmermann. 1982. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J. Bacteriol. 151:1123-1128.
    • (1982) J. Bacteriol. , vol.151 , pp. 1123-1128
    • Entian, K.D.1    Zimmermann, F.K.2
  • 103
    • 0026457028 scopus 로고
    • Regulation of sugar utilization by Saccharomyces cerevisiae
    • Entian, K. D., and J. A. Barnett. 1992. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 17:505-510.
    • (1992) Trends Biochem. Sci. , vol.17 , pp. 505-510
    • Entian, K.D.1    Barnett, J.A.2
  • 104
    • 0017691984 scopus 로고
    • A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphorylation
    • Entian, K. D., F. K. Zimmermann, and I. Scheel. 1977. A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphorylation. Mol. Gen. Genet. 156:99-105.
    • (1977) Mol. Gen. Genet. , vol.156 , pp. 99-105
    • Entian, K.D.1    Zimmermann, F.K.2    Scheel, I.3
  • 105
    • 0027504233 scopus 로고
    • Genetic and molecular characterization of GAL83: Its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae
    • Erickson, J. R., and M. Johnston. 1993. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 135:655-664.
    • (1993) Genetics , vol.135 , pp. 655-664
    • Erickson, J.R.1    Johnston, M.2
  • 106
    • 0028226607 scopus 로고
    • Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae
    • Erickson, J. R., and M. Johnston. 1994. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics 136:1271-1278.
    • (1994) Genetics , vol.136 , pp. 1271-1278
    • Erickson, J.R.1    Johnston, M.2
  • 107
    • 0025651676 scopus 로고
    • Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase
    • Estruch, F., and M. Carlson. 1990. Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 18:6959-6964.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 6959-6964
    • Estruch, F.1    Carlson, M.2
  • 108
    • 0026712359 scopus 로고
    • N-terminal mutations modulate yeast SNF1 protein kinase function
    • Estruch, F., M. A. Treitel, X. Yang, and M. Carlson. 1992. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132:639-650.
    • (1992) Genetics , vol.132 , pp. 639-650
    • Estruch, F.1    Treitel, M.A.2    Yang, X.3    Carlson, M.4
  • 109
    • 0035853552 scopus 로고    scopus 로고
    • Regulation of longevity and stress resistance by Sch9 in yeast
    • Fabrizio, P., F. Pozza, S. D. Pletcber, C. M. Gendron, and V. D. Longo. 2001. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288-290.
    • (2001) Science , vol.292 , pp. 288-290
    • Fabrizio, P.1    Pozza, F.2    Pletcber, S.D.3    Gendron, C.M.4    Longo, V.D.5
  • 110
    • 0030695025 scopus 로고    scopus 로고
    • A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p
    • Feldman, R. M., C. C. Correll, K. B. Kaplan, and R. J. Deshaies. 1997. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221-230.
    • (1997) Cell , vol.91 , pp. 221-230
    • Feldman, R.M.1    Correll, C.C.2    Kaplan, K.B.3    Deshaies, R.J.4
  • 111
    • 0026343742 scopus 로고
    • The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase
    • Feng, Z. H., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reimann, and R. J. Trumbly. 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266:23796-23801.
    • (1991) J. Biol. Chem. , vol.266 , pp. 23796-23801
    • Feng, Z.H.1    Wilson, S.E.2    Peng, Z.Y.3    Schlender, K.K.4    Reimann, E.M.5    Trumbly, R.J.6
  • 112
    • 17444389196 scopus 로고    scopus 로고
    • Protein kinase a regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae
    • Ferguson, S. B., E. S. Anderson, R. B. Harshaw, T. Thate, N. L. Craig, and H. C. Nelson. 2005. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203-1214.
    • (2005) Genetics , vol.169 , pp. 1203-1214
    • Ferguson, S.B.1    Anderson, E.S.2    Harshaw, R.B.3    Thate, T.4    Craig, N.L.5    Nelson, H.C.6
  • 113
    • 0024406857 scopus 로고
    • A novel genetic system to detect protein-protein interactions
    • Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245-246.
    • (1989) Nature , vol.340 , pp. 245-246
    • Fields, S.1    Song, O.2
  • 114
    • 0025942492 scopus 로고
    • GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats
    • Flick, J. S., and M. Johnston. 1991. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol. Biol. Cell 11:5101-5112.
    • (1991) Mol. Biol. Cell , vol.11 , pp. 5101-5112
    • Flick, J.S.1    Johnston, M.2
  • 115
    • 0026611603 scopus 로고
    • G-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae
    • G-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae. Genetics 130:295-304.
    • (1992) Genetics , vol.130 , pp. 295-304
    • Flick, J.S.1    Johnston, M.2
  • 118
    • 0034799351 scopus 로고    scopus 로고
    • Sensors of extracellular nutrients in Saccharomyces cerevisiae
    • Forsberg, H., and P. O. Ljungdahl. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40:91-109.
    • (2001) Curr. Genet. , vol.40 , pp. 91-109
    • Forsberg, H.1    Ljungdahl, P.O.2
  • 119
    • 0035161939 scopus 로고    scopus 로고
    • Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae
    • Francois, J., and J. L. Parrou. 2001. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:125-145.
    • (2001) FEMS Microbiol. Rev. , vol.25 , pp. 125-145
    • Francois, J.1    Parrou, J.L.2
  • 120
    • 0029982653 scopus 로고    scopus 로고
    • The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth
    • Frederick, D. L., and K. Tatchell. 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol. Cell. Biol. 16:2922-2931.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2922-2931
    • Frederick, D.L.1    Tatchell, K.2
  • 121
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 122
    • 0027322842 scopus 로고
    • Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein
    • Ganster, R. W., W. Shen, and M. C. Schmidt. 1993. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Mol. Cell. Biol. 13:3650-3659.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3650-3659
    • Ganster, R.W.1    Shen, W.2    Schmidt, M.C.3
  • 125
    • 0031734864 scopus 로고    scopus 로고
    • Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae
    • Geymonat, M., L. Wang, H. Carreau, and M. Jacquet. 1998. Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30:855-864.
    • (1998) Mol. Microbiol. , vol.30 , pp. 855-864
    • Geymonat, M.1    Wang, L.2    Carreau, H.3    Jacquet, M.4
  • 127
    • 0842288796 scopus 로고    scopus 로고
    • The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA
    • Gilbert, W., and C. Guthrie. 2004. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13:201-212.
    • (2004) Mol. Cell , vol.13 , pp. 201-212
    • Gilbert, W.1    Guthrie, C.2
  • 128
    • 0030479611 scopus 로고    scopus 로고
    • Nuclear organization and transcriptional silencing in yeast
    • Gotta, M., and S. M. Gasser. 1996. Nuclear organization and transcriptional silencing in yeast. Experientia 52:1136-1147.
    • (1996) Experientia , vol.52 , pp. 1136-1147
    • Gotta, M.1    Gasser, S.M.2
  • 129
    • 0036944540 scopus 로고    scopus 로고
    • Molecular mechanisms controlling the localization of protein kinase A
    • Griffioen, G., and J. M. Thevelein. 2002. Molecular mechanisms controlling the localization of protein kinase A. Curr. Genet. 41:199-207.
    • (2002) Curr. Genet. , vol.41 , pp. 199-207
    • Griffioen, G.1    Thevelein, J.M.2
  • 130
    • 0033966775 scopus 로고    scopus 로고
    • Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae
    • Griffioen, G., P. Anghileri, E. Imre, M. D. Baroni, and H. Ruis. 2000. Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J. Biol. Chem. 275:1449-1456.
    • (2000) J. Biol. Chem. , vol.275 , pp. 1449-1456
    • Griffioen, G.1    Anghileri, P.2    Imre, E.3    Baroni, M.D.4    Ruis, H.5
  • 131
    • 0025996980 scopus 로고
    • Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression
    • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597-8601.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 8597-8601
    • Griggs, D.W.1    Johnston, M.2
  • 132
    • 0032479988 scopus 로고    scopus 로고
    • Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae
    • Hall, D. D., D. D. Markwardt, F. Parviz, and W. Heideman. 1998. Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J. 17:4370-4378.
    • (1998) EMBO J. , vol.17 , pp. 4370-4378
    • Hall, D.D.1    Markwardt, D.D.2    Parviz, F.3    Heideman, W.4
  • 133
    • 4644244293 scopus 로고    scopus 로고
    • Transcriptional activation of c-myc proto-oncogene by WT1 protein
    • Han, Y., S. San-Marina, J. Liu, and M. D. Minden. 2004. Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23:6933-6941.
    • (2004) Oncogene , vol.23 , pp. 6933-6941
    • Han, Y.1    San-Marina, S.2    Liu, J.3    Minden, M.D.4
  • 134
    • 0028365073 scopus 로고
    • Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state
    • Haney, S. A., and J. R. Broach. 1994. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state. J. Biol. Chem. 269:16541-16548.
    • (1994) J. Biol. Chem. , vol.269 , pp. 16541-16548
    • Haney, S.A.1    Broach, J.R.2
  • 135
    • 0035984604 scopus 로고    scopus 로고
    • The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits
    • Harashima, T., and J. Heitman. 2002. The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits. Mol. Cell 10:163-173.
    • (2002) Mol. Cell , vol.10 , pp. 163-173
    • Harashima, T.1    Heitman, J.2
  • 136
    • 0031717105 scopus 로고    scopus 로고
    • The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
    • Hardie, D. G., D. Carling, and M. Carlson. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821-855.
    • (1998) Annu. Rev. Biochem. , vol.67 , pp. 821-855
    • Hardie, D.G.1    Carling, D.2    Carlson, M.3
  • 137
    • 8544226910 scopus 로고    scopus 로고
    • A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast
    • Harkness, T. A., K. A. Shea, C. Legrand, M. Brahmania, and G. F. Davies. 2004. A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast. Genetics 168:759-774.
    • (2004) Genetics , vol.168 , pp. 759-774
    • Harkness, T.A.1    Shea, K.A.2    Legrand, C.3    Brahmania, M.4    Davies, G.F.5
  • 138
    • 0016134273 scopus 로고
    • Saccharomyces cerevisiae cell cycle
    • Hartwell, L. H. 1974. Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38:164-198.
    • (1974) Bacteriol. Rev. , vol.38 , pp. 164-198
    • Hartwell, L.H.1
  • 139
    • 0015847513 scopus 로고
    • Genetic control of the cell division cycle in yeast. V. Genetic analysis of cdc mutants
    • Hartwell, L. H., R. K. Mortimer, J. Culotti, and M. Culotti. 1973. Genetic control of the cell division cycle in yeast. V. Genetic analysis of cdc mutants. Genetics 74:267-286.
    • (1973) Genetics , vol.74 , pp. 267-286
    • Hartwell, L.H.1    Mortimer, R.K.2    Culotti, J.3    Culotti, M.4
  • 140
    • 1242339579 scopus 로고    scopus 로고
    • Dissecting regulatory networks by means of two-dimensional gel electrophoresis: Application to the study of the diauxic shift in the yeast Saccharomyces cerevisiae
    • Haurie, V., F. Sagliocco, and H. Boucherie. 2004. Dissecting regulatory networks by means of two-dimensional gel electrophoresis: application to the study of the diauxic shift in the yeast Saccharomyces cerevisiae. Proteomics 4:364-373.
    • (2004) Proteomics , vol.4 , pp. 364-373
    • Haurie, V.1    Sagliocco, F.2    Boucherie, H.3
  • 141
    • 0035808454 scopus 로고    scopus 로고
    • The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae
    • Haurie, V., M. Perrot, T. Mini, P. Jeno, F. Sagliocco, and H. Boucherie. 2001. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J. Biol. Chem. 276:76-85.
    • (2001) J. Biol. Chem. , vol.276 , pp. 76-85
    • Haurie, V.1    Perrot, M.2    Mini, T.3    Jeno, P.4    Sagliocco, F.5    Boucherie, H.6
  • 142
    • 0036654975 scopus 로고    scopus 로고
    • A genome-wide screen for site-specific DNA-binding proteins
    • Hazbun, T. R., and S. Fields. 2002. A genome-wide screen for site-specific DNA-binding proteins. Mol. Cell Proteomics 1:538-543.
    • (2002) Mol. Cell Proteomics , vol.1 , pp. 538-543
    • Hazbun, T.R.1    Fields, S.2
  • 143
    • 1342282918 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase
    • Hedbacker, K., R. Townley, and M. Carlson. 2004. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol. Cell. Biol. 24:1836-1843.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1836-1843
    • Hedbacker, K.1    Townley, R.2    Carlson, M.3
  • 144
    • 4444311163 scopus 로고    scopus 로고
    • Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase
    • Hedbacker, K., S. P. Hong, and M. Carlson. 2004. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol. Cell. Biol. 24:8255-8263.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8255-8263
    • Hedbacker, K.1    Hong, S.P.2    Carlson, M.3
  • 145
    • 0028930777 scopus 로고
    • CAT8, a new zinc cluster-encoding gene necessary for depression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae
    • Hedges, D., M. Proft, and K. D. Entian. 1995. CAT8, a new zinc cluster-encoding gene necessary for depression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1915-1922.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1915-1922
    • Hedges, D.1    Proft, M.2    Entian, K.D.3
  • 146
    • 0345647082 scopus 로고    scopus 로고
    • The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae
    • Herrero, P., C. Martinez-Campa, and F. Moreno. 1998. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett. 434:71-76.
    • (1998) FEBS Lett. , vol.434 , pp. 71-76
    • Herrero, P.1    Martinez-Campa, C.2    Moreno, F.3
  • 147
    • 0028797325 scopus 로고
    • Transcription regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes
    • Herrero, P., J. Galindez, N. Ruiz, C. Martinez-Campa, and F. Moreno. 1995. Transcription regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11:137-144.
    • (1995) Yeast , vol.11 , pp. 137-144
    • Herrero, P.1    Galindez, J.2    Ruiz, N.3    Martinez-Campa, C.4    Moreno, F.5
  • 149
    • 0029054139 scopus 로고
    • The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae
    • Hisamoto, N., D. L. Frederick, K. Sugimoto, K. Tatchell, and K. Matsumoto. 1995. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3767-3776.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 3767-3776
    • Hisamoto, N.1    Frederick, D.L.2    Sugimoto, K.3    Tatchell, K.4    Matsumoto, K.5
  • 151
    • 0019320875 scopus 로고
    • Characterization of a cyclic AMP-binding protein from bakers' yeast. Identification as a regulatory subunit of cyclic AMP-dependent protein kinase
    • Hixson, C. S., and E. G. Krebs. 1980. Characterization of a cyclic AMP-binding protein from bakers' yeast. Identification as a regulatory subunit of cyclic AMP-dependent protein kinase. J. Biol. Chem. 255:2137-2145.
    • (1980) J. Biol. Chem. , vol.255 , pp. 2137-2145
    • Hixson, C.S.1    Krebs, E.G.2
  • 152
    • 0023144888 scopus 로고
    • The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehydes-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae
    • Holland, M. J., T. Yokoi, J. P. Holland, K. Myambo, and M. A. Innis. 1987. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehydes-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:813-820.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 813-820
    • Holland, M.J.1    Yokoi, T.2    Holland, J.P.3    Myambo, K.4    Innis, M.A.5
  • 153
    • 0017056930 scopus 로고
    • Catabolite inactivation in yeast
    • Holzer, H. 1976. Catabolite inactivation in yeast. Trends Biochem. Sci. 1:178-181.
    • (1976) Trends Biochem. Sci. , vol.1 , pp. 178-181
    • Holzer, H.1
  • 154
    • 0024832940 scopus 로고
    • Proteolytic catabolite inactivation in Saccharomyces cerevisiae
    • Holzer, H. 1989. Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol. Celular 21:305-319.
    • (1989) Revis Biol. Celular , vol.21 , pp. 305-319
    • Holzer, H.1
  • 155
    • 0041305909 scopus 로고    scopus 로고
    • Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
    • Hong, S. P., F. C. Leiper, A. Woods, D. Carling, and M. Carlson. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100:8839-8843.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8839-8843
    • Hong, S.P.1    Leiper, F.C.2    Woods, A.3    Carling, D.4    Carlson, M.5
  • 156
    • 0037040938 scopus 로고    scopus 로고
    • Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
    • Horak, J., J. Regelmann, and D. H. Wolf. 2002. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6- bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J. Biol. Chem. 277:8248-8254.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8248-8254
    • Horak, J.1    Regelmann, J.2    Wolf, D.H.3
  • 157
    • 0037205450 scopus 로고    scopus 로고
    • The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway
    • Howard, S. C., Y. V. Budovskaya, Y. W. Chang, and P. K. Herman. 2002. The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. J. Biol. Chem. 277:19488-19497.
    • (2002) J. Biol. Chem. , vol.277 , pp. 19488-19497
    • Howard, S.C.1    Budovskaya, Y.V.2    Chang, Y.W.3    Herman, P.K.4
  • 158
    • 0035106567 scopus 로고    scopus 로고
    • F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat
    • Hsiung, Y. G., H. C. Chang, J. Pellequer, R. La Valle, S. Lanker, and C. Wittenberg. 2001. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Mol. Cell. Biol. 21:2506-2520.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2506-2520
    • Hsiung, Y.G.1    Chang, H.C.2    Pellequer, J.3    La Valle, R.4    Lanker, S.5    Wittenberg, C.6
  • 160
    • 0029080691 scopus 로고
    • MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae
    • Hu, Z., J. O. Nehlin, H. Ronne, and C. A. Michels. 1995. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Curr. Genet. 28:258-266.
    • (1995) Curr. Genet. , vol.28 , pp. 258-266
    • Hu, Z.1    Nehlin, J.O.2    Ronne, H.3    Michels, C.A.4
  • 161
    • 0033958127 scopus 로고    scopus 로고
    • Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces
    • Hu, Z., Y. Yue, H. Jiang, B. Zhang, P. W. Sherwood, and C. A. Michels. 2000. Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces. Genetics 154:121-132.
    • (2000) Genetics , vol.154 , pp. 121-132
    • Hu, Z.1    Yue, Y.2    Jiang, H.3    Zhang, B.4    Sherwood, P.W.5    Michels, C.A.6
  • 162
    • 0029967586 scopus 로고    scopus 로고
    • Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae
    • Huang, D., K. T. Chun, M. G. Goebl, and P. J. Roach. 1996. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143:119-127.
    • (1996) Genetics , vol.143 , pp. 119-127
    • Huang, D.1    Chun, K.T.2    Goebl, M.G.3    Roach, P.J.4
  • 163
    • 0028347528 scopus 로고
    • Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae
    • Hubbard, E. J., R. Jiang, and M. Carlson. 1994. Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:1972-1978.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1972-1978
    • Hubbard, E.J.1    Jiang, R.2    Carlson, M.3
  • 164
    • 0026598897 scopus 로고
    • Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae
    • Hubbard, E. J., X. L. Yang, and M. Carlson. 1992. Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae. Genetics 130:71-80.
    • (1992) Genetics , vol.130 , pp. 71-80
    • Hubbard, E.J.1    Yang, X.L.2    Carlson, M.3
  • 166
    • 10344259661 scopus 로고    scopus 로고
    • Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events
    • Hung, G. C., C. R. Brown, A. B. Wolfe, J. Liu, and H. L. Chiang. 2004. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J. Biol. Chem. 279:49138-49150.
    • (2004) J. Biol. Chem. , vol.279 , pp. 49138-49150
    • Hung, G.C.1    Brown, C.R.2    Wolfe, A.B.3    Liu, J.4    Chiang, H.L.5
  • 167
    • 0022395294 scopus 로고
    • Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei
    • Hutchison, N., and H. Weintraub. 1985. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43:471-482.
    • (1985) Cell , vol.43 , pp. 471-482
    • Hutchison, N.1    Weintraub, H.2
  • 169
    • 0038022718 scopus 로고    scopus 로고
    • Targeting genes and transcription factors to segregated nuclear compartments
    • Isogai, Y., and R. Tjian. 2003. Targeting genes and transcription factors to segregated nuclear compartments. Curr. Opin. Cell Biol. 15:296-303.
    • (2003) Curr. Opin. Cell Biol. , vol.15 , pp. 296-303
    • Isogai, Y.1    Tjian, R.2
  • 170
    • 0032530333 scopus 로고    scopus 로고
    • The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCF-Grr1 complex
    • Jaquenoud, M., M. P. Gulli, K. Peter, and M. Peter. 1998. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCF-Grr1 complex. EMBO J. 17:5360-5373.
    • (1998) EMBO J. , vol.17 , pp. 5360-5373
    • Jaquenoud, M.1    Gulli, M.P.2    Peter, K.3    Peter, M.4
  • 171
    • 0030858383 scopus 로고    scopus 로고
    • Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces
    • Jiang, H., I. Medintz, and C. A. Michels. 1997. Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces. Mol. Biol. Cell 8:1293-1304.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1293-1304
    • Jiang, H.1    Medintz, I.2    Michels, C.A.3
  • 172
    • 0033983164 scopus 로고    scopus 로고
    • Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces
    • Jiang, H., I. Medintz, B. Zhang, and C. A. Michels. 2000. Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J. Bacteriol. 182:647-654.
    • (2000) J. Bacteriol. , vol.182 , pp. 647-654
    • Jiang, H.1    Medintz, I.2    Zhang, B.3    Michels, C.A.4
  • 173
    • 0033794796 scopus 로고    scopus 로고
    • Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae
    • Jiang, H., K. Tatchell, S. Liu, and C. A. Michels. 2000. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:411-422.
    • (2000) Mol. Gen. Genet. , vol.263 , pp. 411-422
    • Jiang, H.1    Tatchell, K.2    Liu, S.3    Michels, C.A.4
  • 174
    • 0030468365 scopus 로고    scopus 로고
    • Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
    • Jiang, R., and M. Carlson. 1996. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10:3105-3115.
    • (1996) Genes Dev. , vol.10 , pp. 3105-3115
    • Jiang, R.1    Carlson, M.2
  • 175
    • 0030953974 scopus 로고    scopus 로고
    • The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
    • Jiang, R., and M. Carlson. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099-2106.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2099-2106
    • Jiang, R.1    Carlson, M.2
  • 176
    • 0032404121 scopus 로고    scopus 로고
    • Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway
    • Jiang, Y., C. Davis, and J. R. Broach. 1998. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J. 17:6942-6951.
    • (1998) EMBO J. , vol.17 , pp. 6942-6951
    • Jiang, Y.1    Davis, C.2    Broach, J.R.3
  • 177
    • 0023664521 scopus 로고
    • Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae. Purification and characterization
    • Johnson, K. E., S. Cameron, T. Toda, M. Wigler, and M. J. Zoller. 1987. Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 262:8636-8642.
    • (1987) J. Biol. Chem. , vol.262 , pp. 8636-8642
    • Johnson, K.E.1    Cameron, S.2    Toda, T.3    Wigler, M.4    Zoller, M.J.5
  • 178
    • 0032941868 scopus 로고    scopus 로고
    • Feasting, fasting and fermenting. Glucose sensing in yeast and other cells
    • Johnston, M. 1999. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15:29-33.
    • (1999) Trends Genet. , vol.15 , pp. 29-33
    • Johnston, M.1
  • 179
    • 14644424616 scopus 로고    scopus 로고
    • Glucose as a hormone: Receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae
    • Johnston, M., and J. H. Kim. 2005. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem. Soc. Trans. 33:247-252.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 247-252
    • Johnston, M.1    Kim, J.H.2
  • 180
    • 0028230982 scopus 로고
    • Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae
    • Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3834-3841.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 3834-3841
    • Johnston, M.1    Flick, J.S.2    Pexton, T.3
  • 181
    • 5444256434 scopus 로고    scopus 로고
    • A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size
    • Jorgensen, P., I. Rupes, J. R. Sharom, L. Schneper, J. R. Broach, and M. Tyers. 2004. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 18:2491-2505.
    • (2004) Genes Dev. , vol.18 , pp. 2491-2505
    • Jorgensen, P.1    Rupes, I.2    Sharom, J.R.3    Schneper, L.4    Broach, J.R.5    Tyers, M.6
  • 182
    • 1242300132 scopus 로고    scopus 로고
    • Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
    • Kaniak, A., Z. Xue, D. Macool, J. H. Kim, and M. Johnston. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221-231.
    • (2004) Eukaryot. Cell , vol.3 , pp. 221-231
    • Kaniak, A.1    Xue, Z.2    Macool, D.3    Kim, J.H.4    Johnston, M.5
  • 183
    • 0032927877 scopus 로고    scopus 로고
    • CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity
    • Kasper, L. H., P. K. Brindle, C. A. Schnabel, C. E. Pritchard, M. L. Cleary, and J. M. van Deursen. 1999. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol. Cell. Biol. 19:764-776.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 764-776
    • Kasper, L.H.1    Brindle, P.K.2    Schnabel, C.A.3    Pritchard, C.E.4    Cleary, M.L.5    Van Deursen, J.M.6
  • 184
    • 0036479287 scopus 로고    scopus 로고
    • Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase
    • Kido, M., F. Shima, T. Satoh, T. Asato, K. Kariya, and T. Kataoka. 2002. Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase. J. Biol. Chem. 277:3117-3123.
    • (2002) J. Biol. Chem. , vol.277 , pp. 3117-3123
    • Kido, M.1    Shima, F.2    Satoh, T.3    Asato, T.4    Kariya, K.5    Kataoka, T.6
  • 185
    • 0019818270 scopus 로고
    • Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae
    • Kief, D. R., and J. R. Warner. 1981. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:1007-1015.
    • (1981) Mol. Cell. Biol. , vol.1 , pp. 1007-1015
    • Kief, D.R.1    Warner, J.R.2
  • 186
    • 0042592912 scopus 로고    scopus 로고
    • Specificity and regulation of DNA binding in the yeast glucose transporter gene repressor Rgt1
    • Kim, J. H., J. Polish, and M. Johnston. 2003. Specificity and regulation of DNA binding in the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23:5208-5216.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5208-5216
    • Kim, J.H.1    Polish, J.2    Johnston, M.3
  • 187
    • 0032441425 scopus 로고    scopus 로고
    • An essential function of Grr1 for the degradation of Cln2 is to act as a binding core that links Cln2 to Skp1
    • Kishi, T., and F. Yamao. 1998. An essential function of Grr1 for the degradation of Cln2 is to act as a binding core that links Cln2 to Skp1. J. Cell Sci. 111:3655-3661.
    • (1998) J. Cell Sci. , vol.111 , pp. 3655-3661
    • Kishi, T.1    Yamao, F.2
  • 188
    • 0028209313 scopus 로고
    • Protein kinase a mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity
    • Klein, C., and K. Struhl. 1994. Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol. Cell. Biol. 14:1920-1928.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1920-1928
    • Klein, C.1    Struhl, K.2
  • 189
    • 0031983739 scopus 로고    scopus 로고
    • Glucose control in Saccharomyces cerevisiae: The role of Mig1 in metabolic functions
    • Klein, C. J., L. Olsson, and J. Nielsen. 1998. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology 144:13-24.
    • (1998) Microbiology , vol.144 , pp. 13-24
    • Klein, C.J.1    Olsson, L.2    Nielsen, J.3
  • 190
    • 0032986914 scopus 로고    scopus 로고
    • A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
    • Kraakman, L., K. Lemaire, P. Ma, A. W. Teunissen, M. C. Donaton, P. Van Dijck, J. Winderickx, J. H. de Winde, and J. M. Thevelein. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32:1002-1012.
    • (1999) Mol. Microbiol. , vol.32 , pp. 1002-1012
    • Kraakman, L.1    Lemaire, K.2    Ma, P.3    Teunissen, A.W.4    Donaton, M.C.5    Van Dijck, P.6    Winderickx, J.7    De Winde, J.H.8    Thevelein, J.M.9
  • 191
    • 0033213970 scopus 로고    scopus 로고
    • Structure-function analysis of yeast hexokinase: Structural requirements for triggering cAMP signalling and catabolite repression
    • Kraakman, L. S., J. Winderickx, J. M. Thevelein, and J. H. de Winde. 1999. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem. J. 343:159-168.
    • (1999) Biochem. J. , vol.343 , pp. 159-168
    • Kraakman, L.S.1    Winderickx, J.2    Thevelein, J.M.3    De Winde, J.H.4
  • 192
    • 0030710569 scopus 로고    scopus 로고
    • Transcriptional control of the yeast acetyl-CoA synthase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6
    • Kratzer, S., and H. J. Schuller. 1997. Transcriptional control of the yeast acetyl-CoA synthase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Mol. Microbiol. 26:631-641.
    • (1997) Mol. Microbiol. , vol.26 , pp. 631-641
    • Kratzer, S.1    Schuller, H.J.2
  • 193
    • 0027976826 scopus 로고
    • In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae
    • Kriegel, T. M., J. Rush, A. B. Vojtek, D. Clifton, and D. G. Fraenkel. 1994. In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33:149-152.
    • (1994) Biochemistry , vol.33 , pp. 149-152
    • Kriegel, T.M.1    Rush, J.2    Vojtek, A.B.3    Clifton, D.4    Fraenkel, D.G.5
  • 194
    • 0031886049 scopus 로고    scopus 로고
    • Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1
    • Kuchin, S., and M. Carlson. 1998. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18:1163-1171.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 1163-1171
    • Kuchin, S.1    Carlson, M.2
  • 195
    • 0034608811 scopus 로고    scopus 로고
    • A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme
    • Kuchin, S., I. Treich, and M. Carlson. 2000. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 97:7916-7920.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 7916-7920
    • Kuchin, S.1    Treich, I.2    Carlson, M.3
  • 196
    • 0036265376 scopus 로고    scopus 로고
    • Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
    • Kuchin, S., V. K. Vyas, and M. Carlson. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3994-4000
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 197
    • 0037326435 scopus 로고    scopus 로고
    • Role of the yeast Snf1 protein kinase in invasive growth
    • Kuchin, S., V. K. Vyas, and M. Carlson. 2003. Role of the yeast Snf1 protein kinase in invasive growth. Biochem. Soc. Trans. 31:175-177.
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 175-177
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 198
    • 0037295532 scopus 로고    scopus 로고
    • Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae
    • Kuchin, S., V. K. Vyas, E. Kanter, S. P. Hong, and M. Carlson. 2003. Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae. Genetics 163:507-514.
    • (2003) Genetics , vol.163 , pp. 507-514
    • Kuchin, S.1    Vyas, V.K.2    Kanter, E.3    Hong, S.P.4    Carlson, M.5
  • 199
    • 0027500533 scopus 로고
    • The effect of posttranslational modifications on the interactions of Ras2 with adenylyl cyclase
    • Kuroda, Y., N. Suzuki, and T. Kataoka. 1993. The effect of posttranslational modifications on the interactions of Ras2 with adenylyl cyclase. Science 259:683-686.
    • (1993) Science , vol.259 , pp. 683-686
    • Kuroda, Y.1    Suzuki, N.2    Kataoka, T.3
  • 200
    • 0030162194 scopus 로고    scopus 로고
    • A nuclear traffic jam: Unraveling multicomponent machines and compartments
    • Laemmli, U. K., and R. Tjian. 1996. A nuclear traffic jam: unraveling multicomponent machines and compartments. Curr. Opin. Cell Biol. 8:299-302.
    • (1996) Curr. Opin. Cell Biol. , vol.8 , pp. 299-302
    • Laemmli, U.K.1    Tjian, R.2
  • 201
    • 0033962922 scopus 로고    scopus 로고
    • Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
    • Lafuente, M. J., C. Gancedo, J. C. Jauniaux, and J. M. Gancedo. 2000. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 35:161-172.
    • (2000) Mol. Microbiol. , vol.35 , pp. 161-172
    • Lafuente, M.J.1    Gancedo, C.2    Jauniaux, J.C.3    Gancedo, J.M.4
  • 202
    • 0142061170 scopus 로고    scopus 로고
    • Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1
    • Lakshmanan, J., A. L. Mosley, and S. Ozcan. 2003. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr. Genet. 44:19-25.
    • (2003) Curr. Genet. , vol.44 , pp. 19-25
    • Lakshmanan, J.1    Mosley, A.L.2    Ozcan, S.3
  • 203
    • 0033886103 scopus 로고    scopus 로고
    • Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast
    • Lee, M., S. Chatterjee, and K. Struhl. 2000. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast. Genetics 155:1535-1542.
    • (2000) Genetics , vol.155 , pp. 1535-1542
    • Lee, M.1    Chatterjee, S.2    Struhl, K.3
  • 204
    • 0038735287 scopus 로고    scopus 로고
    • Isolation of mutations in the catalytic domain of the Snf1 kinase that render its activity, independent of the Snf4 subunit
    • Leech, A., N. Nath, R. R. MeCartney, and M. C. Schmidt. 2003. Isolation of mutations in the catalytic domain of the Snf1 kinase that render its activity, independent of the Snf4 subunit. Eukaryot. Cell 2:265-273.
    • (2003) Eukaryot. Cell , vol.2 , pp. 265-273
    • Leech, A.1    Nath, N.2    Mecartney, R.R.3    Schmidt, M.C.4
  • 205
    • 6344280942 scopus 로고    scopus 로고
    • Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae
    • Lemaire, K., S. Van de Velde, P. Van Dijck, and J. M. Thevelein. 2004. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol. Cell 16:293-299.
    • (2004) Mol. Cell , vol.16 , pp. 293-299
    • Lemaire, K.1    Van De Velde, S.2    Van Dijck, P.3    Thevelein, J.M.4
  • 206
    • 0029863284 scopus 로고    scopus 로고
    • Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: A new role for SNF1 in the glucose response
    • Lesage, P., X. Yang, and M. Carlson. 1996. Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol. Cell. Biol. 16:1921-1928.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 1921-1928
    • Lesage, P.1    Yang, X.2    Carlson, M.3
  • 207
    • 0024412752 scopus 로고
    • Transcriptional repression of eukaryotic promoters
    • Levine, M., and J. L. Manley. 1989. Transcriptional repression of eukaryotic promoters. Cell 59:405-408.
    • (1989) Cell , vol.59 , pp. 405-408
    • Levine, M.1    Manley, J.L.2
  • 208
    • 0032788547 scopus 로고    scopus 로고
    • Transcriptional elements involved in the repression of ribosomal protein synthesis
    • Li, B., C. R. Nierras, and J. R. Warner. 1999. Transcriptional elements involved in the repression of ribosomal protein synthesis. Mol. Cell. Biol. 19:5393-5404.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 5393-5404
    • Li, B.1    Nierras, C.R.2    Warner, J.R.3
  • 209
    • 0030874516 scopus 로고    scopus 로고
    • Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell cycle
    • Li, F. N., and M. Johnston. 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16:5629-5638.
    • (1997) EMBO J. , vol.16 , pp. 5629-5638
    • Li, F.N.1    Johnston, M.2
  • 210
    • 0028826925 scopus 로고
    • Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme
    • Li, Y., S. Bjorklund, Y. W. Jiang, Y. J. Kim, W. S. Lane, D. J. Stillman, and R. D. Kornberg. 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92:10864-10868.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 10864-10868
    • Li, Y.1    Bjorklund, S.2    Jiang, Y.W.3    Kim, Y.J.4    Lane, W.S.5    Stillman, D.J.6    Kornberg, R.D.7
  • 211
    • 0034934774 scopus 로고    scopus 로고
    • Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association
    • Lieb, J. D., X. Liu, D. Botstein, and P. O. Brown. 2001. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28:327-334.
    • (2001) Nat. Genet. , vol.28 , pp. 327-334
    • Lieb, J.D.1    Liu, X.2    Botstein, D.3    Brown, P.O.4
  • 213
    • 0038644946 scopus 로고    scopus 로고
    • Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing
    • Lin, S. S., J. K. Manchester, and J. L. Gordon. 2003. Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J. Biol. Chem. 278:13390-13397.
    • (2003) J. Biol. Chem. , vol.278 , pp. 13390-13397
    • Lin, S.S.1    Manchester, J.K.2    Gordon, J.L.3
  • 214
    • 0025801037 scopus 로고
    • Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae
    • Lodi, T., C. Donnini, and I. Ferrero. 1991. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. J. Gen. Microbiol. 137:1039-1044.
    • (1991) J. Gen. Microbiol. , vol.137 , pp. 1039-1044
    • Lodi, T.1    Donnini, C.2    Ferrero, I.3
  • 215
    • 0032729879 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway
    • Loeb, J. D., T. A. Kerentseva, T. Pan, M. Sepulveda-Becerra, and H. Liu. 1999. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153:1535-1546.
    • (1999) Genetics , vol.153 , pp. 1535-1546
    • Loeb, J.D.1    Kerentseva, T.A.2    Pan, T.3    Sepulveda-Becerra, M.4    Liu, H.5
  • 216
    • 0038687689 scopus 로고    scopus 로고
    • The Ras and Sch9 pathways regulate stress resistance and longevity
    • Longo, V. D. 2003. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp. Gerontol. 38:807-811.
    • (2003) Exp. Gerontol. , vol.38 , pp. 807-811
    • Longo, V.D.1
  • 217
    • 0033967762 scopus 로고    scopus 로고
    • The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae
    • Lorenz, M. C., X. Pan, T. Harashima, M. E. Cardenas, Y. Xue, J. P. Hirsch, and J. Heitman. 2000. The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609-622.
    • (2000) Genetics , vol.154 , pp. 609-622
    • Lorenz, M.C.1    Pan, X.2    Harashima, T.3    Cardenas, M.E.4    Xue, Y.5    Hirsch, J.P.6    Heitman, J.7
  • 218
    • 0032568542 scopus 로고    scopus 로고
    • Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • Ludin, K., R. Jiang, and M. Carlson. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:6245-6250.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6245-6250
    • Ludin, K.1    Jiang, R.2    Carlson, M.3
  • 219
    • 0028293916 scopus 로고
    • Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1
    • Lundin, M., J. O. Nehlin, and H. Ronne. 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol. Cell. Biol. 14:1979-1985.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1979-1985
    • Lundin, M.1    Nehlin, J.O.2    Ronne, H.3
  • 220
    • 0029783926 scopus 로고    scopus 로고
    • Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
    • Lutfiyya, L. L., and M. Johnston. 1996. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16:4790-4797.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4790-4797
    • Lutfiyya, L.L.1    Johnston, M.2
  • 221
    • 0031761689 scopus 로고    scopus 로고
    • Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
    • Lutfiyya, L. L., V. R. Iyer, J. DeRisi, M. J. DeVit, P. O. Brown, and M. Johnston. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377-1391.
    • (1998) Genetics , vol.150 , pp. 1377-1391
    • Lutfiyya, L.L.1    Iyer, V.R.2    Derisi, J.3    Devit, M.J.4    Brown, P.O.5    Johnston, M.6
  • 222
    • 0022815674 scopus 로고
    • Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression
    • Ma, H., and D. Botstein. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6:4046-4052.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 4046-4052
    • Ma, H.1    Botstein, D.2
  • 223
    • 0029060776 scopus 로고
    • The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase
    • MacKelvie, S. H., P. D. Andrews, and M. J. Stark. 1995. The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. Mol. Cell. Biol. 15:3777-3785.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 3777-3785
    • MacKelvie, S.H.1    Andrews, P.D.2    Stark, M.J.3
  • 225
    • 0037041395 scopus 로고    scopus 로고
    • An extensive network of coupling among gene expression machines
    • Maniatis, T., and R. Reed. 2002. An extensive network of coupling among gene expression machines. Nature 416:499-506.
    • (2002) Nature , vol.416 , pp. 499-506
    • Maniatis, T.1    Reed, R.2
  • 227
    • 0025021668 scopus 로고
    • Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae
    • Marshall-Carlson, L., J. L. Celenza, B. C. Laurent, and M. Carlson. 1990. Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1105-1115.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 1105-1115
    • Marshall-Carlson, L.1    Celenza, J.L.2    Laurent, B.C.3    Carlson, M.4
  • 228
    • 0025818026 scopus 로고
    • Dominant and recessive suppressors that restore glucose transport in a yeast Snf3 mutant
    • Marshall-Carlson, L., L. Neigeborn, D. Coons, L. Bisson, and M. Carlson. 1991. Dominant and recessive suppressors that restore glucose transport in a yeast Snf3 mutant. Genetics 128:505-512.
    • (1991) Genetics , vol.128 , pp. 505-512
    • Marshall-Carlson, L.1    Neigeborn, L.2    Coons, D.3    Bisson, L.4    Carlson, M.5
  • 229
    • 0020029205 scopus 로고
    • Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase
    • Matsumoto, K., I. Uno, Y. Oshima, and T. Ishikawa. 1982. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 79:2355-2359.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2355-2359
    • Matsumoto, K.1    Uno, I.2    Oshima, Y.3    Ishikawa, T.4
  • 230
    • 0020575692 scopus 로고
    • Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae
    • Matsumoto, K., T. Yoshimatsu, and Y. Oshima. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405-1414.
    • (1983) J. Bacteriol. , vol.153 , pp. 1405-1414
    • Matsumoto, K.1    Yoshimatsu, T.2    Oshima, Y.3
  • 231
    • 0034772470 scopus 로고    scopus 로고
    • Human pancreatic glucokinase (GlkB) complements the glucose signalling defect of Saccharomyces cerevisiae hxk2 mutants
    • Mayordomo, I., and P. Sanz. 2001. Human pancreatic glucokinase (GlkB) complements the glucose signalling defect of Saccharomyces cerevisiae hxk2 mutants. Yeast 18:1309-1316.
    • (2001) Yeast , vol.18 , pp. 1309-1316
    • Mayordomo, I.1    Sanz, P.2
  • 232
    • 0038356616 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease
    • Mayordomo, I., J. Regelmann, J. Horak, and P. Sanz. 2003. Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease. FEBS Lett. 544:160-164.
    • (2003) FEBS Lett. , vol.544 , pp. 160-164
    • Mayordomo, I.1    Regelmann, J.2    Horak, J.3    Sanz, P.4
  • 233
    • 0024988790 scopus 로고
    • Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase
    • Mbonyi, K., L. van Aelst, J. C. Arguelles, A. W. Jans, and J. M. Thevelein. 1990. Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 10:4518-4523.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 4518-4523
    • Mbonyi, K.1    Van Aelst, L.2    Arguelles, J.C.3    Jans, A.W.4    Thevelein, J.M.5
  • 234
    • 84975230076 scopus 로고
    • Studies on energy-yielding reactions in thymus nuclei. II. Pathways of aerobic carbohydrate catabolism
    • McEwen, B. S., V. G. Allfrey, and A. E. Mirsky. 1963. Studies on energy-yielding reactions in thymus nuclei. II. Pathways of aerobic carbohydrate catabolism. J. Biol. Chem. 238:2571-2578.
    • (1963) J. Biol. Chem. , vol.238 , pp. 2571-2578
    • McEwen, B.S.1    Allfrey, V.G.2    Mirsky, A.E.3
  • 235
    • 0033547431 scopus 로고    scopus 로고
    • Regulation of the Wilms' tumour suppressor protein transcriptional activation domain
    • MeKay, L. M., B. Carpenter, and S. G. Roberts. 1999. Regulation of the Wilms' tumour suppressor protein transcriptional activation domain. Oncogene 18:6546-6554.
    • (1999) Oncogene , vol.18 , pp. 6546-6554
    • Mekay, L.M.1    Carpenter, B.2    Roberts, S.G.3
  • 237
    • 0032955314 scopus 로고    scopus 로고
    • The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling
    • Mintzer, K. A., and J. Field. 1999. The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling. Cell Signal. 11:127-135.
    • (1999) Cell Signal. , vol.11 , pp. 127-135
    • Mintzer, K.A.1    Field, J.2
  • 238
    • 5444260778 scopus 로고    scopus 로고
    • Spatial positioning; a new dimension in genome function
    • Misteli, T. 2004. Spatial positioning; a new dimension in genome function. Cell 119:153-156.
    • (2004) Cell , vol.119 , pp. 153-156
    • Misteli, T.1
  • 239
    • 18744375181 scopus 로고    scopus 로고
    • Concepts in nuclear architecture
    • Misteli, T. 2005. Concepts in nuclear architecture. Bioassays 27:477-487.
    • (2005) Bioassays , vol.27 , pp. 477-487
    • Misteli, T.1
  • 240
    • 0031834613 scopus 로고    scopus 로고
    • The cellular organization of gene expression
    • Misteli, T., and D. L. Spector. 1998. The cellular organization of gene expression. Curr. Opin. Cell Biol. 10:323-331.
    • (1998) Curr. Opin. Cell Biol. , vol.10 , pp. 323-331
    • Misteli, T.1    Spector, D.L.2
  • 241
    • 0025882880 scopus 로고
    • Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1
    • Mitts, M. R., J. Bradshaw-Rouse, and W. Heideman. 1991. Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1. Mol. Cell. Biol. 11:4591-4598.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4591-4598
    • Mitts, M.R.1    Bradshaw-Rouse, J.2    Heideman, W.3
  • 242
    • 0033624867 scopus 로고    scopus 로고
    • Activation of basal transcription by a mutation in SIN4, a yeast global repressor, occurs through a mechanism different from activator-mediated transcriptional enhancement
    • Mizuno, T., and S. Harashima. 2000. Activation of basal transcription by a mutation in SIN4, a yeast global repressor, occurs through a mechanism different from activator-mediated transcriptional enhancement. Mol. Gen. Genet. 263:48-59.
    • (2000) Mol. Gen. Genet. , vol.263 , pp. 48-59
    • Mizuno, T.1    Harashima, S.2
  • 244
    • 0036235651 scopus 로고    scopus 로고
    • The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae
    • Moreno, F., and P. Herrero. 2002. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:83-90.
    • (2002) FEMS Microbiol. Rev. , vol.26 , pp. 83-90
    • Moreno, F.1    Herrero, P.2
  • 246
    • 0032857850 scopus 로고    scopus 로고
    • Analysis by atomic force microscopy of Med8 binding to cis-acting regulatory elements of the SUC2 and HXK2 genes of Saccharomyces cerevisiae
    • Moreno-Herrero, F., P. Herrero, J. Colchero, A. M. Baro, and F. Moreno. 1999. Analysis by atomic force microscopy of Med8 binding to cis-acting regulatory elements of the SUC2 and HXK2 genes of Saccharomyces cerevisiae. FEBS Lett. 459:427-432.
    • (1999) FEBS Lett. , vol.459 , pp. 427-432
    • Moreno-Herrero, F.1    Herrero, P.2    Colchero, J.3    Baro, A.M.4    Moreno, F.5
  • 247
    • 1242274644 scopus 로고    scopus 로고
    • Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
    • Moriya, H., and M. Johnston. 2004. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 101:1572-1577.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1572-1577
    • Moriya, H.1    Johnston, M.2
  • 249
    • 0038427234 scopus 로고    scopus 로고
    • Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae
    • Mosch, H. U., E. Kubler, S. Krappmann, G. R. Fink, and G. H. Braus. 1999. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol. Biol. Cell 10:1325-1335.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1325-1335
    • Mosch, H.U.1    Kubler, E.2    Krappmann, S.3    Fink, G.R.4    Braus, G.H.5
  • 250
    • 0037855780 scopus 로고    scopus 로고
    • Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator
    • Mosley, A. L., J. Lakshmanan, B. K. Aryal, and S. Ozcan. 2003. Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J. Biol. Chem. 278:10322-10327.
    • (2003) J. Biol. Chem. , vol.278 , pp. 10322-10327
    • Mosley, A.L.1    Lakshmanan, J.2    Aryal, B.K.3    Ozcan, S.4
  • 252
    • 0023972484 scopus 로고
    • Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: Studies on its structure and possible functions
    • Nakafuku, M., T. Obara, K. Kaibuchi, I. Miyajima, A. Miyajima, H. Itoh, S. Nakamura, K. Arai, K. Matsumoto, and Y. Kaziro. 1988. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85:1374-1378.
    • (1988) Proc. Natl. Acad. Sci. USA , vol.85 , pp. 1374-1378
    • Nakafuku, M.1    Obara, T.2    Kaibuchi, K.3    Miyajima, I.4    Miyajima, A.5    Itoh, H.6    Nakamura, S.7    Arai, K.8    Matsumoto, K.9    Kaziro, Y.10
  • 254
    • 0037184937 scopus 로고    scopus 로고
    • Purification and characterization of Snf1 kinase complexes containing a defined β subunit composition
    • Nath, N., R. R. McCartney, and M. C. Schmidt. 2002. Purification and characterization of Snf1 kinase complexes containing a defined β subunit composition. J. Biol. Chem. 277:50403-50408.
    • (2002) J. Biol. Chem. , vol.277 , pp. 50403-50408
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 255
    • 0038583957 scopus 로고    scopus 로고
    • Yeast Pak1 kinase associates with and activates Snf1
    • Nath, N., R. R. McCartney, and M. C. Schmidt. 2003. Yeast Pak1 kinase associates with and activates Snf1. Mol. Cell. Biol. 23:3909-3917.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3909-3917
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 256
    • 0041856309 scopus 로고    scopus 로고
    • Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends
    • Nedea, E., X. He, M. Kim, J. Pootoolal, G. Zhong, V. Canadien, T. Hughes, S. Buratowski, C. L. Moore, and J. Greenblatt. 2003. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278:33000-33010.
    • (2003) J. Biol. Chem. , vol.278 , pp. 33000-33010
    • Nedea, E.1    He, X.2    Kim, M.3    Pootoolal, J.4    Zhong, G.5    Canadien, V.6    Hughes, T.7    Buratowski, S.8    Moore, C.L.9    Greenblatt, J.10
  • 257
    • 0025004155 scopus 로고
    • Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
    • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 9:2891-2898.
    • (1990) EMBO J. , vol.9 , pp. 2891-2898
    • Nehlin, J.O.1    Ronne, H.2
  • 258
    • 0025944734 scopus 로고
    • Control of yeast GAL genes by MIG1 repressor: A transcriptional cascade in the glucose response
    • Nehlin, J. O., M. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373-3377.
    • (1991) EMBO J. , vol.10 , pp. 3373-3377
    • Nehlin, J.O.1    Carlberg, M.2    Ronne, H.3
  • 259
    • 0021715020 scopus 로고
    • Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae
    • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845-858.
    • (1984) Genetics , vol.108 , pp. 845-858
    • Neigeborn, L.1    Carlson, M.2
  • 260
    • 0023140958 scopus 로고
    • Mutations causing constitutive invertase synthesis in yeast: Genetic interactions with snf mutations
    • Neigeborn, L., and M. Carlson. 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247-253.
    • (1987) Genetics , vol.115 , pp. 247-253
    • Neigeborn, L.1    Carlson, M.2
  • 261
    • 0022606866 scopus 로고
    • Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast
    • Neigeborn, L., K. Rubin, and M. Carlson. 1986. Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112:741-753.
    • (1986) Genetics , vol.112 , pp. 741-753
    • Neigeborn, L.1    Rubin, K.2    Carlson, M.3
  • 262
    • 0036168301 scopus 로고    scopus 로고
    • AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae
    • Newcomb, L. L., D. D. Hall, and W. Heideman. 2002. AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 22:1607-1614.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1607-1614
    • Newcomb, L.L.1    Hall, D.D.2    Heideman, W.3
  • 263
  • 264
    • 0028805671 scopus 로고
    • WT1 induces expression of insulin-like growth factor 2 in Wilms' tumor cells
    • Nichols, K. E., G. G. Re, Y. X. Yan, A. J. Garvin, and D. A. Haber. 1995. WT1 induces expression of insulin-like growth factor 2 in Wilms' tumor cells. Cancer Res. 55:4540-4543.
    • (1995) Cancer Res. , vol.55 , pp. 4540-4543
    • Nichols, K.E.1    Re, G.G.2    Yan, Y.X.3    Garvin, A.J.4    Haber, D.A.5
  • 265
    • 0025901117 scopus 로고
    • Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast
    • Niederacher, D., and K. D. Entian. 1991. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur. J. Biochem. 200:311-319.
    • (1991) Eur. J. Biochem. , vol.200 , pp. 311-319
    • Niederacher, D.1    Entian, K.D.2
  • 266
    • 0023427567 scopus 로고
    • Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae
    • Nikawa, J., P. Sass, and M. Wigler. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3629-3636.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 3629-3636
    • Nikawa, J.1    Sass, P.2    Wigler, M.3
  • 267
    • 0032561210 scopus 로고    scopus 로고
    • Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway
    • Nishida, Y., F. Shima, H. Sen, Y. Tanada, C. Yanagihara, Y. Yamawaki-Kataoka, K. Kariya, and T. Kataoka. 1998. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway. J. Biol. Chem. 273:28019-28024.
    • (1998) J. Biol. Chem. , vol.273 , pp. 28019-28024
    • Nishida, Y.1    Shima, F.2    Sen, H.3    Tanada, Y.4    Yanagihara, C.5    Yamawaki-Kataoka, Y.6    Kariya, K.7    Kataoka, T.8
  • 268
    • 0038075338 scopus 로고    scopus 로고
    • Decision making by p53: Life, death and cancer
    • Oren, M. 2003. Decision making by p53: life, death and cancer. Cell Death Differ. 10:431-442.
    • (2003) Cell Death Differ. , vol.10 , pp. 431-442
    • Oren, M.1
  • 269
    • 0032519837 scopus 로고    scopus 로고
    • Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose
    • Ostling, J., and H. Ronne. 1998. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162-168.
    • (1998) Eur. J. Biochem. , vol.252 , pp. 162-168
    • Ostling, J.1    Ronne, H.2
  • 270
    • 0030066498 scopus 로고    scopus 로고
    • Functional domains in the Mig1 repressor
    • Ostling, J., M. Carlberg, and H. Ronne. 1996. Functional domains in the Mig1 repressor. Mol. Cell. Biol. 16:753-761.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 753-761
    • Ostling, J.1    Carlberg, M.2    Ronne, H.3
  • 271
    • 0028872732 scopus 로고
    • Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
    • Ozcan, S., and M. Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564-1572.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1564-1572
    • Ozcan, S.1    Johnston, M.2
  • 272
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Ozcan, S., and M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554-569.
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 554-569
    • Ozcan, S.1    Johnston, M.2
  • 273
    • 0029864499 scopus 로고    scopus 로고
    • Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
    • Ozcan, S., J. Dover, A. G. Rosenwald, S. Wolfi, and M. Johnston. 1996. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. USA 93:12428-12432.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 12428-12432
    • Ozcan, S.1    Dover, J.2    Rosenwald, A.G.3    Wolfi, S.4    Johnston, M.5
  • 274
    • 0032080298 scopus 로고    scopus 로고
    • Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
    • Ozcan, S., J. Dover, and M. Johnston. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17:2566-2573.
    • (1998) EMBO J. , vol.17 , pp. 2566-2573
    • Ozcan, S.1    Dover, J.2    Johnston, M.3
  • 275
    • 0029805138 scopus 로고    scopus 로고
    • Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription
    • Ozcan, S., T. Leong, and M. Johnston. 1996. Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol. Cell. Biol. 16:6419-6426.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 6419-6426
    • Ozcan, S.1    Leong, T.2    Johnston, M.3
  • 276
    • 0037402922 scopus 로고    scopus 로고
    • Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae
    • Paalman, J. W., R. Verwaal, S. H. Slofstra, A. J. Verkleij, J. Boonstra, and C. T. Verrips. 2003. Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae. FEMS Yeast Res. 3:261-268.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 261-268
    • Paalman, J.W.1    Verwaal, R.2    Slofstra, S.H.3    Verkleij, A.J.4    Boonstra, J.5    Verrips, C.T.6
  • 277
    • 0344690152 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae
    • Pan, X., and J. Heitman. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4874-4887.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4874-4887
    • Pan, X.1    Heitman, J.2
  • 278
    • 2442486948 scopus 로고    scopus 로고
    • The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor
    • Papamichos-Chronakis, M., T. Gligoris, and D. Tzamarias. 2004. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep. 5:368-372.
    • (2004) EMBO Rep. , vol.5 , pp. 368-372
    • Papamichos-Chronakis, M.1    Gligoris, T.2    Tzamarias, D.3
  • 279
    • 0036298418 scopus 로고    scopus 로고
    • Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1
    • Papamichos-Chronakis, M., T. Petrakis, E. Ktistaki, I. Topalidou, and D. Tzamarias. 2002. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol. Cell 9:1297-1305.
    • (2002) Mol. Cell , vol.9 , pp. 1297-1305
    • Papamichos-Chronakis, M.1    Petrakis, T.2    Ktistaki, E.3    Topalidou, I.4    Tzamarias, D.5
  • 281
    • 0036709614 scopus 로고    scopus 로고
    • Chromosome positioning in the interphase nucleus
    • Parada, L., and T. Misteli. 2002. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12:425-432.
    • (2002) Trends Cell Biol. , vol.12 , pp. 425-432
    • Parada, L.1    Misteli, T.2
  • 282
    • 0013329665 scopus 로고    scopus 로고
    • Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae
    • Park, S. H., S. S. Koh, J. H. Chun, H. J. Hwang, and H. S. Kang. 1999. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:2044-2050.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2044-2050
    • Park, S.H.1    Koh, S.S.2    Chun, J.H.3    Hwang, H.J.4    Kang, H.S.5
  • 284
    • 0032872518 scopus 로고    scopus 로고
    • STRE- And cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose
    • Parrou, J. L., B. Enjalbert, and J. Francois. 1999. STRE- and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose. Yeast 15:1471-1484.
    • (1999) Yeast , vol.15 , pp. 1471-1484
    • Parrou, J.L.1    Enjalbert, B.2    Francois, J.3
  • 285
    • 0031910069 scopus 로고    scopus 로고
    • Growth-independent regulation of CLN3 mRNA levels by nutrients in Saccharomyces cerevisiae
    • Parviz, F., and W. Heideman. 1998. Growth-independent regulation of CLN3 mRNA levels by nutrients in Saccharomyces cerevisiae. J. Bacteriol. 180:225-230.
    • (1998) J. Bacteriol. , vol.180 , pp. 225-230
    • Parviz, F.1    Heideman, W.2
  • 286
    • 0031720922 scopus 로고    scopus 로고
    • Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae
    • Parviz, F., D. D. Hall, D. D, Markwardt, and W. Heideman. 1998. Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae. J. Bacteriol. 180:4508-4515.
    • (1998) J. Bacteriol. , vol.180 , pp. 4508-4515
    • Parviz, F.1    Hall, D.D.2    Markwardt, D.D.3    Heideman, W.4
  • 287
    • 1242314744 scopus 로고    scopus 로고
    • Structure and function of human Vps20 and Snf7 proteins
    • Peck, J. W., E. T. Bowden, and P. D. Burbelo. 2004. Structure and function of human Vps20 and Snf7 proteins. Biochem. J. 377:693-700.
    • (2004) Biochem. J. , vol.377 , pp. 693-700
    • Peck, J.W.1    Bowden, E.T.2    Burbelo, P.D.3
  • 289
    • 15544364487 scopus 로고    scopus 로고
    • How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
    • Polish, J. A., J. H. Kim, and M. Johnston. 2005. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583-594.
    • (2005) Genetics , vol.169 , pp. 583-594
    • Polish, J.A.1    Kim, J.H.2    Johnston, M.3
  • 290
    • 0032536858 scopus 로고    scopus 로고
    • Regional and temporal specialization in the nucleus: A transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle
    • Pombo, A., P. Cuello, W. Schul, J. B. Yoon, R. G. Roeder, P. R. Cook, and S. Murphy. 1998. Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J. 17:1768-1778.
    • (1998) EMBO J. , vol.17 , pp. 1768-1778
    • Pombo, A.1    Cuello, P.2    Schul, W.3    Yoon, J.B.4    Roeder, R.G.5    Cook, P.R.6    Murphy, S.7
  • 291
    • 0021274917 scopus 로고
    • Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins
    • Powers, S., T. Kataoka, O. Fasano, M. Goldfarb, J. Strathern, J. Broach, and M. Wigler. 1984. Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607-612.
    • (1984) Cell , vol.36 , pp. 607-612
    • Powers, S.1    Kataoka, T.2    Fasano, O.3    Goldfarb, M.4    Strathern, J.5    Broach, J.6    Wigler, M.7
  • 292
    • 11144319955 scopus 로고    scopus 로고
    • Ribosome biogenesis: Giant steps for a giant problem
    • Powers, T. 2004. Ribosome biogenesis: giant steps for a giant problem. Cell 119:901-902.
    • (2004) Cell , vol.119 , pp. 901-902
    • Powers, T.1
  • 293
    • 0037564969 scopus 로고    scopus 로고
    • Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila
    • Presgraves, D. C., L. Balagopalan, S. M. Abmayr, and H. A. Orr. 2003. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715-719.
    • (2003) Nature , vol.423 , pp. 715-719
    • Presgraves, D.C.1    Balagopalan, L.2    Abmayr, S.M.3    Orr, H.A.4
  • 294
    • 0034640518 scopus 로고    scopus 로고
    • Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life
    • Prieto, S., B. J. de la Cruz, and I. E. Scheffler. 2000. Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life. J. Biol. Chem. 275:14155-14166.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14155-14166
    • Prieto, S.1    De La Cruz, B.J.2    Scheffler, I.E.3
  • 295
    • 0042233986 scopus 로고    scopus 로고
    • Regulated recruitment and cooperativity in the design of biological regulatory systems
    • Ptashne, M. 2003. Regulated recruitment and cooperativity in the design of biological regulatory systems. Phil. Trans. R. Soc. London 361:1223-1234.
    • (2003) Phil. Trans. R. Soc. London , vol.361 , pp. 1223-1234
    • Ptashne, M.1
  • 296
    • 0030960672 scopus 로고    scopus 로고
    • Transcriptional activation by recruitment
    • Ptashne, M., and A. Gann. 1997. Transcriptional activation by recruitment. Nature 386:569-577.
    • (1997) Nature , vol.386 , pp. 569-577
    • Ptashne, M.1    Gann, A.2
  • 297
    • 0035985938 scopus 로고    scopus 로고
    • The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae
    • Purnapatre, K., S. Piccirillo, B. L. Schneider, and S. M. Honigberg. 2002. The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae. Genes Cells 7:675-691.
    • (2002) Genes Cells , vol.7 , pp. 675-691
    • Purnapatre, K.1    Piccirillo, S.2    Schneider, B.L.3    Honigberg, S.M.4
  • 298
  • 299
    • 0030015273 scopus 로고    scopus 로고
    • Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene. CAT8
    • Rahner, A., A. Scholer, E. Martens, G. Gollwitzer, and H. J. Schuller. 1996. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene. CAT8. Nucleic Acids Res. 24:2331-2337.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 2331-2337
    • Rahner, A.1    Scholer, A.2    Martens, E.3    Gollwitzer, G.4    Schuller, H.J.5
  • 300
    • 0032870144 scopus 로고    scopus 로고
    • Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae
    • Rahner, A., M. Hiesinger, and H. J. Schuller. 1999. Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae. Mol. Microbiol. 34:146-156.
    • (1999) Mol. Microbiol. , vol.34 , pp. 146-156
    • Rahner, A.1    Hiesinger, M.2    Schuller, H.J.3
  • 301
    • 17244382283 scopus 로고    scopus 로고
    • Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations
    • Ralph, S. A., C. Scheidig-Benatar, and A. Scherf. 2005. Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. Proc. Natl. Acad. Sci. USA 102:5414-5419.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5414-5419
    • Ralph, S.A.1    Scheidig-Benatar, C.2    Scherf, A.3
  • 302
    • 0031860215 scopus 로고    scopus 로고
    • Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase
    • Ramaswamy, N. T., L. Li, M. Khalil, and J. F. Cannon. 1998. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57-72.
    • (1998) Genetics , vol.149 , pp. 57-72
    • Ramaswamy, N.T.1    Li, L.2    Khalil, M.3    Cannon, J.F.4
  • 303
    • 0030987084 scopus 로고    scopus 로고
    • Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p
    • Randez-Gil, F., N. Bojunga, M. Proft, and K. D. Entian. 1997. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol. Cell. Biol. 17:2502-2510.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2502-2510
    • Randez-Gil, F.1    Bojunga, N.2    Proft, M.3    Entian, K.D.4
  • 304
    • 0032478569 scopus 로고    scopus 로고
    • Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae
    • Randez-Gil, F., P. Herrero, P. Sanz, J. A. Prieto, and F. Moreno. 1998. Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett. 425:475-478.
    • (1998) FEBS Lett. , vol.425 , pp. 475-478
    • Randez-Gil, F.1    Herrero, P.2    Sanz, P.3    Prieto, J.A.4    Moreno, F.5
  • 305
    • 0031897460 scopus 로고    scopus 로고
    • Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast
    • Randez-Gil, F., P. Sanz, K. D. Entian, and J. A. Prieto. 1998. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol. Cell. Biol. 18:2940-2948.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2940-2948
    • Randez-Gil, F.1    Sanz, P.2    Entian, K.D.3    Prieto, J.A.4
  • 306
    • 0027209712 scopus 로고
    • The WT1 Wilms tumor gene product: A developmentally regulated transcription factor in the kidney that functions as a tumor suppressor
    • Rauscher, F. J., III. 1993. The WT1 Wilms tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J. 7:896-903.
    • (1993) FASEB J. , vol.7 , pp. 896-903
    • Rauscher III, F.J.1
  • 307
    • 0038709277 scopus 로고    scopus 로고
    • Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
    • Regelmann, J., T. Schule, F. S. Josupeit, J. Horak, M. Rose, K. D. Entian, M. Thumm, and D. H. Wolf. 2003. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell 14:1652-1663.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1652-1663
    • Regelmann, J.1    Schule, T.2    Josupeit, F.S.3    Horak, J.4    Rose, M.5    Entian, K.D.6    Thumm, M.7    Wolf, D.H.8
  • 308
    • 0028949280 scopus 로고
    • Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux
    • Reifenberger, E., K. Freidel, and M. Ciriacy. 1995. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16:157-167.
    • (1995) Mol. Microbiol. , vol.16 , pp. 157-167
    • Reifenberger, E.1    Freidel, K.2    Ciriacy, M.3
  • 309
    • 0034705202 scopus 로고    scopus 로고
    • The yeast a kinases differentially regulate iron uptake and respiratory function
    • Robertson, L. S., H. C. Causton, R. A. Young, and G. R. Fink. 2000. The yeast A kinases differentially regulate iron uptake and respiratory function. Proc. Natl. Acad. Sci. USA 97:5984-5988.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 5984-5988
    • Robertson, L.S.1    Causton, H.C.2    Young, R.A.3    Fink, G.R.4
  • 311
    • 0035339662 scopus 로고    scopus 로고
    • The hexokinase 2 protein regulates the expression of GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
    • Rodriguez, A., T. De La Cera, P. Herrero, and F. Moreno. 2001. The hexokinase 2 protein regulates the expression of GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem. J. 355:625-631.
    • (2001) Biochem. J. , vol.355 , pp. 625-631
    • Rodriguez, A.1    De La Cera, T.2    Herrero, P.3    Moreno, F.4
  • 312
    • 12244282462 scopus 로고    scopus 로고
    • New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1
    • Rodriguez, C., P. Sanz, and C. Gancedo. 2003. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1. FEMS Yeast Res. 3:77-84.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 77-84
    • Rodriguez, C.1    Sanz, P.2    Gancedo, C.3
  • 313
    • 0033745888 scopus 로고    scopus 로고
    • Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
    • Rolland, F., J. H. de Winde, K. Lemaire, E. Boles, J. M. Thevelein, and J. Winderickx. 2000. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol. Microbiol. 38:348-358.
    • (2000) Mol. Microbiol. , vol.38 , pp. 348-358
    • Rolland, F.1    De Winde, J.H.2    Lemaire, K.3    Boles, E.4    Thevelein, J.M.5    Winderickx, J.6
  • 315
    • 0036281361 scopus 로고    scopus 로고
    • Glucose-sensing and -signalling mechanisms in yeast
    • Rolland, F., J. Winderickx, and J. M. Thevelein. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2:183-201.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 183-201
    • Rolland, F.1    Winderickx, J.2    Thevelein, J.M.3
  • 317
    • 0025772770 scopus 로고
    • Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII
    • Rose, M., W. Albig, and K. D. Entian. 1991. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199:511-518.
    • (1991) Eur. J. Biochem. , vol.199 , pp. 511-518
    • Rose, M.1    Albig, W.2    Entian, K.D.3
  • 318
    • 0037078323 scopus 로고    scopus 로고
    • The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase
    • Roth, A. F., Y. Feng, L. Chen, and N. G. Davis. 2002. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159:23-28.
    • (2002) J. Cell Biol. , vol.159 , pp. 23-28
    • Roth, A.F.1    Feng, Y.2    Chen, L.3    Davis, N.G.4
  • 319
    • 1542605245 scopus 로고    scopus 로고
    • Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae
    • Roth, S., J. Kumme, and H. J. Schuller. 2004. Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr. Genet. 45:121-128.
    • (2004) Curr. Genet. , vol.45 , pp. 121-128
    • Roth, S.1    Kumme, J.2    Schuller, H.J.3
  • 320
    • 14844282303 scopus 로고    scopus 로고
    • Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins
    • Rudra, D., Y. Zhao, and J. R. Warner. 2005. Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J. 24:533-542.
    • (2005) EMBO J. , vol.24 , pp. 533-542
    • Rudra, D.1    Zhao, Y.2    Warner, J.R.3
  • 321
    • 0027169029 scopus 로고
    • Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: Correlation with cAMP levels and growth arrest
    • Russell, M., J. Bradshaw-Rouse, D. Markwardt, and W. Heideman. 1993. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol. Cell. Biol. 4:757-765.
    • (1993) Mol. Cell. Biol. , vol.4 , pp. 757-765
    • Russell, M.1    Bradshaw-Rouse, J.2    Markwardt, D.3    Heideman, W.4
  • 322
    • 0029931615 scopus 로고    scopus 로고
    • Cyclic AMP-independent catabolite repression in bacteria
    • Saier, M. H., Jr. 1996. Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol. Lett. 138:97-103.
    • (1996) FEMS Microbiol. Lett. , vol.138 , pp. 97-103
    • Saier Jr., M.H.1
  • 323
    • 0030665666 scopus 로고    scopus 로고
    • Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain
    • Sakamoto, Y., M. Yoshida, K. Semba, and T. Hunter. 1997. Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain. Oncogene 15:2001-2012.
    • (1997) Oncogene , vol.15 , pp. 2001-2012
    • Sakamoto, Y.1    Yoshida, M.2    Semba, K.3    Hunter, T.4
  • 324
    • 0025181421 scopus 로고
    • Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites
    • Santangelo, G. M., and J. Tornow. 1990. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites. Mol. Cell. Biol. 10:859-862.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 859-862
    • Santangelo, G.M.1    Tornow, J.2
  • 325
    • 0033974002 scopus 로고    scopus 로고
    • Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
    • Sanz, P., G. R. Alms, T. A. Haystead, and M. Carlson. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:1321-1328.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1321-1328
    • Sanz, P.1    Alms, G.R.2    Haystead, T.A.3    Carlson, M.4
  • 326
    • 0033957943 scopus 로고    scopus 로고
    • Sip5 interacts with both the Reg1/Glc7 protein phosphatase and the Snf1 protein kinase of Saccharomyces cerevisiae
    • Sanz, P., K. Ludin, and M. Carlson. 2000. Sip5 interacts with both the Reg1/Glc7 protein phosphatase and the Snf1 protein kinase of Saccharomyces cerevisiae. Genetics 154:99-107.
    • (2000) Genetics , vol.154 , pp. 99-107
    • Sanz, P.1    Ludin, K.2    Carlson, M.3
  • 327
    • 13644258814 scopus 로고    scopus 로고
    • Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae
    • Sasaki, H., and H. Uemura. 2005. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Yeast 22:111-127.
    • (2005) Yeast , vol.22 , pp. 111-127
    • Sasaki, H.1    Uemura, H.2
  • 328
    • 11144244771 scopus 로고    scopus 로고
    • Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1
    • Schawalder, S. B., M. Kabani, I. Howard, U. Choudhury, M. Werner, and D. Shore. 2004. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432:1058-1061.
    • (2004) Nature , vol.432 , pp. 1058-1061
    • Schawalder, S.B.1    Kabani, M.2    Howard, I.3    Choudhury, U.4    Werner, M.5    Shore, D.6
  • 329
    • 0032213751 scopus 로고    scopus 로고
    • Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
    • Scheffler, I. E., B. J. de la Cruz, and S. Prieto. 1998. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int. J. Biochem. Cell. Biol. 30:1175-1193.
    • (1998) Int. J. Biochem. Cell. Biol. , vol.30 , pp. 1175-1193
    • Scheffler, I.E.1    De La Cruz, B.J.2    Prieto, S.3
  • 330
    • 0347624594 scopus 로고    scopus 로고
    • Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast
    • Schmelzle, T., T. Beck, D. E. Martin, and M. N. Hall. 2004. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell. Biol. 24:338-351.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 338-351
    • Schmelzle, T.1    Beck, T.2    Martin, D.E.3    Hall, M.N.4
  • 331
    • 0034665041 scopus 로고    scopus 로고
    • Subunits of Snf1 kinase are required for kinase function and substrate definition
    • Schmidt, M. C., and R. R. McCartney. 2000. β-Subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 19:4936-4943.
    • (2000) EMBO J. , vol.19 , pp. 4936-4943
    • Schmidt, M.C.1    McCartney, R.R.2
  • 332
    • 0033000330 scopus 로고    scopus 로고
    • Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
    • Schmidt, M. C., R. R. McCartney, X. Zhang, T. S. Tillman, H. Solimeo, S. Wolfl, C. Almonte, and S. C. Watkins. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561-4571.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4561-4571
    • Schmidt, M.C.1    McCartney, R.R.2    Zhang, X.3    Tillman, T.S.4    Solimeo, H.5    Wolfl, S.6    Almonte, C.7    Watkins, S.C.8
  • 333
    • 1242322494 scopus 로고    scopus 로고
    • The Ras/protein kinase a pathway acts in parallel with the Mob2/Cbk1 pathway to effect cell cycle progression and proper bud site selection
    • Schneper, L., A. Krauss, R. Miyamoto, S. Fang, and J. R. Broach. 2004. The Ras/protein kinase A pathway acts in parallel with the Mob2/Cbk1 pathway to effect cell cycle progression and proper bud site selection. Eukaryot. Cell 3:108-120.
    • (2004) Eukaryot. Cell , vol.3 , pp. 108-120
    • Schneper, L.1    Krauss, A.2    Miyamoto, R.3    Fang, S.4    Broach, J.R.5
  • 334
    • 0028243911 scopus 로고
    • Site of catabolite inactivation
    • Schork, S. M., G. Bee, M. Thumm, and D. H. Wolf. 1994. Site of catabolite inactivation. Nature 369:283-284.
    • (1994) Nature , vol.369 , pp. 283-284
    • Schork, S.M.1    Bee, G.2    Thumm, M.3    Wolf, D.H.4
  • 335
    • 0037774738 scopus 로고    scopus 로고
    • Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae
    • Schuller, H. J. 2003. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43:139-160.
    • (2003) Curr. Genet. , vol.43 , pp. 139-160
    • Schuller, H.J.1
  • 336
    • 0026090455 scopus 로고
    • Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes
    • Schuller, H. J., and K. D. Entian. 1991. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173:2045-2052.
    • (1991) J. Bacteriol. , vol.173 , pp. 2045-2052
    • Schuller, H.J.1    Entian, K.D.2
  • 337
    • 0037322952 scopus 로고    scopus 로고
    • The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme
    • Schwartz, D., C. J. Decker, and R. Parker. 2003. The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA 9:239-251.
    • (2003) RNA , vol.9 , pp. 239-251
    • Schwartz, D.1    Decker, C.J.2    Parker, R.3
  • 338
    • 0031018262 scopus 로고    scopus 로고
    • Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein
    • Shima, F., Y. Yamawaki-Kataoka, C. Yanagihara, M. Tamada, T. Okada, K. Kariya, and T. Kataoka. 1997. Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein. Mol. Cell. Biol. 17:1057-1064.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 1057-1064
    • Shima, F.1    Yamawaki-Kataoka, Y.2    Yanagihara, C.3    Tamada, M.4    Okada, T.5    Kariya, K.6    Kataoka, T.7
  • 339
    • 0028130685 scopus 로고
    • RAP1: A protean regulator in yeast
    • Shore, D. 1994. RAP1: a protean regulator in yeast. Trends Genet. 10:408-412.
    • (1994) Trends Genet. , vol.10 , pp. 408-412
    • Shore, D.1
  • 340
    • 33645112975 scopus 로고
    • Enzyme and substrate der glykolyse in isolierten zellkernen
    • Siebert, G. 1961. Enzyme and substrate der glykolyse in isolierten zellkernen. Biochem. Z. 334:369.
    • (1961) Biochem. Z. , vol.334 , pp. 369
    • Siebert, G.1
  • 341
    • 0030662523 scopus 로고    scopus 로고
    • F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex
    • Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209-219.
    • (1997) Cell , vol.91 , pp. 209-219
    • Skowyra, D.1    Craig, K.L.2    Tyers, M.3    Elledge, S.J.4    Harper, J.W.5
  • 342
    • 0032127462 scopus 로고    scopus 로고
    • Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation
    • Smith, A., M. P. Ward, and S. Garrett. 1998. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17:3556-3564.
    • (1998) EMBO J. , vol.17 , pp. 3556-3564
    • Smith, A.1    Ward, M.P.2    Garrett, S.3
  • 343
    • 0032768263 scopus 로고    scopus 로고
    • The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1
    • Smith, F. C., S. P. Davies, W. A. Wilson, D. Carling, and D. G. Hardie. 1999. The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the
    • (1999) FEBS Lett. , vol.453 , pp. 219-223
    • Smith, F.C.1    Davies, S.P.2    Wilson, W.A.3    Carling, D.4    Hardie, D.G.5
  • 344
    • 2042429168 scopus 로고    scopus 로고
    • Regulation of telomerase by telomeric proteins
    • Smogorzewska, A., and T. de Lange. 2004. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73:177-208.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 177-208
    • Smogorzewska, A.1    De Lange, T.2
  • 345
    • 0038111847 scopus 로고    scopus 로고
    • A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum
    • Sobering, A. K., M. J. Romeo, H. A. Vay, and D. E. Levin. 2003. A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum. Mol. Cell. Biol. 23:4983-4990.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 4983-4990
    • Sobering, A.K.1    Romeo, M.J.2    Vay, H.A.3    Levin, D.E.4
  • 346
    • 0029655780 scopus 로고    scopus 로고
    • SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II
    • Song, W., I. Trelch, N. Qian, S. Kuchin, and M. Carlson. 1996. SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol. Cell. Biol. 16:115-120.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 115-120
    • Song, W.1    Trelch, I.2    Qian, N.3    Kuchin, S.4    Carlson, M.5
  • 347
    • 4744373127 scopus 로고    scopus 로고
    • Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways
    • Spielewoy, N., K. Flick, T. I. Kalashnikova, J. R. Walker, and C. Wittenberg. 2004. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol. Cell. Biol. 24:8994-9005.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8994-9005
    • Spielewoy, N.1    Flick, K.2    Kalashnikova, T.I.3    Walker, J.R.4    Wittenberg, C.5
  • 348
    • 4043128192 scopus 로고    scopus 로고
    • The Wilms tumor suppressor-1 target gene podocalyxin is transcriptionally repressed by p53
    • Stanhope-Baker, P., P. M. Kessler, W. Li, M. L. Agarwal, and B. R. Williams. 2004. The Wilms tumor suppressor-1 target gene podocalyxin is transcriptionally repressed by p53. J. Biol. Chem. 279:33575-33585.
    • (2004) J. Biol. Chem. , vol.279 , pp. 33575-33585
    • Stanhope-Baker, P.1    Kessler, P.M.2    Li, W.3    Agarwal, M.L.4    Williams, B.R.5
  • 349
    • 0024368137 scopus 로고
    • Characterization of the transcriptional potency of sub-elements of the UAS of the yeast PGK gene in a PGK mini-promoter
    • Stanway, C. A., A. Chambers, A. J. Kingsman, and S. M. Kingsman. 1989. Characterization of the transcriptional potency of sub-elements of the UAS of the yeast PGK gene in a PGK mini-promoter. Nucleic Acids Res. 17:9205-9218.
    • (1989) Nucleic Acids Res. , vol.17 , pp. 9205-9218
    • Stanway, C.A.1    Chambers, A.2    Kingsman, A.J.3    Kingsman, S.M.4
  • 350
    • 0030451563 scopus 로고    scopus 로고
    • Yeast protein serine/threonine phosphatases: Multiple roles and diverse regulation
    • Stark, M. J. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647-1675.
    • (1996) Yeast , vol.12 , pp. 1647-1675
    • Stark, M.J.1
  • 351
    • 0032578482 scopus 로고    scopus 로고
    • Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II
    • Stiller, J. W., E. C. Duffield, and B. D. Hall. 1998. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc. Natl. Acad. Sci. USA 95:11769-11774.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 11769-11774
    • Stiller, J.W.1    Duffield, E.C.2    Hall, B.D.3
  • 353
    • 0028049105 scopus 로고
    • The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit
    • Stuart, J. S., D. L. Frederick, C. M. Varner, and K. Tatchell. 1994. The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol. Cell. Biol. 14:896-905.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 896-905
    • Stuart, J.S.1    Frederick, D.L.2    Varner, C.M.3    Tatchell, K.4
  • 356
    • 14844338858 scopus 로고    scopus 로고
    • Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8
    • Tachibana, C., J. Y. Yoo, J. B. Tagne, N. Kacherovsky, T. I. Lee, and E. T. Young. 2005. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol. Cell. Biol. 25:2138-2146.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2138-2146
    • Tachibana, C.1    Yoo, J.Y.2    Tagne, J.B.3    Kacherovsky, N.4    Lee, T.I.5    Young, E.T.6
  • 357
    • 0035956422 scopus 로고    scopus 로고
    • A Gip1p-Glc7p phosphatase complex regulates septin organization and spore wall formation
    • Tachikawa, H., A. Bloecher, K. Tatchell, and A. M. Neiman. 2001. A Gip1p-Glc7p phosphatase complex regulates septin organization and spore wall formation. J. Cell Biol. 155:797-808.
    • (2001) J. Cell Biol. , vol.155 , pp. 797-808
    • Tachikawa, H.1    Bloecher, A.2    Tatchell, K.3    Neiman, A.M.4
  • 358
    • 0025965048 scopus 로고
    • IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein
    • Tanaka, K., B. K. Lin, D. R. Wood, and F. Tamanoi. 1991. IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc. Natl. Acad. Sci. USA 88:468-472.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 468-472
    • Tanaka, K.1    Lin, B.K.2    Wood, D.R.3    Tamanoi, F.4
  • 359
    • 0024497239 scopus 로고
    • IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae
    • Tanaka, K., K. Matsumoto, and A. Toh-e. 1989. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:757-768.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 757-768
    • Tanaka, K.1    Matsumoto, K.2    Toh-e, A.3
  • 360
    • 0025232840 scopus 로고
    • S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein
    • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803-807.
    • (1990) Cell , vol.60 , pp. 803-807
    • Tanaka, K.1    Nakafuku, M.2    Satoh, T.3    Marshall, M.S.4    Gibbs, J.B.5    Matsumoto, K.6    Kaziro, Y.7    Toh-e, A.8
  • 361
    • 0022589339 scopus 로고
    • RAS genes and growth control in Saccharomyces cerevisiae
    • Tatchell, K. 1986. RAS genes and growth control in Saccharomyces cerevisiae. J. Bacteriol. 166:364-367.
    • (1986) J. Bacteriol. , vol.166 , pp. 364-367
    • Tatchell, K.1
  • 362
    • 0021142685 scopus 로고
    • Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability
    • Tatchell, K., D. T. Chaleff, D. DeFeo-Jones, and E. M. Scolnick. 1984. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309:523-527.
    • (1984) Nature , vol.309 , pp. 523-527
    • Tatchell, K.1    Chaleff, D.T.2    Defeo-Jones, D.3    Scolnick, E.M.4
  • 363
    • 0022391768 scopus 로고
    • RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation
    • Tatchell, K., L. C. Robinson, and M. Breitenbach. 1985. RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc. Natl. Acad. Sci. USA 82:3785-3789.
    • (1985) Proc. Natl. Acad. Sci. USA , vol.82 , pp. 3785-3789
    • Tatchell, K.1    Robinson, L.C.2    Breitenbach, M.3
  • 364
    • 0025345609 scopus 로고
    • AMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding
    • Taylor, W. E., and E. T. Young. 1990. cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding. Proc. Natl. Acad. Sci. USA 87:4098-4102.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 4098-4102
    • Taylor, W.E.1    Young, E.T.2
  • 365
    • 0032835137 scopus 로고    scopus 로고
    • Novel sensing mechanisms and targets for the cAMP-protein kinase a pathway in the yeast Saccharomyces cerevisiae
    • Thevelein, J. M., and J. H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904-918.
    • (1999) Mol. Microbiol. , vol.33 , pp. 904-918
    • Thevelein, J.M.1    De Winde, J.H.2
  • 366
    • 0026054752 scopus 로고
    • Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway
    • Thompson-Jaeger, S., J. Francois, J. P. Gaughran, and K. Tatchell. 1991. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697-706.
    • (1991) Genetics , vol.129 , pp. 697-706
    • Thompson-Jaeger, S.1    Francois, J.2    Gaughran, J.P.3    Tatchell, K.4
  • 368
    • 0024009008 scopus 로고
    • SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits
    • Toda, T., S. Cameron, P. Sass, and M. Wigler. 1988. SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev. 2:517-527.
    • (1988) Genes Dev. , vol.2 , pp. 517-527
    • Toda, T.1    Cameron, S.2    Sass, P.3    Wigler, M.4
  • 369
    • 0023658335 scopus 로고
    • Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase
    • Toda, T., S. Cameron, P. Sass, M. Zoller, and M. Wigler. 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277-287.
    • (1987) Cell , vol.50 , pp. 277-287
    • Toda, T.1    Cameron, S.2    Sass, P.3    Zoller, M.4    Wigler, M.5
  • 370
    • 0023130013 scopus 로고
    • Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae
    • Toda, T., S. Cameron, P. Sass, M. Zoller, J. D. Scott, B. McMullen, M. Hurwitz, E. G. Krebs, and M. Wigler. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371-1377.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 1371-1377
    • Toda, T.1    Cameron, S.2    Sass, P.3    Zoller, M.4    Scott, J.D.5    McMullen, B.6    Hurwitz, M.7    Krebs, E.G.8    Wigler, M.9
  • 371
    • 0028043185 scopus 로고
    • Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast
    • Tokiwa, G., M. Tyers, T. Volpe, and B. Futcher. 1994. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342-345.
    • (1994) Nature , vol.371 , pp. 342-345
    • Tokiwa, G.1    Tyers, M.2    Volpe, T.3    Futcher, B.4
  • 372
    • 0036905343 scopus 로고    scopus 로고
    • Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene
    • Tomas-Cobos, L., and P. Sanz. 2002. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochem. J. 398:657-663.
    • (2002) Biochem. J. , vol.398 , pp. 657-663
    • Tomas-Cobos, L.1    Sanz, P.2
  • 374
    • 0025352093 scopus 로고
    • RPG) found initially in genes encoding ribosomal proteins
    • RPG) found initially in genes encoding ribosomal proteins. Gene 90:79-85.
    • (1990) Gene , vol.90 , pp. 79-85
    • Tornow, J.1    Santangelo, G.M.2
  • 375
    • 0027189756 scopus 로고
    • GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain
    • Tornow, J., X. Zeng, W. Gao, and G. M. Santangelo. 1993. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12:2431-2437.
    • (1993) EMBO J. , vol.12 , pp. 2431-2437
    • Tornow, J.1    Zeng, X.2    Gao, W.3    Santangelo, G.M.4
  • 376
    • 0028970369 scopus 로고
    • Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
    • Treitel, M. A., and M. Carlson. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl. Acad. Sci. USA 92:3132-3136.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 3132-3136
    • Treitel, M.A.1    Carlson, M.2
  • 377
    • 0031740335 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
    • Treitel, M. A., S. Kuchin, and M. Carlson. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6273-6280
    • Treitel, M.A.1    Kuchin, S.2    Carlson, M.3
  • 378
    • 0028102286 scopus 로고
    • The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae
    • Tu, J., and M. Carlson. 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789-6796.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 6789-6796
    • Tu, J.1    Carlson, M.2
  • 379
    • 0028894928 scopus 로고
    • REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
    • Tu, J., and M. Carlson. 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14:5939-5946.
    • (1995) EMBO J. , vol.14 , pp. 5939-5946
    • Tu, J.1    Carlson, M.2
  • 380
    • 0029894724 scopus 로고    scopus 로고
    • Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae
    • Tu, J., W. Song, and M. Carlson. 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4199-4206.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4199-4206
    • Tu, J.1    Song, W.2    Carlson, M.3
  • 381
    • 0028957959 scopus 로고
    • The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein
    • Tung, K. S., and A. K. Hopper. 1995. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. Mol. Gen. Genet. 247:48-54.
    • (1995) Mol. Gen. Genet. , vol.247 , pp. 48-54
    • Tung, K.S.1    Hopper, A.K.2
  • 382
    • 0026710738 scopus 로고
    • SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression
    • Tung, K. S., L. L. Norbeck, S. L. Nolan, N. S. Atkinson, and A. K. Hopper. 1992. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Mol. Cell. Biol. 12:2673-2680.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 2673-2680
    • Tung, K.S.1    Norbeck, L.L.2    Nolan, S.L.3    Atkinson, N.S.4    Hopper, A.K.5
  • 383
    • 0345700687 scopus 로고    scopus 로고
    • Mutations in GCR1 affect SUC2 gene expression in Saccharomyces cerevisiae
    • Turkel, S., T. Turgut, M. C. Lopez, H. Uemura, and H. V. Baker. 2003. Mutations in GCR1 affect SUC2 gene expression in Saccharomyces cerevisiae. Mol. Genet. Genomics 268:825-831.
    • (2003) Mol. Genet. Genomics , vol.268 , pp. 825-831
    • Turkel, S.1    Turgut, T.2    Lopez, M.C.3    Uemura, H.4    Baker, H.V.5
  • 384
    • 0028969881 scopus 로고
    • Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters
    • Tzamarias, D., and K. Strahl. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9:821-831.
    • (1995) Genes Dev. , vol.9 , pp. 821-831
    • Tzamarias, D.1    Strahl, K.2
  • 385
    • 0026090892 scopus 로고
    • New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae
    • Vallier, L. G., and M. Carlson. 1991. New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae. Genetics 129:675-684.
    • (1991) Genetics , vol.129 , pp. 675-684
    • Vallier, L.G.1    Carlson, M.2
  • 386
    • 0028222062 scopus 로고
    • Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae
    • Vallier, L. G., and M. Carlson. 1994. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137:49-54.
    • (1994) Genetics , vol.137 , pp. 49-54
    • Vallier, L.G.1    Carlson, M.2
  • 387
    • 0028316529 scopus 로고
    • Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae
    • Vallier, L. G., D. Coons, L. F. Bisson, and M. Carlson. 1994. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136:1279-1285.
    • (1994) Genetics , vol.136 , pp. 1279-1285
    • Vallier, L.G.1    Coons, D.2    Bisson, L.F.3    Carlson, M.4
  • 390
    • 0023137668 scopus 로고
    • Immunolocalization of glyceraldehydes-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level
    • van Tuinen, E., and H. Riezman. 1987. Immunolocalization of glyceraldehydes-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J. Histochem. Cytochem. 35:327-333.
    • (1987) J. Histochem. Cytochem. , vol.35 , pp. 327-333
    • Van Tuinen, E.1    Riezman, H.2
  • 391
    • 0034964525 scopus 로고    scopus 로고
    • Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae
    • Vasudevan, S., and S. W. Peltz. 2001. Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol. Cell 7:1191-1200.
    • (2001) Mol. Cell , vol.7 , pp. 1191-1200
    • Vasudevan, S.1    Peltz, S.W.2
  • 393
    • 0030929469 scopus 로고    scopus 로고
    • SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities
    • Verma, R., R. M. Feldman, and R. J. Deshaies. 1997. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8:1427-1437.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1427-1437
    • Verma, R.1    Feldman, R.M.2    Deshaies, R.J.3
  • 394
    • 0033569790 scopus 로고    scopus 로고
    • A novel regulator of G protein signaling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
    • Versele, M., J. H. de Winde, and J. M. Thevelein. 1999. A novel regulator of G protein signaling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J. 18:5577-5591.
    • (1999) EMBO J. , vol.18 , pp. 5577-5591
    • Versele, M.1    De Winde, J.H.2    Thevelein, J.M.3
  • 395
    • 0032403110 scopus 로고    scopus 로고
    • Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes
    • Vincent, O., and M. Carlson. 1998. Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J. 17:7002-7008.
    • (1998) EMBO J. , vol.17 , pp. 7002-7008
    • Vincent, O.1    Carlson, M.2
  • 396
    • 0033485516 scopus 로고    scopus 로고
    • Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4
    • Vincent, O., and M. Carlson. 1999. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J. 18:6672-6681.
    • (1999) EMBO J. , vol.18 , pp. 6672-6681
    • Vincent, O.1    Carlson, M.2
  • 397
    • 0035338114 scopus 로고    scopus 로고
    • Subcellular localization of the Snf1 kinase is regulated by specific β subunits and a novel glucose signaling mechanism
    • Vincent, O., R. Townley, S. Kuchin, and M. Carlson. 2001. Subcellular localization of the Snf1 kinase is regulated by specific β subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104-1114.
    • (2001) Genes Dev. , vol.15 , pp. 1104-1114
    • Vincent, O.1    Townley, R.2    Kuchin, S.3    Carlson, M.4
  • 398
    • 0025295468 scopus 로고
    • Phosphorylation of yeast hexokinases
    • Vojtek, A. B., and D. G. Fraenkel. 1990. Phosphorylation of yeast hexokinases. Eur. J. Biochem. 190:371-375.
    • (1990) Eur. J. Biochem. , vol.190 , pp. 371-375
    • Vojtek, A.B.1    Fraenkel, D.G.2
  • 399
    • 0034631852 scopus 로고    scopus 로고
    • CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus
    • von Mikecz, A., S. Zhang, M. Montminy, E. M. Tan, and P. Hemmerich. 2000. CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus. J. Cell Biol. 150:265-273.
    • (2000) J. Cell Biol. , vol.150 , pp. 265-273
    • Von Mikecz, A.1    Zhang, S.2    Montminy, M.3    Tan, E.M.4    Hemmerich, P.5
  • 400
    • 0034977801 scopus 로고    scopus 로고
    • Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • Vyas, V. K., S. Kuchin, and M. Carlson. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563-572.
    • (2001) Genetics , vol.158 , pp. 563-572
    • Vyas, V.K.1    Kuchin, S.2    Carlson, M.3
  • 401
    • 0037315527 scopus 로고    scopus 로고
    • Snf1 kinases with different β-subunit isoforms play distinct roles in regulating haploid invasive growth
    • Vyas, V. K., S. Kuchin, C. D. Berkey, and M. Carlson. 2003. Snf1 kinases with different β-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol. Cell. Biol. 23:1341-1348.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1341-1348
    • Vyas, V.K.1    Kuchin, S.2    Berkey, C.D.3    Carlson, M.4
  • 402
    • 11144231369 scopus 로고    scopus 로고
    • The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes
    • Wade, J. T., D. B. Hall, and K. Struhl. 2004. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432:1054-1058.
    • (2004) Nature , vol.432 , pp. 1054-1058
    • Wade, J.T.1    Hall, D.B.2    Struhl, K.3
  • 403
    • 0038819929 scopus 로고    scopus 로고
    • Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1
    • Wakula, P., M. Beullens, H. Ceulemans, W. Stalmans, and M. Bollen. 2003. Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J. Biol. Chem. 278:18817-18823.
    • (2003) J. Biol. Chem. , vol.278 , pp. 18817-18823
    • Wakula, P.1    Beullens, M.2    Ceulemans, H.3    Stalmans, W.4    Bollen, M.5
  • 404
    • 0037133234 scopus 로고    scopus 로고
    • Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry
    • Walsh, E. P., D. J. Lament, K. A. Beattie, and M. J. Stark. 2002. Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochemistry 41:2409-2420.
    • (2002) Biochemistry , vol.41 , pp. 2409-2420
    • Walsh, E.P.1    Lament, D.J.2    Beattie, K.A.3    Stark, M.J.4
  • 405
    • 0034875093 scopus 로고    scopus 로고
    • Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae
    • Walther, K., and H. J. Schuller. 2001. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 147:2037-2044.
    • (2001) Microbiology , vol.147 , pp. 2037-2044
    • Walther, K.1    Schuller, H.J.2
  • 406
    • 0030065523 scopus 로고    scopus 로고
    • Removal of Mig1p binding site converts a MAL63 constitutive mutant derived by interchromosomal gene conversion to glucose insensitivity
    • Wang, J., and R. Needleman. 1996. Removal of Mig1p binding site converts a MAL63 constitutive mutant derived by interchromosomal gene conversion to glucose insensitivity. Genetics 142:51-63.
    • (1996) Genetics , vol.142 , pp. 51-63
    • Wang, J.1    Needleman, R.2
  • 407
    • 6444221171 scopus 로고    scopus 로고
    • Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae
    • Wang, L., G. Renault, H. Garreau, and M. Jacquet. 2004. Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology 150:3383-3391.
    • (2004) Microbiology , vol.150 , pp. 3383-3391
    • Wang, L.1    Renault, G.2    Garreau, H.3    Jacquet, M.4
  • 409
    • 0024674170 scopus 로고
    • Synthesis of ribosomes in Saccharomyces cerevisiae
    • Warner, J. R. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53:256-271.
    • (1989) Microbiol. Rev. , vol.53 , pp. 256-271
    • Warner, J.R.1
  • 410
    • 0033229970 scopus 로고    scopus 로고
    • The economics of ribosome biosynthesis in yeast
    • Warner, J. R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437-440.
    • (1999) Trends Biochem. Sci. , vol.24 , pp. 437-440
    • Warner, J.R.1
  • 411
    • 0037770197 scopus 로고    scopus 로고
    • Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms
    • Weeks, G., and G. B. Spiegelman. 2003. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 15:901-909.
    • (2003) Cell Signal. , vol.15 , pp. 901-909
    • Weeks, G.1    Spiegelman, G.B.2
  • 412
    • 0026490040 scopus 로고
    • Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2
    • Wek, R. C., J. F. Cannon, T. E. Dever, and A. G. Hinnebusch. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol. Cell. Biol. 12:5700-5710.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 5700-5710
    • Wek, R.C.1    Cannon, J.F.2    Dever, T.E.3    Hinnebusch, A.G.4
  • 413
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces Cerevisiae
    • Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C. P. Hollenberg, and E. Boles. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces Cerevisiae. FEBS Lett. 464:123-128.
    • (1999) FEBS Lett. , vol.464 , pp. 123-128
    • Wieczorke, R.1    Krampe, S.2    Weierstall, T.3    Freidel, K.4    Hollenberg, C.P.5    Boles, E.6
  • 414
    • 9644273891 scopus 로고    scopus 로고
    • A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin
    • Willems, A. R., M. Schwab, and M. Tyers. 2004. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695:133-170.
    • (2004) Biochim. Biophys. Acta , vol.1695 , pp. 133-170
    • Willems, A.R.1    Schwab, M.2    Tyers, M.3
  • 415
    • 0027447767 scopus 로고
    • A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation
    • Willett, C. E., C. M. Gelfman, and M. J. Holland. 1993. A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation. Mol. Cell. Biol. 13:2623-2633.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 2623-2633
    • Willett, C.E.1    Gelfman, C.M.2    Holland, M.J.3
  • 416
    • 0345730825 scopus 로고    scopus 로고
    • The global transcriptional activator of Saccharomyces cerevisiae, Gcr1p, mediates the response to glucose by stimulating protein synthesis and CLN-dependent cell cycle progression
    • Willis, K. A., K. E. Barbara, B. B. Menon, J. Moffat, B. Andrews, and G. M. Santangelo. 2003. The global transcriptional activator of Saccharomyces cerevisiae, Gcr1p, mediates the response to glucose by stimulating protein synthesis and CLN-dependent cell cycle progression. Genetics 165:1017-1029.
    • (2003) Genetics , vol.165 , pp. 1017-1029
    • Willis, K.A.1    Barbara, K.E.2    Menon, B.B.3    Moffat, J.4    Andrews, B.5    Santangelo, G.M.6
  • 417
    • 0025030281 scopus 로고
    • Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae
    • Wills, C. 1990. Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 25:245-280.
    • (1990) Crit. Rev. Biochem. Mol. Biol. , vol.25 , pp. 245-280
    • Wills, C.1
  • 418
    • 0029956855 scopus 로고    scopus 로고
    • Novel determinants of H-Ras plasma membrane localization and transformation
    • Willumsen, B. M., A. D. Cox, P. A. Solski, C. J. Der, and J. E. Buss. 1996. Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene 13:1901-1909.
    • (1996) Oncogene , vol.13 , pp. 1901-1909
    • Willumsen, B.M.1    Cox, A.D.2    Solski, P.A.3    Der, C.J.4    Buss, J.E.5
  • 419
    • 0027383386 scopus 로고
    • New activated RAS2 mutations identified in Saccharomyces cerevisiae
    • Wilson, B. A., M. Khalil, F. Tamanoi, and J. F. Cannon. 1993. New activated RAS2 mutations identified in Saccharomyces cerevisiae. Oncogene 8:3441-3445.
    • (1993) Oncogene , vol.8 , pp. 3441-3445
    • Wilson, B.A.1    Khalil, M.2    Tamanoi, F.3    Cannon, J.F.4
  • 420
    • 0023672975 scopus 로고
    • m cyclic AMP phosphodiesterase of Saccharomyces cerevisiae
    • m cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:505-510.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 505-510
    • Wilson, R.B.1    Tatchell, K.2
  • 421
    • 0030293885 scopus 로고    scopus 로고
    • Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
    • Wilson, W. A., S. A. Hawley, and D. G. Hardie. 1996. Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426-1434.
    • (1996) Curr. Biol. , vol.6 , pp. 1426-1434
    • Wilson, W.A.1    Hawley, S.A.2    Hardie, D.G.3
  • 423
    • 0031825920 scopus 로고    scopus 로고
    • Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site
    • Wu, J., and R. J. Trumbly. 1998. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14:985-1000.
    • (1998) Yeast , vol.14 , pp. 985-1000
    • Wu, J.1    Trumbly, R.J.2
  • 424
    • 0032865646 scopus 로고    scopus 로고
    • Regulation of gene expression by glucose in Saccharomyces cerevisiae: A role for ADA2 and ADA3/NGG1
    • Wu, M., L. Newcomb, and W. Heideman. 1999. Regulation of gene expression by glucose in Saccharomyces cerevisiae: a role for ADA2 and ADA3/ NGG1. J. Bacteriol. 181:4755-4760.
    • (1999) J. Bacteriol. , vol.181 , pp. 4755-4760
    • Wu, M.1    Newcomb, L.2    Heideman, W.3
  • 425
    • 0035954383 scopus 로고    scopus 로고
    • Mutations in yeast protein phosphatase type 1 that affect targeting subunit binding
    • Wu, X., and K. Tatchell. 2001. Mutations in yeast protein phosphatase type 1 that affect targeting subunit binding. Biochemistry 40:7410-7420.
    • (2001) Biochemistry , vol.40 , pp. 7410-7420
    • Wu, X.1    Tatchell, K.2
  • 426
    • 0034886284 scopus 로고    scopus 로고
    • Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae
    • Wu, X., H. Hart, C. Cheng, P. J. Roach, and K. Tatchell. 2001. Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol. Genet. Genomics 265:622-635.
    • (2001) Mol. Genet. Genomics , vol.265 , pp. 622-635
    • Wu, X.1    Hart, H.2    Cheng, C.3    Roach, P.J.4    Tatchell, K.5
  • 427
    • 0028212746 scopus 로고
    • Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae
    • Xu, X., J. D. Wightman, B. L. Geller, D. Avram, and A. T. Bakalinsky. 1994. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr. Genet. 25:488-496.
    • (1994) Curr. Genet. , vol.25 , pp. 488-496
    • Xu, X.1    Wightman, J.D.2    Geller, B.L.3    Avram, D.4    Bakalinsky, A.T.5
  • 428
    • 0032055105 scopus 로고    scopus 로고
    • GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway
    • Xue, Y., M. Batlle, and J. P. Hirsch. 1998. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway. EMBO J. 17:1996-2007.
    • (1998) EMBO J. , vol.17 , pp. 1996-2007
    • Xue, Y.1    Batlle, M.2    Hirsch, J.P.3
  • 429
    • 0026758003 scopus 로고
    • A protein kinase substrate identified by the two-hybrid system
    • Yang, X., E. J. Hubbard, and M. Carlson. 1992. A protein kinase substrate identified by the two-hybrid system. Science 257:680-682.
    • (1992) Science , vol.257 , pp. 680-682
    • Yang, X.1    Hubbard, E.J.2    Carlson, M.3
  • 430
    • 0028559507 scopus 로고
    • A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex
    • Yang, X., R. Jiang, and M. Carlson. 1994. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 13:5878-5886.
    • (1994) EMBO J. , vol.13 , pp. 5878-5886
    • Yang, X.1    Jiang, R.2    Carlson, M.3
  • 431
    • 0029828816 scopus 로고    scopus 로고
    • The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae
    • Yang, Z, and L. F. Bisson. 1996. The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12:1407-1419.
    • (1996) Yeast , vol.12 , pp. 1407-1419
    • Yang, Z.1    Bisson, L.F.2
  • 432
    • 0038506725 scopus 로고    scopus 로고
    • Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
    • Young, E. T., K. M. Dombek, C. Tachibana, and T. Ideker. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:26146-26158.
    • (2003) J. Biol. Chem. , vol.278 , pp. 26146-26158
    • Young, E.T.1    Dombek, K.M.2    Tachibana, C.3    Ideker, T.4
  • 433
    • 0037064084 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation
    • Young, E. T., N. Kacherovsky, and K. Van Riper. 2002. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J. Biol. Chem. 277:38095-38103.
    • (2002) J. Biol. Chem. , vol.277 , pp. 38095-38103
    • Young, E.T.1    Kacherovsky, N.2    Van Riper, K.3
  • 435
    • 0030827114 scopus 로고    scopus 로고
    • Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p
    • Zeng, X., S. J. Deminoff, and G. M. Santangelo. 1997. Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p. Genetics 147:493-505.
    • (1997) Genetics , vol.147 , pp. 493-505
    • Zeng, X.1    Deminoff, S.J.2    Santangelo, G.M.3
  • 436
    • 0029972916 scopus 로고    scopus 로고
    • Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p
    • Zenke, F. T., R. Engles, V. Vollenbroich, J. Meyer, C. P. Hollenberg, and K. D. Breunig. 1996. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272:1662-1665.
    • (1996) Science , vol.272 , pp. 1662-1665
    • Zenke, F.T.1    Engles, R.2    Vollenbroich, V.3    Meyer, J.4    Hollenberg, C.P.5    Breunig, K.D.6
  • 437
    • 0028918318 scopus 로고
    • The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation, and mitotic cell cycle progression
    • Zhang, S., S. Guha, and F. C. Volkert. 1995. The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation, and mitotic cell cycle progression. Mol. Cell. Biol. 15:2037-2050.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2037-2050
    • Zhang, S.1    Guha, S.2    Volkert, F.C.3
  • 438
    • 18744388375 scopus 로고    scopus 로고
    • NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae
    • Zhou, H., and F. Winston. 2001. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet. 2:5.
    • (2001) BMC Genet. , vol.2 , pp. 5
    • Zhou, H.1    Winston, F.2
  • 439
    • 0033900061 scopus 로고    scopus 로고
    • MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1
    • Zhu, X., N. Demolis, M. Jacquet, and T. Michaeli. 2000. MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr. Genet. 38:60-70.
    • (2000) Curr. Genet. , vol.38 , pp. 60-70
    • Zhu, X.1    Demolis, N.2    Jacquet, M.3    Michaeli, T.4
  • 440
    • 0017581540 scopus 로고
    • Genetics of carbon catabolite repression in Saccharomycess cerevisiae: Genes involved in the derepression process
    • Zimmermann, F. K., I. Kaufmann, H. Rasenberger, and P. Haubetamann. 1977. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol. Gen. Genet. 151:95-103.
    • (1977) Mol. Gen. Genet. , vol.151 , pp. 95-103
    • Zimmermann, F.K.1    Kaufmann, I.2    Rasenberger, H.3    Haubetamann, P.4
  • 441
    • 13744258110 scopus 로고    scopus 로고
    • Tor and cyclic AMP-protein kinase A: Two parallel pathways regulating expression of genes required for cell growth
    • Zurita-Martinez, S. A., and M. E. Cardenas. 2005. Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot. Cell 4:63-71.
    • (2005) Eukaryot. Cell , vol.4 , pp. 63-71
    • Zurita-Martinez, S.A.1    Cardenas, M.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.