-
1
-
-
0033517106
-
Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase PII in Saccharomyces cerevisiae: Characterizing the effects of a phosphatase subunit on the yeast proteome
-
Alms, G. R., P. Sanz, M. Carlson, and T. A. Haystead. 1999. Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase PII in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome. EMBO J. 18:4157-4168.
-
(1999)
EMBO J.
, vol.18
, pp. 4157-4168
-
-
Alms, G.R.1
Sanz, P.2
Carlson, M.3
Haystead, T.A.4
-
2
-
-
0025850305
-
The YDp plasmids: A uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae
-
Berben, G., J. Dumont, V. Gilliquet, P. A. Bolle, and F. Hilger. 1991. The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475-477.
-
(1991)
Yeast
, vol.7
, pp. 475-477
-
-
Berben, G.1
Dumont, J.2
Gilliquet, V.3
Bolle, P.A.4
Hilger, F.5
-
3
-
-
0028040192
-
Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae
-
Cannon, J., J. R. Pringle, A. Fiechter, and M. Khalil. 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136: 485-503.
-
(1994)
Genetics
, vol.136
, pp. 485-503
-
-
Cannon, J.1
Pringle, J.R.2
Fiechter, A.3
Khalil, M.4
-
4
-
-
0033118209
-
Glucose repression in yeast
-
Carlson, M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202-207.
-
(1999)
Curr. Opin. Microbiol.
, vol.2
, pp. 202-207
-
-
Carlson, M.1
-
5
-
-
0024343258
-
Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein
-
Celenza, J. L., and M. Carlson. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034-5044.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 5034-5044
-
-
Celenza, J.L.1
Carlson, M.2
-
6
-
-
0028942747
-
Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase 1
-
Dale, S., W. Wilson, A. Edelman, and D. G. Hardie. 1995. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase 1. FEBS Lett. 361:191-195.
-
(1995)
FEBS Lett.
, vol.361
, pp. 191-195
-
-
Dale, S.1
Wilson, W.2
Edelman, A.3
Hardie, D.G.4
-
7
-
-
0032812343
-
Functional analysis of the yeast Glc7-binding protein Reg1 identifies a PP1-binding motif as essential for repression of ADH2 expression
-
Dombek, K. M., V. Voronkova, A. Raney, and E. T. Young. 1999. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a PP1-binding motif as essential for repression of ADH2 expression. Mol. Cell. Biol. 19: 6029-6040.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 6029-6040
-
-
Dombek, K.M.1
Voronkova, V.2
Raney, A.3
Young, E.T.4
-
8
-
-
0030977268
-
Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1
-
Egloff, M. P., D. F. Johnson, G. Moorhead, P. T. W. Cohen, P. Cohen, and D. Barford. 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876-1887.
-
(1997)
EMBO J.
, vol.16
, pp. 1876-1887
-
-
Egloff, M.P.1
Johnson, D.F.2
Moorhead, G.3
Cohen, P.T.W.4
Cohen, P.5
Barford, D.6
-
9
-
-
0018969294
-
Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast
-
Entian, K.-D. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:633-637.
-
(1980)
Mol. Gen. Genet.
, vol.178
, pp. 633-637
-
-
Entian, K.-D.1
-
10
-
-
0020028142
-
Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae
-
Entian, K.-D., and D. Mecke. 1982. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J. Biol. Chem. 257:870-874.
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 870-874
-
-
Entian, K.-D.1
Mecke, D.2
-
11
-
-
0026712359
-
N-terminal mutations modulate yeast SNF1 protein kinase function
-
Estruch, F., M. A. Treitel, X. Yang, and M. Carlson. 1992. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132:639-650.
-
(1992)
Genetics
, vol.132
, pp. 639-650
-
-
Estruch, F.1
Treitel, M.A.2
Yang, X.3
Carlson, M.4
-
12
-
-
0026343742
-
The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase
-
Feng, Z. H., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reimann, and R. J. Trumbly. 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266:23796-23801.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 23796-23801
-
-
Feng, Z.H.1
Wilson, S.E.2
Peng, Z.Y.3
Schlender, K.K.4
Reimann, E.M.5
Trumbly, R.J.6
-
13
-
-
0024406857
-
A novel genetic system to detect protein-protein interactions
-
Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245-246.
-
(1989)
Nature (London)
, vol.340
, pp. 245-246
-
-
Fields, S.1
Song, O.2
-
14
-
-
0028304675
-
Type 1 protein phosphatase acts in opposition to Ip11 protein kinase in regulating yeast chromosome segregation
-
Francisco, L., W. Wang, and C. S. M. Chan. 1994. Type 1 protein phosphatase acts in opposition to Ip11 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14:4731-4740.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4731-4740
-
-
Francisco, L.1
Wang, W.2
Chan, C.S.M.3
-
15
-
-
0029982653
-
The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth
-
Frederick, D. L., and K. Tatchell. 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol. Cell. Biol. 16:2922-2931.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2922-2931
-
-
Frederick, D.L.1
Tatchell, K.2
-
16
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
-
(1998)
Microbiol. Mol. Biol. Rev.
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
17
-
-
0002337352
-
Interaction trap/two-hyhrid system to identify interacting proteins
-
F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 20.1. John Wiley & Sons, New York, N.Y.
-
Golemis, E. A., I. Serbriiskii, J. Gyuris, and R. Brent. 1997. Interaction trap/two-hyhrid system to identify interacting proteins. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology, vol. 3, 20.1. John Wiley & Sons, New York, N.Y.
-
(1997)
Current Protocols in Molecular Biology
, vol.3
-
-
Golemis, E.A.1
Serbriiskii, I.2
Gyuris, J.3
Brent, R.4
-
18
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie, D. G., D. Carling, and M. Carlson. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821-855.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
20
-
-
0345647082
-
The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae
-
Herrero, P., C. Martinez-Campa, and F. Moreno. 1998. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett. 434:71-76.
-
(1998)
FEBS Lett.
, vol.434
, pp. 71-76
-
-
Herrero, P.1
Martinez-Campa, C.2
Moreno, F.3
-
21
-
-
0029054139
-
The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae
-
Hisamoto, N., D. L. Frederick, K. Sugimoto, K. Tatchell, and K. Matsumoto. 1995. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3767-3776.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 3767-3776
-
-
Hisamoto, N.1
Frederick, D.L.2
Sugimoto, K.3
Tatchell, K.4
Matsumoto, K.5
-
23
-
-
0029967586
-
Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae
-
Huang, D., K. T. Chun, M. G. Goebl, and P. J. Roach. 1996. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143:119-127.
-
(1996)
Genetics
, vol.143
, pp. 119-127
-
-
Huang, D.1
Chun, K.T.2
Goebl, M.G.3
Roach, P.J.4
-
24
-
-
0030468365
-
Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
-
Jiang, R., and M. Carlson. 1996. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10:3105-3115.
-
(1996)
Genes Dev.
, vol.10
, pp. 3105-3115
-
-
Jiang, R.1
Carlson, M.2
-
25
-
-
0030953974
-
The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
-
Jiang, R., and M. Carlson. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099-2106.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 2099-2106
-
-
Jiang, R.1
Carlson, M.2
-
26
-
-
0032941868
-
Feasting, fasting and fermenting
-
Johnston, M. 1999. Feasting, fasting and fermenting. Trends Genet. 15:29-33.
-
(1999)
Trends Genet.
, vol.15
, pp. 29-33
-
-
Johnston, M.1
-
27
-
-
0027976826
-
In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae
-
Kriegel, T. M., J. Rush, A. B. Vojtek, D. Clifton, and D. G. Fraenkel. 1994. In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33:148-152.
-
(1994)
Biochemistry
, vol.33
, pp. 148-152
-
-
Kriegel, T.M.1
Rush, J.2
Vojtek, A.B.3
Clifton, D.4
Fraenkel, D.G.5
-
28
-
-
0014949207
-
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
-
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
-
(1970)
Nature (London)
, vol.227
, pp. 680-685
-
-
Laemmli, U.K.1
-
29
-
-
0028018892
-
Detection of protein-protein interactions using different vectors in the two-hybrid system
-
Legrain, P., M.-C. Dokhelar, and C. Transy. 1994. Detection of protein-protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res. 22:3241-3242.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 3241-3242
-
-
Legrain, P.1
Dokhelar, M.-C.2
Transy, C.3
-
30
-
-
0032568542
-
Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Ludin, K., R. Jiang, and M. Carlson. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:6245-6250.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 6245-6250
-
-
Ludin, K.1
Jiang, R.2
Carlson, M.3
-
31
-
-
0024313495
-
The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae
-
Ma, H., L. M. Bloom, C. T. Walsh, and D. Botstein. 1989. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5643-5649.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 5643-5649
-
-
Ma, H.1
Bloom, L.M.2
Walsh, C.T.3
Botstein, D.4
-
32
-
-
0022815674
-
Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression
-
Ma, H., and D. Botstein. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6:4046-4052.
-
(1986)
Mol. Cell. Biol.
, vol.6
, pp. 4046-4052
-
-
Ma, H.1
Botstein, D.2
-
33
-
-
0029060776
-
The Saccharo-myces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase
-
MacKelvie, S. H., P. D. Andrews, and M. J. R. Stark. 1995. The Saccharo-myces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. Mol. Cell. Biol. 15:3777-3785.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 3777-3785
-
-
MacKelvie, S.H.1
Andrews, P.D.2
Stark, M.J.R.3
-
34
-
-
0020575692
-
Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae
-
Matsumoto, K., T. Yoshimatsu, and Y. Oshima. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405-1414.
-
(1983)
J. Bacteriol.
, vol.153
, pp. 1405-1414
-
-
Matsumoto, K.1
Yoshimatsu, T.2
Oshima, Y.3
-
35
-
-
0023140958
-
Mutations causing constitutive invertase synthesis in yeast: Genetic interactions with snf mutations
-
Neigeborn, L., and M. Carlson. 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247-253.
-
(1987)
Genetics
, vol.115
, pp. 247-253
-
-
Neigeborn, L.1
Carlson, M.2
-
36
-
-
0025901117
-
Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast
-
Niederacher, D., and K. D. Entian. 1991. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur. J. Biochem. 200:311-319.
-
(1991)
Eur. J. Biochem.
, vol.200
, pp. 311-319
-
-
Niederacher, D.1
Entian, K.D.2
-
37
-
-
0028872732
-
Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
-
Ozcan, S., and Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564-1572.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 1564-1572
-
-
Ozcan, S.1
Johnston2
-
38
-
-
0031860215
-
Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase
-
Ramaswamy, N. T., L. Li, M. Khalil, and J. F. Cannon. 1998. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57-72.
-
(1998)
Genetics
, vol.149
, pp. 57-72
-
-
Ramaswamy, N.T.1
Li, L.2
Khalil, M.3
Cannon, J.F.4
-
39
-
-
0032478569
-
Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae
-
Randez-Gil, F., P. Herrero, P. Sanz, J. A. Prieto, and F. Moreno. 1998. Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett. 425:475-478.
-
(1998)
FEBS Lett.
, vol.425
, pp. 475-478
-
-
Randez-Gil, F.1
Herrero, P.2
Sanz, P.3
Prieto, J.A.4
Moreno, F.5
-
40
-
-
0031897460
-
Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast
-
Randez-Gil, F., P. Sanz, K.-D. Entian, and J. A. Prieto. 1998. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol. Cell. Biol. 18:2940-2948.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 2940-2948
-
-
Randez-Gil, F.1
Sanz, P.2
Entian, K.-D.3
Prieto, J.A.4
-
41
-
-
0003529272
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics, a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
(1990)
Methods in Yeast Genetics, a Laboratory Course Manual
-
-
Rose, M.D.1
Winston, F.2
Hieter, P.3
-
42
-
-
0020645054
-
One-step gene disruption in yeast
-
Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101C:202-210.
-
(1983)
Methods Enzymol.
, vol.101 C
, pp. 202-210
-
-
Rothstein, R.J.1
-
43
-
-
0026429185
-
Generating yeast transcriptional activators containing no yeast protein sequences
-
Ruden, D. M., J. Ma, Y. Li, K. Wood, and M. Ptashne. 1991. Generating yeast transcriptional activators containing no yeast protein sequences. Nature (London) 350:250-252.
-
(1991)
Nature (London)
, vol.350
, pp. 250-252
-
-
Ruden, D.M.1
Ma, J.2
Li, Y.3
Wood, K.4
Ptashne, M.5
-
44
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
45
-
-
0032190165
-
Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1
-
Song, W., and M. Carlson. 1998. Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J. 17:5757-5765.
-
(1998)
EMBO J.
, vol.17
, pp. 5757-5765
-
-
Song, W.1
Carlson, M.2
-
46
-
-
0030451563
-
Yeast protein serine/threonine phosphatases: Multiple roles and diverse regulation
-
Stark, M. J. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647-1675.
-
(1996)
Yeast
, vol.12
, pp. 1647-1675
-
-
Stark, M.J.1
-
47
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel, M. A., S. Kuchin, and M. Carlson. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
48
-
-
0028102286
-
The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae
-
Tu, J., and M. Carlson. 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789-6796.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 6789-6796
-
-
Tu, J.1
Carlson, M.2
-
49
-
-
0028894928
-
REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
-
Tu, J., and M. Carlson. 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14:5939-5946.
-
(1995)
EMBO J.
, vol.14
, pp. 5939-5946
-
-
Tu, J.1
Carlson, M.2
-
50
-
-
0029894724
-
Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae
-
Tu, J., W. Song, and M. Carlson. 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4199-4206.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 4199-4206
-
-
Tu, J.1
Song, W.2
Carlson, M.3
-
51
-
-
0026710738
-
SRN1, a yeast gene involved in RNA processing, is identical to HEX2/ REG1, a negative regulator in glucose repression
-
Tung, K.-S., L. L. Norbeck, S. L. Nolan, N. S. Atkinson, and A. K. Hopper. 1992. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/ REG1, a negative regulator in glucose repression. Mol. Cell. Biol. 12:2673-2680.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 2673-2680
-
-
Tung, K.-S.1
Norbeck, L.L.2
Nolan, S.L.3
Atkinson, N.S.4
Hopper, A.K.5
-
52
-
-
0025295468
-
Phosphorylation of yeast hexokinases
-
Vojtek, A. B., and D. G. Fraenkel. 1990. Phosphorylation of yeast hexokinases. Eur. J. Biochem. 190:371-375.
-
(1990)
Eur. J. Biochem.
, vol.190
, pp. 371-375
-
-
Vojtek, A.B.1
Fraenkel, D.G.2
-
53
-
-
0027250250
-
Mammalian Ras interacts directly with the serine/threonine kinase Raf
-
Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205-214.
-
(1993)
Cell
, vol.74
, pp. 205-214
-
-
Vojtek, A.B.1
Hollenberg, S.M.2
Cooper, J.A.3
-
54
-
-
0026490040
-
Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2
-
Wek, R. C., J. F. Cannon, T. E. Dever, and A. G. Hinnebusch. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol. Cell. Biol. 12:5700-5710.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 5700-5710
-
-
Wek, R.C.1
Cannon, J.F.2
Dever, T.E.3
Hinnebusch, A.G.4
-
55
-
-
0030293885
-
Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
-
Wilson, W. A., S. A. Hawley, and D. G. Hardie. 1996. Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426-1434.
-
(1996)
Curr. Biol.
, vol.6
, pp. 1426-1434
-
-
Wilson, W.A.1
Hawley, S.A.2
Hardie, D.G.3
-
56
-
-
0028070457
-
Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
-
Woods, A., M. R. Munday, J. Scott, X. Yang, M. Carlson, and D. Carling. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:19509-19516.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 19509-19516
-
-
Woods, A.1
Munday, M.R.2
Scott, J.3
Yang, X.4
Carlson, M.5
Carling, D.6
-
57
-
-
0028918318
-
The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation and mitotic cell cycle progression
-
Zhang, S., S. Guha, and F. C. Volkert. 1995. The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation and mitotic cell cycle progression. Mol. Cell. Biol. 15:2037-2050.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2037-2050
-
-
Zhang, S.1
Guha, S.2
Volkert, F.C.3
|