메뉴 건너뛰기




Volumn 3, Issue 1, 2004, Pages 221-231

Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

BETA GALACTOSIDASE; CARBON; DNA BINDING PROTEIN; GLC2 PROTEIN; GLUCOSE; MIG1 PROTEIN, S CEREVISIAE; OLIGONUCLEOTIDE; PROTEIN SERINE THREONINE KINASE; REPRESSOR PROTEIN; RGT1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSACTIVATOR PROTEIN;

EID: 1242300132     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.3.1.221-231.2004     Document Type: Article
Times cited : (140)

References (72)
  • 1
    • 0034100041 scopus 로고    scopus 로고
    • Glucose depletion rapidly inhibits translation initiation in yeast
    • Ashe, M. P., S. K. De Long, and A. B. Sachs. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833-848.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 833-848
    • Ashe, M.P.1    De Long, S.K.2    Sachs, A.B.3
  • 2
    • 0037474301 scopus 로고    scopus 로고
    • The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    • Boer, V. M., J. H. de Winde, J. T. Pronk, and M. D. Piper. 2003. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278:3265-3274.
    • (2003) J. Biol. Chem. , vol.278 , pp. 3265-3274
    • Boer, V.M.1    De Winde, J.H.2    Pronk, J.T.3    Piper, M.D.4
  • 3
    • 0033390344 scopus 로고    scopus 로고
    • Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p)
    • Bojunga, N., and K. D. Entian. 1999. Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol. Gen. Genet. 262:869-875.
    • (1999) Mol. Gen. Genet. , vol.262 , pp. 869-875
    • Bojunga, N.1    Entian, K.D.2
  • 4
    • 0029991328 scopus 로고    scopus 로고
    • Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate
    • Boles, E., H. W. Gohlmann, and F. K. Zimmermann. 1996. Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol. Microbiol. 20:65-76.
    • (1996) Mol. Microbiol. , vol.20 , pp. 65-76
    • Boles, E.1    Gohlmann, H.W.2    Zimmermann, F.K.3
  • 5
    • 0030953385 scopus 로고    scopus 로고
    • The molecular genetics of hexose transport in yeasts
    • Boles, E., and C. P. Hollenberg. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21:85-111.
    • (1997) FEMS Microbiol. Rev. , vol.21 , pp. 85-111
    • Boles, E.1    Hollenberg, C.P.2
  • 6
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, and J. D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 7
    • 0037397595 scopus 로고    scopus 로고
    • Genome-wide transcriptional changes during the lag phase of Saccharomyces cerevisiae
    • Brejning, J., L. Jespersen, and N. Arneborg. 2003. Genome-wide transcriptional changes during the lag phase of Saccharomyces cerevisiae. Arch. Microbiol. 179:278-294.
    • (2003) Arch. Microbiol. , vol.179 , pp. 278-294
    • Brejning, J.1    Jespersen, L.2    Arneborg, N.3
  • 8
    • 0033118209 scopus 로고    scopus 로고
    • Glucose repression in yeast
    • Carlson, M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202-207.
    • (1999) Curr. Opin. Microbiol. , vol.2 , pp. 202-207
    • Carlson, M.1
  • 9
    • 0032190608 scopus 로고    scopus 로고
    • Regulation of glucose utilization in yeast
    • Carlson, M. 1998. Regulation of glucose utilization in yeast. Curr. Opin. Genet. Dev. 8:560-564.
    • (1998) Curr. Opin. Genet. Dev. , vol.8 , pp. 560-564
    • Carlson, M.1
  • 10
    • 0038662973 scopus 로고    scopus 로고
    • Associating protein activities with their genes: Rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae
    • Chen, C. N., L. Porubleva, G. Shearer, M. Svrakic, L. G. Holden, J. L. Dover, M. Johnston, P. R. Chitnis, and D. H. Kohl. 2003. Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20:545-554.
    • (2003) Yeast , vol.20 , pp. 545-554
    • Chen, C.N.1    Porubleva, L.2    Shearer, G.3    Svrakic, M.4    Holden, L.G.5    Dover, J.L.6    Johnston, M.7    Chitnis, P.R.8    Kohl, D.H.9
  • 11
    • 0026599048 scopus 로고
    • One-step transformation of yeast in stationary phase
    • Chen, D. C., B. C. Yang, and T. T. Kuo. 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21:83-84.
    • (1992) Curr. Genet. , vol.21 , pp. 83-84
    • Chen, D.C.1    Yang, B.C.2    Kuo, T.T.3
  • 12
    • 0032559855 scopus 로고    scopus 로고
    • Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase- containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation
    • Chiang, M. C., and H. L. Chiang. 1998. Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J. Cell Biol. 140:1347-1356.
    • (1998) J. Cell Biol. , vol.140 , pp. 1347-1356
    • Chiang, M.C.1    Chiang, H.L.2
  • 14
    • 0034636716 scopus 로고    scopus 로고
    • Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system
    • Deinen, D., G. C. Tomlin, J. L. Wixon, A. Hutter, M. Sefton, E. J. Louis, and S. G. Oliver. 2000. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127-135.
    • (2000) Gene , vol.252 , pp. 127-135
    • Deinen, D.1    Tomlin, G.C.2    Wixon, J.L.3    Hutter, A.4    Sefton, M.5    Louis, E.J.6    Oliver, S.G.7
  • 15
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 16
    • 0035929329 scopus 로고    scopus 로고
    • Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3
    • Dlugai, S., S. Hippler, R. Wieczorke, and E. Boles. 2001. Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett. 505:389-392.
    • (2001) FEBS Lett. , vol.505 , pp. 389-392
    • Dlugai, S.1    Hippler, S.2    Wieczorke, R.3    Boles, E.4
  • 17
    • 0027222960 scopus 로고
    • ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1
    • Dombek, K. M., S. Camier, and E. T. Young. 1993. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol. Cell. Biol. 13:4391-4399.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 4391-4399
    • Dombek, K.M.1    Camier, S.2    Young, E.T.3
  • 18
    • 0028226607 scopus 로고
    • Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae
    • Erickson, J. R., and M. Johnston. 1994. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics 136:1271-1278.
    • (1994) Genetics , vol.136 , pp. 1271-1278
    • Erickson, J.R.1    Johnston, M.2
  • 20
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 22
    • 0021709399 scopus 로고
    • Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the "TATA box."
    • Guarente, L., and E. Hoar. 1984. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the "TATA box." Proc. Natl. Acad. Sci. USA 81:7860-7864.
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 7860-7864
    • Guarente, L.1    Hoar, E.2
  • 23
    • 0023481280 scopus 로고
    • A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli
    • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267-272.
    • (1987) Gene , vol.57 , pp. 267-272
    • Hoffman, C.S.1    Winston, F.2
  • 25
    • 0041305909 scopus 로고    scopus 로고
    • Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
    • Hong, S. P., F. C. Leiper, A. Woods, D. Carling, and M. Carlson. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100:8839-8843.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8839-8843
    • Hong, S.P.1    Leiper, F.C.2    Woods, A.3    Carling, D.4    Carlson, M.5
  • 26
    • 0037040938 scopus 로고    scopus 로고
    • Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
    • Horak, J., J. Regelmann, and D. H. Wolf. 2002. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6- bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J. Biol. Chem. 277:8248-8254.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8248-8254
    • Horak, J.1    Regelmann, J.2    Wolf, D.H.3
  • 27
    • 0031019152 scopus 로고    scopus 로고
    • Identification of novel vesicles in the cytosol to vacuole protein degradation pathway
    • Huang, P. H., and H. L. Chiang. 1997. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J. Cell Biol. 136:803-810.
    • (1997) J. Cell Biol. , vol.136 , pp. 803-810
    • Huang, P.H.1    Chiang, H.L.2
  • 28
    • 0034625801 scopus 로고    scopus 로고
    • Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl
    • Jia, M. H., R. A. Larossa, J. M. Lee, A. Rafalski, E. Derose, G. Gonye, and Z. Xue. 2000. Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol. Genomics 3:83-92.
    • (2000) Physiol. Genomics , vol.3 , pp. 83-92
    • Jia, M.H.1    Larossa, R.A.2    Lee, J.M.3    Rafalski, A.4    Derose, E.5    Gonye, G.6    Xue, Z.7
  • 29
    • 0033794796 scopus 로고    scopus 로고
    • Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae
    • Jiang, H., K. Tatchell, S. Liu, and C. A. Michels. 2000. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:411-422.
    • (2000) Mol. Gen. Genet. , vol.263 , pp. 411-422
    • Jiang, H.1    Tatchell, K.2    Liu, S.3    Michels, C.A.4
  • 30
    • 0032941868 scopus 로고    scopus 로고
    • Feasting, fasting and fermenting. Glucose sensing in yeast and other cells
    • Johnston, M. 1999. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15:29-33.
    • (1999) Trends Genet. , vol.15 , pp. 29-33
    • Johnston, M.1
  • 31
    • 0026571899 scopus 로고
    • Ssn6-Tup1 is a general repressor of transcription in yeast
    • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709-719.
    • (1992) Cell , vol.68 , pp. 709-719
    • Keleher, C.A.1    Redd, M.J.2    Schultz, J.3    Carlson, M.4    Johnson, A.D.5
  • 32
    • 0042592912 scopus 로고    scopus 로고
    • Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1
    • Kim, J.-H., J. Polish, and M. Johnston. 2003. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23:5208-5216.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5208-5216
    • Kim, J.-H.1    Polish, J.2    Johnston, M.3
  • 33
    • 0032775010 scopus 로고    scopus 로고
    • Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines
    • Knop, M., K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, and E. Schiebel. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963-972.
    • (1999) Yeast , vol.15 , pp. 963-972
    • Knop, M.1    Siegers, K.2    Pereira, G.3    Zachariae, W.4    Winsor, B.5    Nasmyth, K.6    Schiebel, E.7
  • 34
    • 0034608811 scopus 로고    scopus 로고
    • A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme
    • Kuchin, S., I. Treich, and M. Carlson. 2000. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 97:7916-7920.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 7916-7920
    • Kuchin, S.1    Treich, I.2    Carlson, M.3
  • 35
    • 0036265376 scopus 로고    scopus 로고
    • Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
    • Kuchin, S., V. K. Vyas, and M. Carlson. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3994-4000
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 36
    • 0037295532 scopus 로고    scopus 로고
    • Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae
    • Kuchin, S., V. K. Vyas, E. Kanter, S. P. Hong, and M. Carlson. 2003. Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae. Genetics 163:507-514.
    • (2003) Genetics , vol.163 , pp. 507-514
    • Kuchin, S.1    Vyas, V.K.2    Kanter, E.3    Hong, S.P.4    Carlson, M.5
  • 37
    • 0035137667 scopus 로고    scopus 로고
    • Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source
    • Kuhn, K. M., J. L. DeRisi, P. O. Brown, and P. Sarnow. 2001. Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol. Cell. Biol. 21:916-927.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 916-927
    • Kuhn, K.M.1    DeRisi, J.L.2    Brown, P.O.3    Sarnow, P.4
  • 38
    • 0033962922 scopus 로고    scopus 로고
    • Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
    • Lafuente, M. J., C. Gancedo, J. C. Jauniaux, and J. M. Gancedo. 2000. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 35:161-172.
    • (2000) Mol. Microbiol. , vol.35 , pp. 161-172
    • Lafuente, M.J.1    Gancedo, C.2    Jauniaux, J.C.3    Gancedo, J.M.4
  • 39
    • 0030874516 scopus 로고    scopus 로고
    • Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell cycle
    • Li, F. N., and M. Johnston. 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16:5629-5638.
    • (1997) EMBO J. , vol.16 , pp. 5629-5638
    • Li, F.N.1    Johnston, M.2
  • 40
    • 0029811217 scopus 로고    scopus 로고
    • A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6
    • Liang, H., and R. F. Gaber. 1996. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol. Biol. Cell 7:1953-1966.
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1953-1966
    • Liang, H.1    Gaber, R.F.2
  • 41
    • 0032568542 scopus 로고    scopus 로고
    • Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • Ludin, K., R. Jiang, and M. Carlson. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:6245-6250.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6245-6250
    • Ludin, K.1    Jiang, R.2    Carlson, M.3
  • 42
    • 1242297984 scopus 로고    scopus 로고
    • Manipulation of cloned yeast DNA
    • F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), John Wiley & Sons, New York, N.Y.
    • Lundblad, V., G. Hartzog, and Z. Moqtaderi. 1997. Manipulation of cloned yeast DNA, p. 13.10.1-13.10.14. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
    • (1997) Current Protocols in Molecular Biology , pp. 13101-131014
    • Lundblad, V.1    Hartzog, G.2    Moqtaderi, Z.3
  • 43
    • 0031761689 scopus 로고    scopus 로고
    • Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
    • Lutfiyya, L. L., V. R. Iyer, J. DeRisi, M. J. DeVit, P. O. Brown, and M. Johnston. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377-1391.
    • (1998) Genetics , vol.150 , pp. 1377-1391
    • Lutfiyya, L.L.1    Iyer, V.R.2    DeRisi, J.3    DeVit, M.J.4    Brown, P.O.5    Johnston, M.6
  • 44
    • 0029783926 scopus 로고    scopus 로고
    • Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
    • Lutfiyya, L. L., and M. Johnston. 1996. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16:4790-4797.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4790-4797
    • Lutfiyya, L.L.1    Johnston, M.2
  • 46
    • 0023034916 scopus 로고
    • Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions
    • Myers, A. M., A. Tzagoloff, D. M. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299-310.
    • (1986) Gene , vol.45 , pp. 299-310
    • Myers, A.M.1    Tzagoloff, A.2    Kinney, D.M.3    Lusty, C.J.4
  • 47
    • 0038583957 scopus 로고    scopus 로고
    • Yeast Pak1 kinase associates with and activates Snf1
    • Nath, N., R. R. McCartney, and M. C. Schmidt. 2003. Yeast Pak1 kinase associates with and activates Snf1. Mol. Cell. Biol. 23:3909-3917.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3909-3917
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 48
    • 0022816230 scopus 로고
    • Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations
    • Neigeborn, L., P. Schwartzberg, R. Reid, and M. Carlson. 1986. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol. Cell. Biol. 6:3569-3574.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3569-3574
    • Neigeborn, L.1    Schwartzberg, P.2    Reid, R.3    Carlson, M.4
  • 49
    • 0030873221 scopus 로고    scopus 로고
    • Recombination-mediated PCR-directed plasmid construction in vivo in yeast
    • Oldenburg, K. R., K. T. Vo, S. Michaelis, and C. Paddon. 1997. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25:451-452.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 451-452
    • Oldenburg, K.R.1    Vo, K.T.2    Michaelis, S.3    Paddon, C.4
  • 50
    • 0032080298 scopus 로고    scopus 로고
    • Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
    • Özcan, S., J. Dover, and M. Johnston. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17: 2566-2573.
    • (1998) EMBO J. , vol.17 , pp. 2566-2573
    • Özcan, S.1    Dover, J.2    Johnston, M.3
  • 51
    • 0029864499 scopus 로고    scopus 로고
    • Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
    • Özcan, S., J. Dover, A. G. Rosenwald, S. Wölfl, and M. Johnston. 1996. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. USA 93:12428-12432.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 12428-12432
    • Özcan, S.1    Dover, J.2    Rosenwald, A.G.3    Wölfl, S.4    Johnston, M.5
  • 52
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Özcan, S., and M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554-569.
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 554-569
    • Özcan, S.1    Johnston, M.2
  • 53
    • 0028872732 scopus 로고
    • Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
    • Özcan, S., and M. Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564-1572.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1564-1572
    • Özcan, S.1    Johnston, M.2
  • 54
    • 0029813252 scopus 로고    scopus 로고
    • Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose
    • Özcan, S., and M. Johnston. 1996. Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol. Cell. Biol. 16:5536-5545.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5536-5545
    • Özcan, S.1    Johnston, M.2
  • 56
    • 0036281361 scopus 로고    scopus 로고
    • Glucose-sensing and -signalling mechanisms in yeast
    • Rolland, F., J. Winderickx, and J. M. Thevelein. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2:183-201.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 183-201
    • Rolland, F.1    Winderickx, J.2    Thevelein, J.M.3
  • 58
    • 0033974002 scopus 로고    scopus 로고
    • Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
    • Sanz, P., G. R. Alms, T. A. J. Haystead, and M. Carlson. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:1321-1328.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1321-1328
    • Sanz, P.1    Alms, G.R.2    Haystead, T.A.J.3    Carlson, M.4
  • 59
    • 0029743981 scopus 로고    scopus 로고
    • Glucose repression may involve processes with different sugar kinase requirements
    • Sanz, P., A. Nieto, and J. A. Prieto. 1996. Glucose repression may involve processes with different sugar kinase requirements. J. Bacteriol. 178:4721-4723.
    • (1996) J. Bacteriol. , vol.178 , pp. 4721-4723
    • Sanz, P.1    Nieto, A.2    Prieto, J.A.3
  • 61
    • 0032213751 scopus 로고    scopus 로고
    • Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
    • Scheffler, I. E., B. J. de la Cruz, and S. Prieto. 1998. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int. J. Biochem. Cell Biol. 30:1175-1193.
    • (1998) Int. J. Biochem. Cell Biol. , vol.30 , pp. 1175-1193
    • Scheffler, I.E.1    De La Cruz, B.J.2    Prieto, S.3
  • 62
    • 0024799254 scopus 로고
    • High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
    • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339-346.
    • (1989) Curr. Genet. , vol.16 , pp. 339-346
    • Schiestl, R.H.1    Gietz, R.D.2
  • 63
    • 0033000330 scopus 로고    scopus 로고
    • Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
    • Schmidt, M. C., R. R. McCartney, X. Zhang, T. S. Tillman, H. Solimeo, S. Wölfl, C. Almonte, and S. C. Watkins. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561-4571.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4561-4571
    • Schmidt, M.C.1    McCartney, R.R.2    Zhang, X.3    Tillman, T.S.4    Solimeo, H.5    Wölfl, S.6    Almonte, C.7    Watkins, S.C.8
  • 65
    • 0028102286 scopus 로고
    • The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae
    • Tu, J., and M. Carlson. 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789-6796.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 6789-6796
    • Tu, J.1    Carlson, M.2
  • 67
    • 0028222062 scopus 로고
    • Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae
    • Vallier, L. G., and M. Carlson. 1994. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137:49-54.
    • (1994) Genetics , vol.137 , pp. 49-54
    • Vallier, L.G.1    Carlson, M.2
  • 68
    • 24844464763 scopus 로고    scopus 로고
    • The AQR1 transporter mediates amino acid excretion in Saccharomyces cerevisiae
    • Velasco, I., I. L. Calderon, and B. Andre. 2003. The AQR1 transporter mediates amino acid excretion in Saccharomyces cerevisiae. Yeast 20(Suppl.):S237.
    • (2003) Yeast , vol.20 , Issue.SUPPL.
    • Velasco, I.1    Calderon, I.L.2    Andre, B.3
  • 69
    • 0034977801 scopus 로고    scopus 로고
    • Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • Vyas, V. K., S. Kuchin, and M. Carlson. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563-572.
    • (2001) Genetics , vol.158 , pp. 563-572
    • Vyas, V.K.1    Kuchin, S.2    Carlson, M.3
  • 70
    • 0029828816 scopus 로고    scopus 로고
    • The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae
    • Yang, Z., and L. F. Bisson. 1996. The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12:1407-1419.
    • (1996) Yeast , vol.12 , pp. 1407-1419
    • Yang, Z.1    Bisson, L.F.2
  • 71
    • 0038506725 scopus 로고    scopus 로고
    • Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
    • Young, E. T., K. M. Dombek, C. Tachibana, and T. Ideker. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:26146-26158.
    • (2003) J. Biol. Chem. , vol.278 , pp. 26146-26158
    • Young, E.T.1    Dombek, K.M.2    Tachibana, C.3    Ideker, T.4
  • 72
    • 0035477582 scopus 로고    scopus 로고
    • Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae
    • Zaragoza, O., O. Vincent, and J. M. Gancedo. 2001. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Biochem. J. 359:193-201.
    • (2001) Biochem. J. , vol.359 , pp. 193-201
    • Zaragoza, O.1    Vincent, O.2    Gancedo, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.